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ABSTRACT

This paper examines the natural convection in a square enclosure filled with a water-Al,O; nanofluid and is
subjected to a magnetic ficld. The side walls of the cavity have spatially varying sinusoidal temperature
distributions. The horizontal walls are adiabatic. Lattice Boltzmann method (LBM) is applied to solve the
coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in
the following ranges: Rayleigh number of the base fluid, Ra=10° to 10°, Hartmann number varied from Ha=0 to
50, phase deviation (y=0, n/4, n/2, 3n/4 and n) and the solid volume fraction of the nanoparticles between ¢= 0

and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it
decreases with an increase of the Hartmann number. Also it is observed that the Phase deviation control the heat

transfer rate.

1. Introduction

The problem of natural convection in square enclosures
has many engineering applications such as: cooling systems of
electronic components, building and thermal insulation
systems, built-in-storage solar collectors, nuclear reactor
systems, food storage industry and geophysical fluid
mechanics [1]. Some practical cases such as the crystal
growth in fluids, metal casting, fusion reactors and
geothermal energy extractions, natural convection is under the
influence of a magnetic field [2-3]. Badawi et al. [4] studied
numerically MHD natural convection iso-flux problem inside
a porous media filled inclined rectangular enclosures. The
results show that both the magnetic force and the inclination
angle have significant effect on the flow field and iso- heat
flux in porous medium. Abishek et al. [5] studied numerically
natural convection of an electrically conducting fluid due to
both heat and solutal transfer, in a square enclosure filled with
porous medium, subjected to a uniform magnetic field applied
parallel to the adiabatic walls on the plane of the enclosure. It
is found that the effect of the applied magnetic field is
significant to the extent that convection is completely
suppressed for large values of Ha. Ahmed et al.[6]
investigated the free convective oscillatory flow of a viscous
incompressible and electrically conducting fluid past a
vertical porous plate in sleep flow regime with variable
suction and periodic plate temperature in presence of a
uniform transverse magnetic field. Shehadeh et al. [7]
investigated the magneto hydrodynamics natural convection
heat transfer with Joule and viscous heating effects inside a
porous media filled inclined rectangular enclosures; it is
found that the Gebhart number has the largest effect on heat
transfer and fluid flow. Lai and Yang [8] performed
mathematical modeling to simulate natural convection of
AlOs/water nanofluids in a vertical square enclosure using
the Lattice Boltzmann method. The results indicated that the
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average Nusselt number increased with the increase of
Rayleigh number and particle volume concentration. The
average Nusselt number with the use of nanofluid was higher
than the use of water under the same Rayleigh number.
Mahmoudi et al. [9] presented a numerical study of natural
convection cooling of two heat sources vertically attached to
horizontal walls of a cavity. The results indicated that the
flow field and temperature distributions inside the cavity were
strongly dependent on the Rayleigh numbers and the position
of the heat sources. The results also indicated that the Nusselt
number was an increasing function of the Rayleigh number,
the distance between two heat sources, and distance from the
wall and the average Nusselt number increased linearly with
the increase in the solid volume fraction of nanoparticles

The LBM is an applicable method for simulating fluid
flow and heat transfer [10—11]. This method was also applied
to simulate the MHD [12] and, recently, nanofluid [13]
successfully. The aim of the present study is to identify the
ability of Lattice Boltzmann Method (LBM) for solving
nanofluid, magnetic field simultaneously in the presence of a
linear boundary condition. Moreover, the effect of magnetic
field and its direction on the heat transfer in the cavity. In
fact, it is endeavored to express the best situation for heat
transfer and fluid flow with the considered parameters. Hence,
the Al,Os;—water nanofluid on laminar natural convection heat
transfer at the presence of a magnetic field in linear
temperature distribution on vertical side walls of the cavity by
LLBM was investigated. The aim of the present study is to
identify the ability of Lattice Boltzmann Method (LBM) for
solving nanofluid, magnetic field simultaneously in the
presence of a sinusoidal boundary condition. Moreover, the
effects of magnetic field and phase drviations on the heat
transfer in the cavity. In fact, it is endeavored to express the
best situation for heat transfer and fluid flow with the
considered parameters. Hence, the Al,O;—water nanofluid on
laminar natural convection heat transfer at the presence of a



magnetic field in sinusoidal temperature distribution on
vertical side walls of the cavity by LBM was investigated.

