
An indigenous tool (NoJavaCloud) to handle virtual nodes to simulate the cloud tasks

Thulasi Bikku

CSE, Vignan’s Nirula Institute of Technology and Science for Women, Palakaluru, Guntur 522005, Andhra Pradesh, India

Corresponding Author Email: thulasi.jntua@gmail.com

https://doi.org/10.18280/mmep.060111 ABSTRACT

Received: 25 July 2018

Accepted: 27 August 2018

Now a days, computing in real-time for greater timesaving and ease of access made the

cloud computing vital in Data Management. In general, the information technology

services can be identified as “Software (SaaS), Infrastructure (IaaS) and Platform as

Services (PaaS). Cloud can be known for one can access relevant data elsewhere

with/without knowing the background of the data handling mechanism. In order to attain

efficient clouding, researchers perform cloud simulation. CloudSim, SPECI, CDOSIM

and DCSim are some available open-source software packages to help the cloud

simulation. Lack of Graphical User Interfaces and Back-End support, Application

Security are few major cons with the open-source cloud simulators and the customization

towards specific application are really a challenge with the open-source simulators. This

work describes an indigenously developed (NoJavaCloud) cloud simulator to resolve the

struggles faced with the existing open-source software packages. A typical data set of

input parameters resolved and reported in the existing literature is taken as bench-mark

problem and same was processed in the indigenously developed (NoJavaCloud)

simulator. The main intension of this article is to find the suitability of this indigenous

package for real-time application compared with the existing simulator (Cloudsim).

Results revealed that, NoJavaCloud produced exactly better or similar simulation that

produced by the CloudSim.

Keywords:

CloudSim, cloud computing, data

management, NoJavaCloud

1. INTRODUCTION

Cloud computing allows to sharing tasks, data storage,

computer services or resources [1]. The “pay as you use”

method in Cloud Computing used to pay what we are used

and avoid to pay inefficiencies and expense of any unused

resources. A particular design worldview that accentuates

usage of segments as secluded services that can be found and

utilized by clients is known as Service Oriented Architectures

(SOAs) [2]. Foundations in view of the SOA standards are

called Service Oriented Infrastructures (SOIs). Through the

deftness, adaptability, flexibility, quick self-benefit

provisioning and virtualization of tools, Service Oriented

Architecture standards are reflected into Clouds, which give

the capacity to effectively adjust resource provisioning to the

dynamic requests of Internet clients. There are three kinds of

administrative services in distributed computing IaaS, PaaS

and SaaS [3]. Infrastructure as a Service (IaaS) alludes to

the equipment like tools and hardware and programming

components, for example, a servers, stockpiling and

working frameworks like operating systems. Platform as a

Service (PaaS) is the arrangement of hardware and

instruments and services intended to software advancement

and conveying those applications quickly and proficiently.

Software as a Service (SaaS) is a product authorizing and

dissemination demonstrate as appeared in Figure 1.

Distributed computing is a shifted figuring model joining

the advantages of service-oriented architecture and utility

registering. In distributed computing, asset portion and its

legitimate usage, to accomplish a higher throughput and

quality of service (QoS), has turned into an incredible

research issue [4]. This paper features another cloudlet

designation procedure that uses every single accessible

resource proficiently and improves the QoS by applying

deadline based workload dissemination. It is trusted that

this paper would profit both cloud clients and specialists in

different perspectives of research. The applications are

intended for end clients and conveyed over the web.

Figure 1. Cloud computing services

2. CLOUDSIM

The CloudSim is exceptionally famous simulation tool to

reenact distributed or cloud computing, which empowers

demonstrating and recreation of Cloud computing

frameworks [5]. The framework and behavior modeling of

Mathematical Modelling of Engineering Problems
Vol. 6, No.1, March, 2019, pp. 85-91

Journal homepage: http://iieta.org/Journals/MMEP

85

mailto:thulasi.jntua@gmail.com
mailto:thulasi.jntua@gmail.com

Cloud framework segments are supported by Cloudsim.

