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1. INTRODUCTION 

Energy production based on combustion of fossil fuels repre-
sents a severe negative impact on world economics and environ-
ment [1]. Electrochemical energy production is projected as an 
alternative power source; hydrogen has been identified as a prom-
ising fuel for sustainable energy supply provided that it is obtained 
from renewable energy [2-5]. The impending increase in the de-
mand for hydrogen is a consequence of the technological develop-
ments which make use of it in a wide range of applications in the 
energy sector. However hydrogen generation is one of the critical 
aspects due to the high energy amount needed to obtain it. Differ-
ent processes are analyzed: photo-dissociation of water, thermo-
chemical cycles and microscopic organisms as algae, etc; despite 
the fact that these processes are still far from practical use. Water 

electrolysis is a well-established technology and one of the most 
widely used methods for producing high purity hydrogen [6]. Wa-
ter electrolysis in a Proton Exchange Membrane (PEM) device is 
characterized by high efficiencies and suitable current density even 
at low temperatures. In comparison to the traditional alkaline elec-
trolyzers, in which corrosive potassium hydroxide (KOH) solution 
is used as electrolyte, systems based on PEMs have a number of 
advantages, such as ecological cleanliness, considerably smaller 
mass-volume characteristics and essentially, a high degree of gas 
purity [7]. There is also the opportunity to obtain compressed 
gases directly from the electrolyzer at an increased level of safety. 
High manufacturing costs and production of PEM electrolyzers are 
the main disadvantages that limit their use.  The production costs 
are dependent on the cost of electricity and a large energy supply 
is often needed due to high anode overpotentials [8-10]. 

Several models have been proposed to simulate PEM electro-
lyzer systems based on physic and electrochemical phenomena. *To whom correspondence should be addressed: Email: larriaga@cideteq.mx  
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[11, 12]. Analytical models are an adequate tool to understand the 
effect of basic variables on the electrolyzer performance [13]. 
Semi-empirical models allow designers and engineers to predict the 
electrolyzer performance as a function of different operation condi-
tions (temperature, pressure, water flow) using simple math equa-
tions [14]. However, this kind of models requires high level of 
knowledge of the process parameters as well as assumptions in 
order to simply them, for this reason they lose accuracy. Neverthe-
less it is possible to reach performance modeling using black-box 
models such as Artificial Neural Networks (ANN´s) [15-17]. These 
models are based on a set of measurable input parameters such as 
current supplied and temperature and they can predict the behavior 
of interesting output parameters such as cell voltage. A short stack 
PEM electrolyzer was characterized and used to build a dynamic 
model based in Artificial Neural Network (ANN). 

1.1. Artificial Neural Network 
An Artificial Neural Network (ANN) is inspired by the structure 

and functional aspects of biological neural networks; it can be re-
garded as a black box model able to give certain output data as a 
response of specific input values combination, depending on the 
effective identification of the main operation factors in the system 
performance. ANN’s are widely accepted as a technology used in 
many engineering applications such as in control systems, pattern 
recognition and modeling, offering an alternative way to handle 
with complex problems. ANN´s are data driven methods, in the 
sense that is not necessary to postulate tentative formal models and 
then estimate their parameters, they can learn from examples, are 
fault tolerant and are able to handle noisy and incomplete data, as 
well they are able to deal with non-linear problems, and, once 
trained, can perform predictions at very high speed. 

This paper specifies the data acquisition process and ANN´s 
design for the dynamic model of a PEM electrolyzer stack by using 
the Backppppnnuhvupropagation (BP) learning algorithm for a 
Multilayer Perceptron Network (MLP) [18]. 

The topology of the network is defined by the neurons organiza-
tion. The MLP is organized by setting the number of neurons in the 
input and output layer according to the specific application, and 

optionally added hidden layers; fig. 1 shows an example of the 
topology of an ANN. 