2. Mathematical formulation

2.1 Problem statement
A two-dimensional square cavity is considered for the present
study with the physical dimensions as shown in the Fig. 1.
The side walls of the cavity have spatially varying sinusoidal
temperature distributions. The horizontal walls are adiabatic.
The cavity is filled with water and Al,O; nanoparticles. The
nanofluid is Newtonian and incompressible. The flow is
considered to be steady, two dimensional and laminar, and the
radiation effects are negligible. The thermo-physical
properties of the base fluid and the nanoparticles are given in
Table 1.

Table 1. Thermo-physical properties of water and

nanoparticles
pkg/m’) | Cy(Wkg [ K(WmK) [ B(K")
K)
Pure water 997.1 4179 0.613 21x10°
AlO3 3970 765 40 0.85x10°
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Fig.1 Geometry of the present study with boundary conditions

The density variation in the nanofluid is approximated by the
standard Boussinesq model. The magnetic field strength By is
applied at an angle y with respect to the coordinate system. It
is assumed that the induced magnetic field produced by the
motion of an electrically conducting fluid is negligible
compared to the applied magnetic ficld. Furthermore, it is
assumed that the viscous dissipation and Joule heating are
neglected.
Therefore, governing equations can be written in dimensional
form as follows:
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The classical models reported in the literature are used to
determine the properties of the nanofluid:

Py =(1=9)p, +¢p, ™
(pc,) =(=¢)pc,), +dlpc,), (8)
(0B, =(1-8)pB) , +P(pP), ©

@ = o (10)

" (pe,)y

In the above equations, @ is the solid volume fraction, p is

the density, o is the electrical conductivity, a is the thermal
diffusivity, ¢, is the specific heat at constant pressure and 8 is
the thermal expansion coefficient of the nanofluid, y is the
direction of the magnetic field. The effective dynamic
viscosity and thermal conductivity of the nanofluid can be
modelled by:
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The governing equations are subject to the following
boundary conditions:

oT
Bottom wall u=v=0 — =0

&7

er
Top wall u=v=0 —| =0

oy i (13)
Left wall u=v=0 700,y)=17.+4sin2ry/H)
Right wall u=v=0 7y y)=1.4+4 sin(2r 2 +7)

2.2 Lattice Boltzmann Method

For the incompressible non isothermal problems, Lattice
Boltzmann Method (LLBM) utilizes two distribution functions,
fand g. for the flow and temperature ficlds respectively.

For the flow field:

doh

i



f(x+eALt+An)= fi(x,1)

i (14)
——(f,(x,t)—j:"q (x,t))+AtF,
TV
For the temperature field:
g, (x+eAnt+Ar) =g, (x,1)
(15)

1 (g, (x,7)—g™ (x,t))

TG!
Where the discrete particle velocity vectors defined by ¢; , At
denotes lattice time step which is set to unity. 7, 7, are the
relaxation for the flow and temperature fields,
respectively. f,°', g*are the local equilibrium distribution

functions that have an appropriately prescribed functional
dependence on the local hydrodynamic properties which are
calculated with Eqs.(16) and (17) for flow and temperature
fields respectively.

time

3(c,u) +9(ci.u)2 3u’

¢t 2¢* 2¢2
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C

u and Pare the macroscopic velocity and density,
respectively. ¢ is the lattice speed which is equal to
Ax/ At where Axis the lattice space similar to the lattice
time step Af which is equal to unity, @,is the weighting

(16)

S =wp|1+

eq _
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factor for flow, @;is the weighting factor for temperature.

