
1.  INTRODUCTION

Thermophoresis is the migration of aerosol and other 
particles in the direction of a decreasing temperature 
gradient. Such a phenomenon has received considerable 
attention in the engineering analysis community owing to 
major applications in optical fiber production, heat 
exchanger fouling, aerosol reactors etc. In optical fiber 
synthesis, thermophoresis has been identified as the 
principal mechanism of mass transfer as used in the 
technique of modified chemical vapour deposition (MCVD) 
[1]. In this procedure a gaseous mixture of reactive 
precursors is directed over a heated substrate where solid 
film deposits are located. In particular the mathematical
modeling of the deposition of silicon thin films using 
MCVD methods has been accelerated by the quality control 
measures enforced by the micro-electronics industry. Such 
topics involve a variety of complex fluid dynamical 
processes including  thermophoretic transport of particlauet
deposits, heterogenous/homogenous chemical reactions, 
homogenous particulate nucleation and coupled heat and 
energy transfer. Boundary layer theory has proven to be

instrumental in simplifying the flow regimes to facilitate 
numerical solutions via CFD and also user-specified 
numerical codes. Thermophoresis is also a key mechanism 
of study in semi-conductor technology, especially controlled 
high-quality wafer production as well as in radioactive 
particle deposition in nuclear reactor safety simulations and 
MHD energy generation system operations. A number of 
analytical and experimental papers in thermophoretic heat 
and mass transfer have been communicated. Brock [2] 
provided an early analysis of aerosol thermophoretic 
dynamics. Batchleor and Shen [3] later analyzed the 
thermophoretic migration of particles in a gaseous flow. 
Goren [4] considered the thermophoretic deposition of 
particles in flat plate boundary layers. Talbot et al [5] 
presented a seminal study, considering boundary layer flow 
with thermophoretic effects, which has become a benchmark 
for subsequent studies (this model is extended in the present 
paper). The thermophoretic flow of larger diameter particles 
was investigated by Kanki et al. [6]. Lin and Ahn [7] studied 
thermophoretic flows in semi-conductor materials. Shen [8] 
discussed thermophoresis in twodimensional and 
axisymmetric flow near cooled bodies. Sasse et al. [9] 
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considered laminar thermophoretic flows in various flat 
surface and concentric geometries.

The study of magnetohydrodynamic viscous radiate 
flows has important industrial, technological and geothermal 
applications such as high-temperature plasmas, cooling of 
nuclear reactors, liquid metal fluids, MHD accelerators, and 
power generation systems. Hossain and Takhar [10] 
analyzed the effect of radiation using the Rosseland 
diffusion approximation which leads to non-similar solutions 
for the forced and free convection flow of an optically dense
fluid from vertical surfaces with constant free stream 
velocity and surface temperature. Hossain et al. [11] studied 
the effect of radiation on free convection heat transfer from a 
porous vertical plate. Duwairi and Damseh [12, 13] studied 
the radiation–conduction interaction in free and mixed 
convection fluid flow for a vertical flat plate in the presence 
of a magnetic field effect. Mbeledogu and Ogulu [14] 
studied the heat and mass transfer of an unsteady MHD 
natural convection flow of a rotating fluid past a vertical 
porous flat plate in the presence of radiative heat transfer. 
Rahman and Sattar [15] studied the transient convective heat 
transfer flow of micropolar fluid past a vertical porous plate 
in the presence of thermal radiation. Alam et al. [16] studied 
the effects of variable suction and thermophoresis on steady 
MHD combined free-forced convective heat and mass 
transfer flow over a semi-infinite permeable inclined plate in 
the presence of thermal radiation.  Gnaneswara Reddy and 
Bhaskar Reddy [17] studied the radiation and mass transfer 
effects on unsteady MHD free convection flow past a 
vertical porous plate with viscous dissipation by using finite 
element method. Recently, Gnaneswara Reddy and Bhaskar 
Reddy [18] investigated mass transfer and heat generation 
effects on MHD free convection flow past an inclined 
vertical surface in a porous medium.