1.2. ANN´s learning process 
The learning process make possible to adjust speed and ac-
curacy. The idea with the BP algorithm is feedback to the 
neural-network, the errors generated when its outputs differs 
from the desired outputs. For this reason, a least mean 
square (LMS) error function, e, is introduced, according to: 

 
k=1,2,…,N, being N the number of neurons in the output layer, d 

the desired output, and Y the ANN´s output. 
During this procedure, local gradients of e with respect to the 

weights Wk, are calculated, which later can be used for adjusting 
the old weights in (4). The goal of the learning is to find the opti-
mal weights that minimize this error. The instantaneous error pro-
vides an indication of the model´s current performance. The 
weights are adjusted in order to improve the current performance of 
the model. The major assumption is that the weights correction 
ΔWkj is proportional to this gradient, with a constant, η, also known 
as the learning rate: 

 
From the MLP definition, data Xj is presented at the input layer, 

each unit input is weighted and added to produce a net output Zk: 

 
The BP algorithm requires the use of differentiable transfer func-

tions, due to the calculation of the local gradients. The choice of the 
best activation function fN results from various test carried out on 
each layer pursuing a minimum error goal. 

 
2)(

2
1

κκκ Yde −Σ=
Δ

(1) 

 kj
kj W

emW
∂
∂

−=Δ η)( (2) 

 
)()()1( mWmWmW kjkjkj Δ+=+ (3) 

    Zk=ΣkWkjXj (4) 

 
Figure 1. A Multi-layer Perceptron Network. 
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To accelerate the convergence in learning process, we use the 

Levenverg-Marquardt algorithm which optimizes the gradient de-
scent method of the BP. 

Once described the MLP learning algorithm, the relevant task 
consist about define the structure of the network based on the par-
ticular application of modeling a electrochemical device, the reli-
able performance of the ANN based model depends on the appro-
priate selection of the input-output pairs of variables that rules the 
behavior of the system and the availability of a sufficient number 
of patterns (experimental tests) from which the network can learn 
before it is tested. Later in this paper we describe the variable’s 
selection process and training patterns of the neural network pro-
posed. 

2. EXPERIMENTAL 

2.1. PEM Electrolyzer 
In the water electrolysis process O-H bonds of water mole-

cules are broken by both electromotive force and the catalytic ac-

tion of the anode electrocatalyst when DC voltage is supplied. 

 
In PEM electrolyzers allows proton migration and sepa-

rates H2 from O2 gases. The hydrogen protons, H, migrates through 
the membrane and recombines at the cathode forming H. 

A short PEM electrolyzer stack was assembled and tested. The 
Membrane and Electrode Assembly (MEA) were made using 
Nafion® 115 (Ion Power). IrO2 anode catalyst was prepared by a 
colloidal method followed by thermal treatment [10]. The anode 
electrocatalyst was deposited onto one side of the membrane, 
whereas a Pt/C catalyst-based was used as cathode. A Ti mesh was 
used as backing layer for the anode and carbon cloth for the cath-
ode. The geometrical area of each MEA was 100 cm2. MEAs were 
assembled in a short stack of three cells connected in series by 
tightening at 7 Nm using a dynamometric wrench. The stack hard-
ware (fig. 2) included end-plates and bipolar plates of stainless steel 
due to their high resilience to electrochemical corrosion in acidic 
environment. 

The electrochemical tests were carried out at CNR-ITAE with an 
in-house made test station (fig. 3) which included a hydraulic cir-
cuit, mainly consisting of pre-heaters and water condensers; a stack 
temperature control module which consisted of a thermocryostat 
device and thermocouples allocated inside the stack close to the 
inlet and outlet of the water flow and always keeping the tempera-
ture gradient lower than ±2 °C at the various current densities. In 
order to keep constant the operation temperature, deionized water 
was supplied to the anode and cathode compartments by a peristal-
tic pump at a flow rate of 60 ml min-1 and 10 ml min-1, respec-
tively. A power source (Power Ten model R62B) was used to sup-
ply the electrical energy to the electrolyzer. The overall stack volt-
age and the voltages of the various cells were measured by Ad-
vanced Measurements high common mode rejection ratio digital 
voltmeters. All the instruments of the test station were controlled 
by a LabviewTM software and PXI National Instruments interface 
boards. The test station also included separate instrumentation for 
the electrochemical diagnostics. 