D2Q9 model for flow and D2Q4 model for temperature are
used in this work so that the weighting factors and the discrete
particle velocity vectors are different for these two models
and they are calculated with Eqs (18-20) as follows:

For D2Q9

cq,:i.w,. =1 fori=1,2,3,4 and m,:i fori=5.67.8 (18)
9 9 36
0 =0 (19)
= (cos[(J—1):{/2],sin[(i—1)7:/2])c i=1,2,34
Ji(ms[(r-i);rﬂ-t—;'zI4],sin[(1-5)m‘2+!rf4}):- i=5,6,7,8
For D2Q4

The temperature weighting factor for each direction is equal
tow=1/4.
¢, = (coscos[(i—1)z/2].sin[(i — 1)z /2])c
i=1,2,3,4

The kinematic viscosity v and the thermal diffusivity ¢ are
then related to the relaxation time by Eq. (21):

V=[T,, —]—:|C,2A! a=|:rﬂ—l}c32m (21)
2 2

Where ¢, is the lattice speed of sound witch is equals

(20)

toc, =c/ -\/:'; . In the simulation of natural convection, the

external force term F appearing in Eq. (14) is given by
Eq.(22)

.
=—Fu,
c

s

F, 22)

Where F' = F),
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The macroscopic quantities, u and 7 can be calculated by the
mentioned variables, with Eq.(23-25).

p= Zf (23)
pu=> fe, (24)
T=>g, 25)

2.3 Non-dimensional parameters

By fixing Rayleigh number, Prandil number and Mach
number, the viscosity and thermal diffusivity are calculated
from the definition of these non dimensional parameters.
VI:N.MG_CJ.JPT] Ra Where N is number of lattices in y-
direction. Rayleigh and Prandtl numbers are defined as
Ra=gB H(T,-T)/v,a, andPr=v /a,. respectively.

Mach number should be less than Ma = 0.3 to insure an
incompressible flow. Therefore, in the present study, Mach
number was fixed at Ma = 0.1. Nusselt number is one of the
most important dimensionless parameters in the description of
the convective heat transport. Nusselt number is one of the
most important dimensionless parameters in the description of
the convective heat transport. The local Nusselt number and
the average value at the bottom and the right walls are
calculated as:

k
Nu|=_iL6_T
k, T,-T, ox|,,
ky H oT v
Nur=—2%_————
k, T,-T, ox|. g
1 1
Nu=— Nur dy +— I Nuldy (27)
heating half heating half
Nu(¢)
Nu*(d) = 28
= Ruh 0 (28)

3. Results and discussion
3.1 Validation of the numerical code

Lattice Boltzmann Method scheme was utilized to obtain the
numerical simulations in a cavity with a sinusoidal boundary
condition that is filled with nanofluid of water/Al,O;. Fig. 2
demonstrates the effect of grid resolution and the lattice sizes
(20x20), (40x40), (60x60), (80x80) and (100x100) for Ha=0

and ¢ =0 by calculating the average Nusselt number for

Ra=10" and 10°, it was found that a grid size of (100x100)
ensures a grid independent solution. In order to check on the
accuracy of the numerical technique employed for the
solution of the considered problem, the present numerical
code was validated with the published study of Deng et al.
[14] for the same cavity with sinusoidal boundary conditions
for y = m/2, Ra=10" and Pr=0.7. The results are presented in



Fig.3 as streamlines and isotherms have a good agreement
between both compared methods.
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Fig. 2 Average Nusselt number for different uniform grids
(¢ =0, y=n/2 and Ha=0)

b

Fig. 3.Comparison of the streamlines and isotherms
for Ra=10" and Pr = 0.7 between (a) numerical
results by Deng et al. [14] and (b) the present result