The viscous and joule heating of ionized gases on forced 
convection heat transfer in the presence of magneto and 
thermal radiation effect was investigated by Duwairi [19]. 
Recently, Osalusi et al. [20] studied the effectiveness of 
viscous dissipation and Joule heating on steady MHD flow 
and heat transfer of a Bingham fluid over a porous rotating 
disk in the presence of Hall and ion-slip currents.

The objective of the present paper is to study the 
combined effects of viscous dissipation and Joule heating on 
steady magnetohydrodynamic free convective heat and mass 
transfer flow of a viscous incompressible fluid past a semi-
infinite inclined radiate isothermal permeable moving 
surface in the presence of thermophoresis and heat 
generation with variable thermal conductivity.

2. GOVERNING EQUATIONS

Consider a two-dimensional steady 
magnetohydrodynamic laminar free convective heat and 
mass transfer flow of a viscous incompressible and 
electrically conducting fluid past a continuously moving 
semi-infinite inclined porous flat plate with an acute angle a 

to the vertical with surface temperature wT , surface 

concentration wC , both constant and thermal conductivity, 

fk , which obeys a linear temperature law according to 

   0 01 1fk k T T k        where 0k

denotes thermal conductivity in the free stream of the flow, 
 is a thermophysical constant dependent on the fluid          

( 0  for lubrication oils, hydromagnetic working fluids 

and 0  for air or water) and  wT T    is the 

thermal conductivity variation parameter. The x -axis 
measured along the plate, a magnetic field of uniform 

strength 0B is applied in the y -direction that is normal to 

the flow direction. Fluid suction or injection is imposed at 
the plate surface. The temperature of the surface is held 

uniform at wT which is higher than the ambient temperature

T . The species concentration at the surface is maintained 

uniform at wC , which is taken to be zero and that of the 

ambient fluid is assumed to be C . The effect of 

thermophoresis and variable thermal conductivity is being 
taken into account to help in the understanding of the mass 
deposition variation on the surface. We further assume that 
(i) the mass flux of particles is sufficiently small so that the 
main stream velocity and temperature fields are not affected 
by the thermophysical processes experienced by the 
relatively small number of particles, (ii) due to the boundary 
layer behavior the temperature gradient in the y -direction 

is much larger than that in the x -direction and hence only 
the thermophoretic velocity component which is normal to 
the surface is of importance, (iii) the fluid has constant 
kinematic viscosity and thermal diffusivity, and that the 
Boussinesq approximation may be adopted for steady 
laminar flow, (iv) the particle diffusivity is assumed to be 
constant, and the concentration of particles is sufficiently 
dilute to assume that particle coagulation in the boundary 
layer is negligible, (v) the magnetic Reynolds number is 
assumed to be small so that the induced magnetic field is 
negligible in comparison to the applied magnetic field and 
(vi) the fluid is considered to be gray; absorbing–emitting 
radiation but non-scattering medium and the Rosseland 
approximation is used to describe the radioactive heat flux in 
the x direction is considered negligible in comparison to the 
y -direction.

Under the above assumptions, the governing equations 
for this problem can be written as
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where u and v are the velocity components in the x , y
directions, respectively,  is the kinematic viscosity,  is 

the fluid viscosity, g is the acceleration due to gravity,  is 

the density of the fluid,  is the volumetric coefficient of 

thermal expansion, T , wT and T are the temperature of 

the fluid inside the thermal boundary layer, the plate 
temperature and the fluid temperature in the free stream, 

respectively, while C , wC and C are the corresponding 

concentrations, 0B is the magnetic induction,  is the 

electrical conductivity, fk is the thermal conductivity of 

fluid, pc is the specific heat at constant pressure, rq is the 

radiative heat flux in the y -direction, 0Q is heat generation 

constant, D is the molecular diffusivity of the species 

concentration and TV is the thermophoretic velocity.