3. METHODOLOGY 

The design of the neural-network is based on the understanding 
the process and identifying how each variable affects the PEM 
Electrolyzer performance. This knowledge allows to choose the 
appropriate data to train the neural-network. Nevertheless it is im-
portant that the training patterns must be well distributed through-
out the operation range in order to avoid the overfitting problem. 
Once the fewest dominant variables are recognized, the neural net-
work training process can start.  From the test station and monitor 
module (see fig. 4), a data base was obtained for the PEM Electro-
lyzer. 

Two variables were used as inputs to the neural network model: 
electrolyzer electric current and the operating temperature in each 
single electrolyzer cell (table 1), while cell voltage was observed 
and defined as output. Although hydrogen production rate is de-
sired as the main output, this can be estimated according to Fara-
day’s law denoted by: 

    Yk=fN(Zk) (5) 

 
222 2

1 HOOH +→ (6) 

 
Figure 2. Schematic representation of the house-made test station. 
 
 

 
Figure 1. Three cells stack PEM electrolyzer. 
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Hydrogen flow rate NH2 (mol s-1) is directly proportional to: the 

current I through each electrolyzer cell, the number of cells nc  and 
the Faraday efficiency nF . The Faraday efficiency is defined as the 
ratio between the experimentally determined and theoretically esti-
mated amount of hydrogen produced at a fixed current. Losses can 
occur from oxygen and hydrogen cross-over through the membrane 
with consequent chemical recombination [19]; n is the numbers of 
moles of electrons per moles of reacted water and F is the Faraday 
constant. 

The test station is used to observe the operation of the device 
within an operating space and get the training database.  Current 
steps of 15 amps were supplied to the stack into a range of 1 to 60 
amps. The ambient temperature was ranged from 23°C to 75°C. A 
total of 30 pairs of current-temperature patterns were extracted 
from the stack, each measurement was performed with duration of 
one minute at a sample rate of two seconds. Once data-base is ac-
quired, the following step is the separation in training and valida-
tion patterns. As from a total of 900 confident measures, 60% were 

used to train the network and 20% for testing and 20 % for valida-
tion in order to evaluate the robustness of the model [20]. An addi-
tional random sequence of current steps at different temperatures 
was also extracted from the stack in order to evaluate the predictive 
performance of the ANN based model. The input and output vari-
ables for the ANN´s learning and activation function were normal-
ized to be within the range of (-1, 1), this process was necessary for 
the faster and better learning of the neural model, the minimum and 
maximum values of the training data were used after for the valida-
tion process. 

4. RESULTS AND DISCUSSION 

The basic electrochemical characterization of the PEM stack 
electrolyzer and active stack components was reported in a previ-
ous paper [18]. In this work, we have focused our efforts on stack 
behavior modeling by using the artificial neural network approach. 
In this regard, the experiments were addressed to this specific pur-
pose. 

The Levenberg-Marquardt [21-23] training process was carried 
out by testing several architectures and activation functions, in 
order to reach a minimum error goal settled in 0.001. Since no the-
ory enables yet to determine the amount of hidden layers and neu-
rons for the correct modeling process, the choice of the best archi-
tecture was made after testing many topologies. This selection was 
done evaluating the commitment between speed and accuracy in 
the prediction process for every model. The feedback connections 
originated from the output neurons have an important impact on the 
learning capability of the network, and on its performance. More-
over, the feedback loops involve the use of particular branches 
composed of unit-delay elements (denoted by z-1), which results in 
a nonlinear dynamical behavior due to the nonlinear nature of the 
neurons. Non linear dynamics play a key role in the performance 
prediction of the system. Besides, since the BP algorithm is a gradi-
ent descent method, the activation functions must be differentiable, 
so that, logistic activation functions were used for hidden layers, 
and hyperbolic tangent function for the output layer. This selection 
was made after several tests carried out. Finally the 9 inputs 12 
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Figure 5. Recurrent Multilayer Network. 
 