CloudSim does not provide ready accessibility, so the

clients need to assess, characterize the required output, and

set the input parameters for simulation. The CloudSim

exploring particular framework issues without considering

the low level subtle elements identified with Cloud-based

services and infrastructures as appeared in Figure 2.

Figure 2. Cloud-based services and infrastructures

The framework and behavior modeling of Cloud framework

segments are actualized by Cloudsim toolbox, like Data

Centers (DC), virtual machines and resource allocation

strategies. It bolsters generic application allocation strategies,

which can be interact effortlessly and controlled utilization.

Right now, it underpins modeling and simulation of Cloud

computing environments comprising of both single and

between organized clouds (inter-connected clouds) [11]. Also,

it uncovered custom interfaces for actualizing approaches and

provisioning systems for distribution of Virtual Machines

under inter-connected cloud or distributed computing

situations [6].

CloudSim offers the novel properties: (i) bolster for

modeling and simulation of extensive scale distributed

computing infrastructure, including data centers on a solitary

physical computing hub; and (ii) an independent stage for

modeling data centers, service brokers, scheduling, and

allocations policies.

The highlights of CloudSim, there are (i) accessibility of

virtualization motor, which helps in creation and management

of multiple, independent, and co-hosted virtualized services on

a data center node; and (ii) adaptability to switch between

space-shared and time-shared designation of processors to

virtualized services.

These convincing highlights of CloudSim would accelerate

the improvement of new methods, techniques, and

conventions in Cloud Computing, thus contributing towards

speedier development of the paradigm [12]. Simulation steps

for CloudSim on Java Platform:

CloudSim project follows the steps to implement the

specified configuration to start a environment for simulation

[7]. To understand the working of CloudSim simulation

framework, we need to have the knowledge about these steps.

1. Configure CloudSim with java platform

2. Set the number of users

3. Include the CloudSim library

4. Create new Cloud Information Service (CIS).

5. Create Data Center.

6. Create Process Element list.

7. Create Host List.

8. Create Datacenter object with help of Vm Allocation

Policy, storage List.

9. Create Data center Broker

10. Create Virtual Machine instances and submitted to

the broker

11. Create cloudlets with parameters.

12. Call the simulation process (Now all the functions

are invoked and simulation events are triggered)

13. Stop the simulation process (Now all the entities are

shut down)

14. Print the simulation results.

2.1 Bench mark problem identification

2.1.1 Real time implementation issues

Cloud computing enabling on demand network access to

a wide variety of resources like software, hardware

resources and network etc. These services are provided to

the customer by the cloud service provider as per his/her

request. In cloud computing need different composition,

configuration, and deployment required for web hosting,

social networking, content delivery, real time instrumented

data processing, research work, government organizations,

and academy community [8]. The real challenging tasks in

real Cloud computing environment are Task scheduling

and resource allocation policies in different application

models. Because in the real-time deployment of cloud tests,

bed limits the experiments to the scale of the test bed and

makes the reproduction of results is more complicated.

Cloud testing in a real environment is very expensive, time

costly and not repeatable and it is hard to analyze the

performance issues on real cloud environments. The

Quality-of-service (QoS) management needs to improve in

real time side.

2.1.2 Simulation issues

Cloud simulators have different characteristics and

functions that can be used to address different Cloud related

issues. Several Grid Computing simulators are available like

SimGrid that is good for Grid Computing but does not support

the model of Cloud Infrastructure. Traditional IT simulators

are also available now for the simulation and modeling.

Virtualization simulation and modeling simulations are most

widely used for the development of private as well as public

Cloud models. CloudSim is one the leading Cloud simulator

which provides modeling at a large scale. It also supports

heterogeneous Grid resources and multiple scheduling

applications which run across multiple organizations. The

simulation process gives more flexibility compare to the

real system, which give freedom to set parameters that

provides better grooming to your work [14]. The leading

technology of the cloud computing has lot of testing tools

are there for research as well as development purpose. Most

of the researchers and industry-based developers utilize the

third party tools [9]. But these tools are needed to update

every day for the real time need, enhancement and bugs.