The appropriate boundary conditions for the above 
model are as follows:

0 , , 0w w wu U v v T T C C at y     
0, ,u T T C C as y       (5)

where 0U is the uniform plate velocity and  wv x
represents the permeability of the porous surface. Here, we 
confine our attention to the suction/injection of fluid through 
the porous surface and for these we also consider that the 

transpiration function variable  wv x is of the order of

1 2x .

The radiative heat flux rq under Rosseland 

approximation has the form
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where s is the Stefan-Boltzmann constant and ek - the 

mean absorption coefficient. It should be noted that by using 
the Rosseland approximation, the present analysis is limited 
to optically thick fluids. If the temperature differences 
within the flow are sufficiently small, then Equation (6) can 

be linearized by expanding 4T into the Taylor series about

T , which after neglecting higher order terms takes the 

form
3 44 4 3T T T T   (7)

Using Eqs. (6) and (7) in Eq. (3) we have
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The second, third, fourth and fifth terms on the RHS of Eq. 
(8) denote the viscous, thermal radiation, magnetic heating 
and heat generation terms, respectively.

Now the thermophoretic velocity TV , which appears in Eq. 

(4), can be written as (see Talbot et al. [21]):
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where rT is some reference temperature and k is the 

thermophoretic coefficient which ranges in value from 0.2 to 
1.2 as indicated by Batchelor and Shen [22] and is defined 
from the theory of Talbot et al. [21] by
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where 1C , 2C , 3C , mC , sC , tC are constants, fk and p
are the thermal conductivities of the fluid and diffused 
particles, respectively, and Kn is the Knudsen number.
A thermophoretic parameter can be defined (see Mills et 
al. [23] and Tsai [24]) as follows:
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Typical values of  are 0.01, 0.05 and 0.1 corresponding to 

approximate values of  wk T T  equal to 3, 15 and 30 

K for a reference temperature of 300rT K .

The equations (1), (2), (8) and (4) are strongly coupled, 
parabolic and nonlinear partial differential equations. An 
analytical solution cannot be obtained and therefore we seek 
numerical solutions. Numerical computations are greatly 
facilitated by non-dimensionalization of the equations.  
Proceeding with the analysis, we introduce the following 
similarity transformations and dimensionless variables 
which will convert the partial differential equations from 

two independent variables  ,x y to a system of coupled, 

non-linear ordinary differential equations in a single variable 

  i.e. coordinate normal to the plate. In order to write the 

governing equations and the boundary conditions in 
dimensionless form, the following non-dimensional 
quantities are introduced (Chamkha and Issa [25]).
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Where  f  is the dimensionless stream function and  
is the dimensional stream function defined by

u
y
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
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x
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 
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                             (13)

Then, introducing the equation (12) into equation (1), we 
obtain

 0u U f     and   0

2

U
v f f

x

           (14)

Here, prime denotes ordinary differentiation with respect to 
the similarity variable . Substituting Eqs. (12) and (14) in 

Eqs. (2), (8) and (4), we obtain the following non-linear 
differential equations
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The non-dimensional parameters that appeared in the above 
equations are defined as follows: 
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The corresponding boundary conditions are

, 1, 1, 0 0wf f f at      
0, 0, 1f as       (18)

where  
0

2
w w

x
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U
  is the permeability of the 

porous surface which is positive for suction and negative for 
injection. The parameters  , M , Pr , Ec , R , Q , , Sc
are the local buoyancy parameter, magnetic field parameter, 
Prandtl number, Eckert number, Radiation parameter, heat 
generation parameter,  thermophoretic parameter and 
Schmidt number respectively.

3. METHOD OF SOLUTION

The systems of non-linear ordinary differential Eqs.   
(15) - (17) with the relevant boundary conditions (18) are 
solved numerically for the velocity, temperature and 
concentration distributions, by using the Runge-Kutta fourth 
order along with Shooting method.  First of all, higher order 
non-linear differential Equations (15)-(17) are converted into 
simultaneous linear differential equations of first order and 
they are further transformed into initial value problem by 
applying the shooting technique (Jain et al. [26]). The 
resultant initial value problem is solved by employing 
Runge-Kutta fourth order technique. The step size 

0.01  is used to obtain the numerical solution with 

five decimal place accuracy as the criterion of convergence.

