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1. INTRODUCTION 

The electromagnetic suspension (EMS) system [1] has been 
widely used in maglev passenger trains [2-3], magnetic 
bearing [4], bearingless motor [5-6], etc. The primary task of 
EMS systems is to eliminate the influence of gravity via 

electromagnetic forces，which can avoid contact, and thus, 

no friction. Due to its technological, comfortable and 
environmental attractions, the MAGLEV train has broad 
application and development prospects in the fields of the 
intercity transit and the urban traffic. Until now, the control of 
the EMS system, which is one of the key components of the 
MAGLEV train, still becomes the research focus. Due to the 
flexibility of the guideway, coupling effect will be generated 
between the vehicle and the guideway. If the performance of 
the EMS control system is less-powerful, strong coupling 
vibration may occur between the vehicle and the guideway 
endangering the stable suspension. Increasing the stiffness 
and damping of the guideway is the usual engineering 
application to eliminate this phenomenon. However, this will 
increase the cost of the MAGLEV line construction 
considerably. According to the statistics, the cost of guideway 
in the finished projects takes 60%-80% of the total MAGLEV 
system [7] 

In recent years, much effort has been directed toward the 
area of dynamics and control of the EMS system. Golob and 
Tvornik simplified the EMS system to an electromagnet-ball 
system [8]. Xu et al. proposed a new nonlinear control 
method and implemented this method on the Shanghai Urban 
Maglev Test Line [9]. Tran and Kang proposed an arbitrary 
finite-time tracking control (AFTC) method to control the 
EMS systems with uncertain dynamics [10]. Ghosh et al. 

modeled the MAGLEV system and proposed 2-DOF PID 
controller to overcome open-loop unstable [11]. 
Unfortunately, guideway was all assumed as a rigid body in 
these studies, which took the vibration of the MAGLEV 
system as self-excited oscillation caused by the parameters of 
the control system. However, experiment results indicated that 
deformation of the guideway was no longer taken as external 
disturbance with the powerful coupling vibration. Therefore, 
it is necessary to model the EMS system considering the 
flexible guideway. Zhou et al. derived stability criterion of the 
MAGLEV train running over flexible guideway by the means 
of Lyapunov characteristic numbers [12]. Fang et al. proposed 
LQG controller scheme to avoid coulping vibration between 
the MAGLEV vehicle and track [13]. Unfortunately, these 
studies didn’t eliminate the coulping vibration actively from 
the point of guideway control. Thus, the system may be 
unstable with the smaller stiffness and damping of the guide 
way. 

In this paper, we are motivated to model the EMS system 
considering the guideway flexibility, which facilitate the study 
of vehicle-guideway coupling vibration. A novel controller 
scheme is presented to eliminate the coupling vibration 
effectively, which can maintain the system’s stability and 
reduce the exacting requirements of system stability on the 
guideway properties, thus massively reduce the construction 
cost. 
 

2. BASIC PRINCIPLE OF EMS SYSTEM 

Papers, including figures and tables, should be limited to 
about 8 camera ready pages. Please limit your paper by 
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writing concisely, not by reducing the figures to a size at 
which their labels will be difficult to read. 

The MAGLEV train, as a new kind of high-tech 
transportation methods, is levitated by the electromagnetic 
suspension (EMS) system. In this paper, we are focus on the 
core part to ensure stable suspension, which called EMS 

system composed by several single suspension modules with 
the same functions, and it is more versatile to analyze the 
dynamic model and control problem of single module of the 
EMS system [14-15] as presented in Fig.1. 

 

 

  

Figure 1. Basic structure of EMS module with flexible guideway

  
By some physical laws (Kirchhoff’s law and Newton’s law), 

the nonlinear electromagnetic force ( )mF t  and the electric 

equation of the electromagnet can be expressed as follows: 
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Where,
0 denotes permeability of air, 

ma ,
mN denote the 

valid pole area and the number of turns of coil. 
mi , 

mu and
mR denote current, voltage and resistance of coil, 

respectively, 
mz denotes the suspension airgap. 

 

3. DYNAMICS MODEL OF EMS SYSTEM WITH 

FLEXIBLE GUIDEWAY 

3.1 Model of Flexible Guideway 

The manuscript will be printed by the offset printing 
process. The printed page will be approximately 95% of the 
original size. This should be accounted for when sizing small 
symbols and suffixes. 

The guideway is usually simplified as Bernoulli-Euler 

beam. 0x  denotes the electromagnet displacement from the 

origin of coordinates along the OX direction (see Fig.2), 1z  

denotes the vertical displacement of electromagnet along the  

 

OZ direction. 
Gz  denotes the vertical displacement of 

guideway. The vertical vibration of the guideway can be 
depicted as: 
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Where, g gE I  denotes the bending stiffness,   denotes the 

damping coefficient, g  denotes the linear density of 

guideway;  denotes position function. If
0x x  ,  and F  

are expressed as: 
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According to the theory of modal superposition, the 

solution of (2) can be expressed as follows: 
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Where, ( )iq t  denotes the coordinate of i -orders mode ,i  

denotes the i -orders modal function, gl denotes length of 

guideway. i  and i  denote -order modal frequency and 

damping ratio, respectively. The motion differential equation 
of guideway in regular coordinate system is represented as: 
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3.2 Nonlinear dynamic model of the coupling system 

According to Newton’s Second Law, the dynamic equation 
of electromagnet is defined as 

 

1 ( , )    m m m dmz F F i z mg f
                                    

  

(6) 

 
From all the formulas above, nonlinear dynamic model of 

the coupling system with the n-orders modal of the guideway 
can be obtain as follows: 
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3.3 Linear model and stability analysis 

With the load
df , consider ( , )N Nz i as equilibrium point. 