  

Figure 4. Main set of variables and their distribution in the electro-
lyzer operation space. 
 
 

Table 1. Input variables 
Current  supply  

(A) 
Temperature setting 

(°C) 

1 [23,25] 

15 [35,40] 

30 [45,50] 

45 [55,60] 

60 [65,70] 

 Tmax. 

 



 117 Dynamic Model of a PEM Electrolyzer based on Artificial Neural Networks 
/ J. New Mat. Electrochem. Systems 

hidden neurons and 3 outputs (fig. 5) architecture brought the best 
performance for this particular application. 

Voltage linear regressions for training, testing and validation 
processes were calculated in order to evaluate the correlation be-
tween experimental data from the PEM electrolyzer and simulated 
data from the ANN model. A correlation rate of R= 0.9822 (fig. 6) 
was attained, indicating the success of the training process. In order 
to illustrate the performance of the network as a predictor, the men-
tioned sequence of random current steps from 1 A to 60 A was 
tested during a gradual decrement of temperature.  This validation 
test is observed in figure 7, where the total stack voltage is com-
pared against the simulated performance of the ANN based model. 
Figs. 8, 9 and 10 compare the voltage behavior of every single cell 
and the calculated error. The maximum error dropped in every cell 
is showed in table 2. 

In each step current, a peak error occurs during ~2 s. Later it 

decreases and follows the system performance. The maximum error 
calculated was 4.89% in Vcell 2, first and third cells have a similar 
behavior, particularly at the beginning of the sequence and when a 
step from 1A to 60 A is supplied to the stack. In order to measure 
the total performance of the model, is necessary to calculate the 
error during the entire sequence (see fig.11). The error associated to 
each distribution was calculated by the Mean Square Error (MSE). 

 
Where A represents the simulated voltage output for every cell 

and T the real experimental values taken from the stack. For the 
stack voltage output value in the validation sequence, the highest 
error obtained from comparing real values versus simulated data 
was = 0.039 V (1.96%) which is the lowest error value reported so 
far [15-17]. 
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Figure 6. Rate of correlation of the output variable (stack voltage)  by linear regression for training, testing and validation processes. 
 

 
Figure 7. Random current steps supplied to the stack and compari-
son between the stack real voltage performance versus the ANN 
based model output (Sampling period is 2 seconds). 
 
 

 
Figure 8. Comparison between the stack real voltage performance 
versus the ANN based model output in cell 1 (sampling period is 2 
seconds). 
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5. CONCLUSIONS 

Modeling systems allows the analysis and study of physical sys-
tems with the idea to optimize their performance saving time and 
resources. When modeling is done by using experimental data 
which cover M × N dimensional space, ANN based model shows 
good dynamic performance prediction since it takes into account 
the non-linearities, the non-modeled dynamics, and the non-
measurable noise.  Modeling of a PEM Electrolyzer stack was de-
veloped using an ANN as alternative approach when physical vari-
able relationships are not well known. The Multilayer Perceptron 
Network with Levenberg-Marquardt learning algorithm designed in 
this work showed excellent accuracy in modeling and performance 
prediction of the output cell voltage for this particular application. 
The present ANN model considered a three inputs (current supply 
and two stack temperatures) vector and its respective delays units. 
The maximum error achieved for the stack voltage prediction was 
1.96%. This work extends the use of ANN´s as modeling tool for a 
PEM Electrolyzer, achieving an excellent degree of accuracy in 
performance prediction. 
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