Some tools come with lot of bugs or technical mistakes.

Some tools are not support graphical interface. Most of the

JAVA based simulators are more complicated in

programming as well as huge simulation steps. This kind of

problems can change or affect the aim of the research area.

86

2.2 Bench mark problem

One of the main drawbacks of CloudSim is lack of

Graphical User Interfaces (GUI). They used JAVA so the

end user should be familiar in java platform than only they

can able to finish his process without struggle. The creation

of VM, DATA CENTER, PE list, HOST list and policies

etc. in CloudSim is not a user friendly approach. Computer

background people only use this tool. The coding structure

of CloudSim is very complex therefore the researchers need

to spend lot of time to learn JAVA as well as CloudSim. The

CloudSim did not support backend so the user can store

data separately and write bulk code for that. There is no

application security so someone easy to simulate the vital

research works without any credentials. Hence a cloud

simulation tool should be in GUI and easy to create such a

VM, HOST, policies etc. in a single click. Mainly the user

can utilize the complete feature of the simulator with slight

programming knowledge because the researchers should be

focused in his research work not in programming side. A

Simulator should be enclosed proper credentials with

different user level authentications.

2.2.1 Bench mark problem solved with indigenous cloud

tool

Hence we developed an indigenous cloud tool for task

scheduling for our research work. The architectures of

indigenous cloud tool, provides the rising demand for

energy-efficient Information Technology strategies,

repeatable, and controllable methodologies for evaluation

of algorithms, applications, and policies are to be simulated

before actual development of cloud products [13]. It is used

to analyze complex problems in the physical world. This

indigenous cloud tool reduces the cost of ownership and

eliminates the IT support costs, expensive hardware

purchases and enhancement. The indigenous cloud tool

doesn’t need to maintain the software license and doesn’t

need pay the software upgrade costs. The indigenous cloud

tool contain attractive GUI feature and it is used to set up

repeat simulations easily and also provides various user

friendly capabilities that make indigenous cloud tool

configurable and more flexible to use. Indigenous cloud

tool divide the simulation experiment exercise from

programming exercise and used to testing the large scaled

Internet applications in a cloud environment.

3. PROPOSED NOJAVACLOUD ARCHITECTURE

The architecture of indigenous cloud tool

(NoJavaCloud), which supports modeling and simulation

of Cloud-based data center environments. The fundamental

issues are allocating the hosts to Virtual Machines,

monitoring the state of dynamic systems and application

execution are managed by indigenous cloud tool. The

indigenous cloud tool architecture consists of the

Credential, User Requirements, Policies, Broker, Task,

Task Manager, Resource, Resource Manager, Cloud

Registry as shown in Figure 3.

Credentials explains about application and user level

authentications. Research data is more vital so the

indigenous cloud tool contain proper credential to access

valuable research data by only the registered user with

userid and password. User Requirements contain end user

desirable requirements. Policies contain such a scheduling

policy, resource allocation polices. Broker acts on behalf

of a user and it submitting VM provisioning requests to data

centers and submitting the tasks to VMs. Task explains

about user’s input data. The input data insert to database

with help of excel sheet. It is one of the user friendly

approaches to feed data to system. Task Manager provide

task details such as task length size, required processing

power etc. Resource are the Data Center’s physical

computing node such a Host related details.VM (Virtual

machine) contain hardware configuration details like

processor, RAM, etc. Resource Manager provides resource

details such a VM capability and availability, data center

detail, etc. Cloud Information Service (CIS), the cloud

registry contain information of available resources such a

data center, VMs, task details, user details. This

information submits to Task Scheduler.

Figure 3. Block diagram for NoJavaCloud tool

Task Scheduler get information from CIS then decides

how the accessible CPU assets of virtual machine are

partitioned among assignments. The indigenous cloud tool

offered two types of policies but researchers and developers

can further enhance the policies [15].