4. RESULTS AND DISCUSSION

In order to get a physical insight into the problem, a 
parametric study is carriedout. Throughout the numerical 
calculations the Prandtl number Pr is chosen as 0.71 which 

corresponds air at 293 K and1 atmosphere of pressure. For 
numerical computations, the default values of the other 
parameters considered are 2.0, 0.5,M   1.0,R 

0.1,Q  0.5,  0.01, 1.0, 0.6,Ec Sc  
0.5wf   unless otherwise specified. 

Fig.1. Comparison of temperature profiles

In order to assess the accuracy of our computed results, 
the present result has been compared with Alam et al. [27] 
for different values of M on the velocity field is shown Fig. 

1 with 0.0Q   . It is observed that the agreements 

with the solution of velocity profiles are excellent.

Fig.2. Velocity profiles for different values of M

Fig.3. Temperature profiles for different values of M

Fig.4. Concentration profiles for different values of 
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Figs. 2-4, respectively, show the dimensionless velocity, 
temperature and concentration profiles for different values 

of magnetic field parameter M for both suction  0wf 

as well as injection  0wf  cases. From Fig. 2 we observe 

that increasing the magnetic field parameter decreases the 
velocity inside the boundary layer as a result of the increased 
retarding force. On the other hand, from Fig. 3 we see that 
the magnetic field increases the temperature of the fluid 
inside the boundary layer because of excess heating and 
consequently decreases the heat flux. Increasing the 
magnetic field parameter is found to decrease the velocity 
boundary layer thickness and increase the thermal boundary 
layer thickness in the case of fluid withdrawing as well as 
for fluid injecting. Therefore, magnetic field can be used to 
control the flow and heat transfer characteristics. From Fig.4
we see that the concentration profile decreases with the 
increase of the magnetic field parameter.

The effect of buoyancy parameter  on the velocity, 

temperature and concentration profiles are shown in Fig. 5-
7, respectively. 

Fig.5. Velocity profiles for different values of 

Fig.6. Temperature profiles for different values of 

Fig.7. Concentration profiles for different values of 

It is obvious that an increase in the buoyancy parameter
results in increasing velocity and concentration within the 
boundary layer. As buoyancy parameter increases the 
temperature decreases.

Figs. 8, 9 and 10 show the effects of thermal conductivity 
parameter  on dimensionless velocity, temperature and 

concentration functions versus transverse coordinate . 

Fig.8 shows that the dimensionless velocity u increase as 
the thermal conductivity parameter  increases. This is 

because as  increases the thermal conductivity of the fluid 

increases.

Fig.8. Velocity profiles for different values of 

Fig. 9. Temperature profiles for different values of 

Fig.10. Concentration profiles for different values of 

This is because as  increases the thermal conductivity of 

the fluid increases. A rise in  from zero (constant thermal 

conductivity of fluid) through 0.5 to1, induces a significant 
increase in the temperature in the flow domain (figure 9). 
All profiles decay smoothly to zero from maximum values at 
the wall to zero in the free stream (edge of the boundary 
layer). Fluid temperature is therefore maximized with larger 
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values of  . A similar but less marked trend is seen for the 

distribution of concentration function with  (figure 10), 

where again  values are seen to rise with an increase in  , 

in particular nearer to the wall. All profiles ascend from zero 
at the wall to unity in the free stream.