Nz  and 
Ni denotes suspension air gap and current in the coil 

at equilibrium point, respectively. Taylor expand 

 ,m m mF i z at equilibrium point as follows: 
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Taylor expand (1) at equilibrium point as:  
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Considering formulas above, select the state 

variables  1 1 2 2 1 1 1
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Dynamic model of the EMS system can be expressed as the 

following equation of state: 
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Where, , ,A B C  are system matrices, the control matrix and 

output matrix of the system, which can be expressed as:  
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Considering the first-order modal of guideway, the transfer 

function  0G s  of airgap to electromagnet voltage with open-

loop state can be expressed as:
0 ( ) ( ) / ( ) u eG s N s D s , where, 

 uN s  denotes the numerator of transfer function,  eD s  

denotes the characteristic polynomial of the system, which 
can be expressed as follows:  
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Explicitly, the constant term 
2

1 0 m mR P
 in.

 eD s
  .So, 

Hurwitz stability criterion is utilized to prove the open-loop 
instability of the system .The electromagnetic force must be 
adjusted to ensure stable suspension. 

 

4. THE DESIGN OF CONTROLLER AND DYNAMIC 

ANALYSIS OF SYSTEM 

The control law not only needs to control the vibration of 
electromagnet, but also the vibration of guideway. The 
vibration information is input into controller for calculating of 
the control law. The first-order mode of guideway is selected 

to describe the flexible vibration as 1 1Gz q  . 

The control objet is denoted in (10). The state feedback 

vector consisted of modal coordinate of the guideway, its 

differentiation, and the vertical displacement, velocity, 

acceleration of electromagnet that 

is  1 1 1 1 1
T

X q q z z z .Feedback coefficient vector of 

controller denotes as  1 11 12 13 14 15K k k k k k , We 
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design the following state feedback control 

law:
1 1 11 1 12 1 13 1 24 1 25 1       U K X k q k q k z k z k z  . 

The performance index function 
1J  is defined as: 
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, ,z v aq q q  and 
1r  represent the weighting coefficient of 

airgap, velocity , acceleration and voltage of electromagnet..  

When voltage 
mu  satisfies 1

1 1 1 1 1

    T

m uu K X R B PX , the 

1J  obtains the minimum value, and P  is the solution of 

Riccati equation: 1
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Where,
1 1uR , matrix 

1 1,A B  and 
1Q  are presented as 

follows: 
According to Table 1, the feedback coefficient vector of 

the designed controller could be calculated as 
 

 1 1761.5 35.2 6093.9 304.8 14.1    K        (15) 

 

 

Table 1. Parameters values of the coupling system 
 

physical quantity Value physical quantity Value 

Mass of electromagnet 

/m kg  

750 Permeability of air 
1

0 / ( ) H m  

61.26 10  

Number of turns in the coil 

mN  

356 Leakage permeance   0 

Pole area of the coil 
2/ma m  

0.021 Bending rigidity 
2/ ( )g gE I N m  

102.69 10  

coil resistance /mR  1.0 Damping coefficient 
1/ ( )  N s m  

58.56 10  

Stable suspension airgap 

/Nz m  

0.01 Linear density 
1/ ( ) kg m  2000 

5. SIMULATION RESULTS 

The first-order, first 3-orders, and first 5-orders modes of 
the guideway are utilized to describe the dynamic 
characteristic of guideway. The parameter values are shown in  
 
 

 
 
Table 1. The distance between the initial position of 
electromagnet and the equilibrium point is 5mm. The 
simulation time is 1 sec. The time domain response of system 
is calculated in MATLAB. The simulation results are shown 
in Fig.2-Fig.3.  

 

   
 

Figure 2. Suspension airgap 
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Figure 3. Vertical acceleration of the electromagnet 
 

It can be seen from Fig.2-Fig.3 that if we set the stable 
region to 2%, the suspension airgap could completely enter 
the stable region in 0.28 sec and the maximum overshoot is 
about 2.5%. The vibration of electromagnet and guideway 
could attenuate quickly with the designed control law. The 
system is stable and shows excellent dynamic performance.  

Since there is no obvious difference between the results of 
different modal orders of the guideway, it is reasonable to 
describe the vibration state of guideway with a low order 
mode in feedback state.  

 

6. CONCLUSION  

In this paper, a nonlinear mathematical model and novel 
control method have been presented for the nonlinear EMS 
system with flexible guideway. The open-loop instability of 
the coupling system has been proved by Hurwitz stability 
criterion. The vibration of guideway is introduced into the 
control system and the simulation results have been presented 
to demonstrate that the designed controller can not only 
ensure the electromagnet suspend steadily , but also eliminate 
the vibration of guideway, which means a lower request for 
the quality of guideway in maglev lines and the lower 
construction cost. Furthermore, future efforts will be directed 
at applying the proposed control strategy to the practice  
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