In Time-Shared scheduling strategy the assets are shared

among the cloudlets. Each cloudlet allocated with resources

for execution for a specific timeframe. If the timeframe the

assets are detracted from that cloudlet and are allotted to

another cloudlet. In Space Shared scheduling strategy the

cloudlets does not share assets. A cloudlet claims the assets

until the point that it gets executed. We have thought about

these two scheduling approaches. Similar approaches are

connected for planning of Virtual machines which are running

inside a host. In time shared the assets of the hosts are being

shared by the virtual machine for an auspicious premise,

however in space shared a virtual machine can keep running

on a Host just if free handling elements are accessible.

Space-Shared: To assign particular CPU cores to

particular VMs. The tasks are arranged in a queue and it is

schedule on the given virtual machine. VM completes first

task and then take the next task from the queue. If the

queue is empty then checks the new task.

 ptft= ptst +(tt/cs* ccp)

Where ptft is the Predictable Task Finish Time, ptst is

the Predictable Task Start Time, ttis the Total Task, cs is

the CPU Speed, ccp is the CPU Core (PEs).

87

Time-Shared: To powerfully convey the limit of a center

among Virtual Machines. All accepted tasks are arranged

under the queue then schedule the task concurrently on the

virtual machine If the queue is empty I checks for new task.

 ptft= ctst + (tt/cs * ccp)

where ptft is the Predictable Task Finish Time,ctst is the

Current Task Simulation Time, tt is the Total Task, cs is the

CPU Speed, ccp is the CPU Core(PEs).

4. INDIGENOUS CLOUD TOOL SIMULATION

STEPS

1. Set the credential details.

2. Create data center and VM.

3. Create policies.

4. Create task with parameters

5. Insert task details.

6. Start simulation process.

7. Print the simulation results.

Pseudo code

1. Find task_count

2. Find vm_count

3. Find ptft

4. if vm_count= <ptft

5. Allocate task ito index virtual machines

6. Remove task I from Queue

7. Update the value of vm_count

8. else

9. Call RESCHEDULE minimum completion time.

10. end if

11. Return

4.1 Illustration of the pseudocode

The task_count calculate the total task allotted for the

simulation tool and its details. The vm_count check the

total availability of virtual machines and total. Where ptft

is the Predictable Task Finish Time, if it is greater than the

vm_count then the tasks will not be assigned. If ptft is less

than the vm_count, then only the tasks will be assigned to

virtual machine, then the procedure starts and returns the

output.

4.2 Screen shot for login

Figure 4. Login screen

The user accesses this indigenous cloud tool with

entering valid userid and password. If the userid and

password matches, then the user can login the tool, else the

user cannot login if userid and password doesn’t match. A

login, logging in screen is used to authenticate the user, in

order to access that system after entering of information of the

identifier into a system by a user. Login is the vital part of

security measures. The login form is shown in Figure 4.

4.3 Screen shot for Vm creation

Cloud Resource contains Datacenter class, whose hostList

are virtualized. It manages preparing of Virtual Machine

queries rather than handling Cloudlet-related inquiries. Thus,

despite the fact that an Alloc Policy will be instantiated (init()),

it won't be utilized, as preparing of cloudlets are dealt with by

the Cloudlet Scheduler and handling of Virtual Machines are

taken care of by the Vm Allocation Policy. The VM creation

modules contain 7 columns to create VM with configuration

details. The VM Creation contains the details like Datacenter

ID, Host ID, VM ID, VM Nmane, MIPS, Size, RAM, and VM

Pes as shown in Figure -5.

Figure 5. VM creation

4.4 Screen shot for Vm list

This module used to view the created VM list from the

database as shown in Figure 6. When using the OpenStack

Nova CLI (command line client), you are able to get a list

of all running instances (sometimes called VMs or servers)

using the command list: nova list.

Figure 6. View VM list

This gives a list of all VMs in OpenStack Nova. There

88

are numerous search options available, including filtering

by IP address, status, host, and more. These filters, provide

a list of active VMs that is current. The throughput of the

disk is assessed by the number of input/output operations

per second (IOPS) and measured in terms of Megabytes per

Second where MBPS = 10^6 bytes/sec. Disks works in two

modes, they are cached or uncached modes. The host cache

mode is set to ReadOnly or ReadWrite for stored operations

of disk. The host type is set to NONE, for uncached

activities of disk.