3.2 Results and discussion

Fig.4 presents the effect of Hartmann number for different
values of the Rayleigh number (Ra = 10°, 10* and10°) and for
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¥ = 0 on the isotherms and streamlines of nanofluid ( ¢=0.04)
and pure fluid ( ¢=0). For all Rayleigh number it demonstrates

that the effect of nanoparticles on the isotherms decreases
with the augmentation of Hartmann number. The thickness of
the boundary layer decreases with the rise of Hartmann
number and it results in decrease in heat transfer by the
magnetic field, Fig.5 shows the variation of average Nusselt
number as function of Hartmann number for different
Rayleigh number, the increase of Rayleigh number increases
the heat transfer rate, on the contrary, the increase of the
Hartmann decreases the heat transfer rate. The streamlines
shows that the flow behavior is affected with the change in the
Rayleigh number and the Hartmann number. the flow is
characterized by four cells, The strength of these cells
increases as the Rayleigh number increases and decreases as
the Hartmann number increases. For all values of Rayleigh
number, the application of the magnetic field has the tendency
to slow down the movement of the fluid in the enclosure. The
strength of these cells increases as the Rayleigh number
increases and decreases as the Hartmann number increases.
For all values of Rayleigh number, the application of the
magnetic field has the tendency to slow down the movement
of the fluid in the enclosure.

Fig.6 presents the variations of the local Nusselt numbers
along the left sidewall and the right sidewall for various
Hartmann numbers. At Ra=10" the heat transfer gets no
remarkable change on both sidewalls even if the Hartmann
number is increased but for Ra=10" it scems that the Nusselt
number decreases while the Hartmann number is increased.
Fig.7 illustrate the variations of the local Nusselt numbers
along the left sidewall and right sidewall at various Rayleigh
numbers for Ha=10 and 50. For both walls, the curves drawn
for the Nusselt numbers against y/H are approximately of
sinusoidal shape like the thermal boundary. This indicates that
the local heat transfer is directly affected by the temperature
distribution on the surface. It is observed that the Rayleigh
number effect is more significant for low Hartmann number.
Fig. 8 presents the effect of Hartmann number and solid
volume fraction on the Nusselt number at Ra =5x10" and y =
0. At small values of Hartmann number (Ha < 5), the addition
of nanoparticles decreases the heat transfer, but if Hartmann
number increases (5<Ha) the heat transfer increase as the
solid volume fraction increases. The effect of nanoparticles is
more significant for high Hartmann number.

Fig.9 indicate the local Nusselt number on the right and left
sidewalls for various volume fractions at Ra=5x10", y=0 and
Ha=10 and 50. It is shown that the effect of nanoparticles is
more significant for Ha = 50 which is consistent with Fig.8.
Fig.10 shows the effects of volume fractions and phase
deviations for Ra =5x10* and for various Hartmann numbers
on the average Nusselt number and the dimensionless average
Nusselt number. For all Hartmann number and phase
deviations the heat transfer increases with the rise of volume
fraction. For Ha=20 heat transfer increases with the rise of
phase deviations, the most heat transfer was obtained for y =
n. the best effect of nanoparticles is obtained in y = 0. For
Ha=50 heat transfer decreases from y= 0 to n/4 and increases
from y = w/2 to m. The effect of nanoparticles decreases with
the rise of phase deviation.
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4. Conclusions

In this paper the effects of a magnetic field on nanofluid flow
in a cavity with a sinusoidal boundary condition has been
analyzed with Lattice Boltzmann Method. This study has been
carried out for the pertinent parameters in the following,
ranges: the Rayleigh number of base fluid, Ra=10°-10°,
Hartmann number of the magnetic field between 0 and 90, the
volume fraction is from ¢=0 to 0.06 and the the phase
deviation (y=0, n/4, n/2, 3w/4 and ). The results show that
the heat transfer rate increases with an increase of the
Rayleigh number but it decreases with an increase of the
Hartmann number. Also it is observed that the Phase
deviation control the heat transfer rate.

Nomenclature

B Magnetic field (Tesla)

¢ Lattice speed (ms™')

e Speed of sound (ms™)

G Discrete particle speeds (ms™)

F External forces (kg m s)

f Density distribution functions (kgm™)

[ Equilibrium density distribution functions (kgm™)
g Internal energy distribution functions (K)
g™ Equilibrium internal energy distribution (K)
g Gravity vector (m s7)
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