4.5 Screen shot for task creation

This Task Creation-I module used to create new tasks as

shown in Figure 7.

Figure 7. Task creation-І

Figure 8. Task creation-ІІ

When you want to process a task, you must create a new

task object and place it on a queue. You can explicitly

specify the service and handler that process the task, and

optionally pass task-specific data along to the handler. You

can also fine-tune the configuration for the task, like

scheduling a time in the future when it should be executed

or limiting the number of times you want the task to be

retried if it fails. This Task Creation-II module used to get

the task from excel sheet as shown in Figure 8.

Figure 9. Task creation-III

Figures 7, 8, 9 Shows Task Creation Modules By Browse

The Excel Sheet And Uploadthe Task List To Indigenous

Cloud Tool.

4.6 Screen shot for VM list

This module used to simulate the task and produce output

as shown in Figure 10. Output examination is the displaying

stage worried about planning replications, computing

statistics from them and showing them in printed or

graphical arrangement. A decent outline of reenactment

replications enables the analyst to acquire the most factual

data from simulation keeps running for the minimum

computational cost. Specifically, we look to limit the

quantity of replications and their length, and still get

dependable insights.

Figure 10. Output screen

5. EXPERIMENTAL RESULTS

5.1 Indigenous cloud tool result compare with CloudSim

The CloudSim experimentation is done in the following

environmental conditions, the characteristics of datacenterx86,

which is a family of intel 8086 CPU and intel 8088 with linux

operating system and virtual machine hypervisor with xen

characteristics of host having random access memory of 1024

MB and storage of 500000 MB having a number of processing

entities of 1 MIPS CPU speed rating of processing entity of

1000.

The Requirements of Virtual Machine are having MIPS

rating of 250 Image size on disk of 10000 Mb capacity with

ram of 512 MB and the required PES are 1 and hypervisor with

89

xen characteristics of the cloudlets 40000 instructions and

each input file size is 300kb and output file size of 300kb.

The experimental setup runs cloudlets from 1 to 20 and

calculated the aggregate time taken by them to execute in

CloudSim and Nojavacloud environments including the

virtual machine actualizing the time shared and space shared

[10] as shown in table 1.

Table 1. Execution time of CloudSim and Nojavacloud

To evaluate the performance of Indigenous Cloud Tool

and CloudSim with following parameters. The Indigenous

Cloud Tool input parameters get from Journal “Cloud

Computing Simulation using CloudSim” [8]. The table2

contains input parameters for CloudSim and NoJavaCloud.

Table 2. Input parameters

5.2 Data flow

The Parameters set and feed to the Cloudsim and

Indigenous Cloud Tool (NoJavaCloud). The input data

stored in excel sheet of the NoJavaCloud tool, then just

browse and insert then simulate the Indigenous Cloud Tool.

The results of Start time and Finish time of both

environments are shown in table 3.

In table 4 the shows the comparison result of CloudSim

and NoJavaCloud and the supporting features.

Indigenous Cloud Tool produces same or better output of

CloudSim therefore Indigenous Cloud Tool provides

desirable output with GUI feature.

Table 3. Results for simulation in a given environment

Table 4. CloudSim and NoJavaCloud comparison

6. CONCLUSION

In this paper we have effectively thought about the two

fundamental cloud simulator test systems, the "cloudlet

scheduler space shared" and "cloudlet scheduler time shared"

and observed the degradation of execution time of

NoJavaCloud than in cases of CloudSim execution time taken

by the cloudlet. At last we have effectively reproduced a

heterogeneous cloud environment simulator in which we have

placed all the preparing elements similar to MIPS rating in the

host and effectively assigned handling resources with various

MIPS rating to virtual machines. We have assigned a virtual

machine which have the capacity to finish the execution of

cloudlet effectively and calculated the aggregate number of

cloudlets executed successfully. The experiment results show

that the new proposed approach outperforms the current

approach as far as the aggregate number of cloudlets executed

effectively.

In this paper, indigenous cloud tool (NoJavaCloud)

developed has been presented. In the cloud environment it

has been specifically designed for simulating the Task

Scheduling. The researcher can utilize the NoJavaCloud

slight programming knowledge. GUI environment is the

fine feature of NoJavaCloud reduces the learning time. This

feature reduces the research duration and the researcher

only focuses their research area. Application security

product the vital research data of the researcher. The

NoJavaCloud contain backend so the user feed more data

and backup the database. Hence this indigenous cloud tool

(NoJavaCloud) is better than CloudSim in so many aspects.

REFERENCES

[1] Armbrust M, Fox A, Griffith R, Joseph AD, Katz R,

Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I,

Zaharia M. (2010). A view of cloud computing.

Communications of the ACM 53(4): 50-58.

[2] Papazoglou MP. (2003). Service-oriented computing:

Concepts, characteristics and directions. In Web

Information Systems Engineering 2003. WISE 2003.

90

Proceedings of the Fourth International Conference on,

IEEE, pp. 3-12.

[3] Dillon T, Wu C, Chang E. (2010). April. Cloud

computing: Issues and challenges. In Advanced

Information Networking and Applications (AINA), 2010

24th IEEE International Conference on, pp. 27-33.

[4] Upadhyaya J, Ahuja NJ. (2017). February. Quality of

service in cloud computing in higher education: A critical

survey and innovative model. In I-SMAC (IoT in Social,

Mobile, Analytics and Cloud)(I-SMAC), 2017

International Conference on, IEEE, pp. 137-140.

[5] Calheiros RN, Rajiv R, Anton B, César AF De R,

Rajkumar B. (2011). CloudSim: a toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Software:

Practice and Experience 41(1): 23-50.

[6] Wickremasinghe B, Calheiros RN, Buyya R. (2010).

Cloudanalyst: A cloudsim-based visual modeller for

analysing cloud computing environments and

applications. In Advanced Information Networking and

Applications (AINA), 2010 24th IEEE International

Conference on, IEEE, pp. 446-452.

[7] Buyya R, Ranjan R, Calheiros RN. (2009). Modeling and

simulation of scalable Cloud computing environments

and the CloudSim toolkit: Challenges and opportunities.

In High Performance Computing & Simulation, 2009.

HPCS'09. International Conference on, IEEE, pp. 1-11.

[8] Goga K, Terzo O, Ruiu P, Xhafa F. (2014). Simulation,

modeling, and performance evaluation tools for cloud

applications. In Complex, Intelligent and Software

Intensive Systems (CISIS), 2014 Eighth International

Conference on, IEEE, pp. 226-232.

[9] Splieth M, Bosse S, Schulz C, Turowski K. (2015).

Analyzing the effects of load distribution algorithms on

energy consumption of servers in cloud data centers. In

Wirtschaftsinformatik, 287-301.

[10] Ghanbari S, Mohamed O. (2012). A priority based job

scheduling algorithm in cloud computing. Procedia

Engineering 50(1): 778-785.

[11] Guo ZH, Geoffrey F, Mo Z. (2012). Investigation of data

locality in mapreduce. In Proceedings of the 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (ccgrid 2012), IEEE, pp. 419-426.

[12] Sakellari G, Loukas G. (2013). A survey of mathematical

models, simulation approaches and testbeds used for

research in cloud computing. Simulation Modelling

Practice and Theory 39: 92-103.

[13] Kaur R, Ghumman NS. (2015). A survey and comparison

of various cloud simulators available for cloud

environment. Int. J. Adv. Res. Comput. Commun. Eng.

4(5): 605-608.

[14] Kumar P, Rai AK. (2014). An overview and survey of

various cloud simulation tools. International Journal of

Global Research in Computer Science (UGC Approved

Journal) 5(1): 24-26.

[15] Guzek M, Bouvry P, Talbi EG. (2015). A survey of

evolutionary computation for resource management of

processing in cloud computing. IEEE Computational

Intelligence Magazine 10(2): 53-67.

91