Fig.11. Velocity profiles for different values of R

Fig.12. Temperature profiles for different values of R

Fig.13. Concentration profiles for different values of R

Figs. 11–13, respectively, show the dimensionless 
velocity, temperature and concentration profiles for different 
values of conduction–radiation parameter R . From Fig. 11
we see that increasing the values of R decreases the 
velocity of the fluid inside the hydrodynamic boundary layer 
for both case of constant fluid suction or injection. From Fig. 
12 it is found that the increasing of conduction–radiation 
parameter increases the temperature gradients near the 
porous wall for both case of constant fluid suction or 
injection, which increases heat transfer rates, this is due to 
the fact that radiation effect increases temperatures of the 
fluids and the absence of radiation defines small 
temperatures. Therefore, radiation intensifies the buoyancy 
force. Fig. 12 also reveals that for sufficiently strong 

radiation effect 3R  (not precisely determined) in 
connection with the effect of injection overshoot the 
temperature profile near the surface of the plate. Fig. 13
shows that decreasing effect of radiation on the 
concentration profile for fluid suction is less compared to 
that of fluid injection.

Fig.14. Velocity profiles for different values of Ec

Fig.15. Temperature profiles for different values of Ec

Fig.16. Concentration profiles for different values of Ec

The effect of viscous dissipation parameter or Eckert 
number Ec on the velocity, temperature and concentration 
profiles are shown in Fig. 14 -16, respectively. These figures 
reveal that increasing the Eckert number broadens the 
velocity, temperature as well as concentration distributions 
inside the velocity, thermal and concentration boundary 

layers. Increasing effect of Ec on the concentration profiles 
for the case of suction is less pronounceable. But for the case 
of injection this effect is quite significant.
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Fig.17. Velocity profiles for different values of Q

Fig.18. Temperature profiles for different values of Q

Fig.19. Concentration profiles for different values of Q

Figures 17, 18 and 19 to illustrate the influence of heat 
generation parameter Q on the dimensionless velocity 

temperature and concentration fields through the boundary-
layer. It is seen from Figure 17 that the velocity profile is 
influenced considerably and increases when the value of 
heat generation parameter increases. As expected a rise in 
positive value of Q from 0 to 0.5and 1induces a clear 

increase in temperature function  throughout the flow 
domain normal to the plate. Physically heat generation in the 
fluid will add thermal energy to the flow and therefore for 
positive Q temperatures will rise. Such a heat source 

phenomenon is possible in energy system devices or hot 
spots in industrial treatment systems. In Fig.18, the case of 
no heat source logically lies at the interface between the 
minimal values of positive Q . The trend for all temperature 

plots, in consistency with the wall and free stream boundary 

conditions is a gradual decay from the plate (wall) to the 
edge of the boundary layer, where we observe all profiles 
converging to zero at approximately 5  . These effects 

are very similar to nonmagnetic studies, indicating that heat 
source effects are not influenced by the presence of a 
transverse magnetic field. A similar but less dramatic trend 
is observed for the distribution of concentration in the 

domain (Fig. 19). Again  is increased with a positive rise 

in Q i.e. increasing heat generation.

Fig.20. Velocity profiles for different values of 

Fig.21. Temperature profiles for different values   of 

Fig.22. Concentration profiles for different values of 

Representative velocity profiles for three typical angles 

of inclination 0 0 00 ,30 45and  are presented in Fig. 

20 for both fluid suction as well as injection cases. It is 
observed from Fig. 20 that increasing the angle of 
inclination decreases the velocity inside the hydrodynamic 
boundary layer. This is because the angle of inclination 
decreases the effect of the buoyancy force due to thermal 
diffusion by a factor of cos . Consequently the driving 
force to the fluid decreases as a result velocity of the fluid 
decreases. The velocity of the injecting fluid amplifies the 
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fluid velocity within the boundary layer. The combined 
effects of injection and the buoyancy force (which is 
maximum for 0  ) overshoots the main stream velocity 
significantly. From Fig. 21-22 we observe that both the 
thermal as well as concentration boundary layer thickness 
increases as the angle of inclination increases. The 
increasing effect of a on these boundary layers thickness is 
quite strong for the case of injection.

Fig.23. Concentration profiles for different values of 
The effect of thermophoretic parameter  on the 

concentration field is shown in Fig. 23. From this figure we 
observe that concentration boundary layer thickness 
increases as the thermophoretic parameter increases for fluid 
suction as well as for fluid injection.

Fig.24. Concentration profiles for different values of Sc

Fig. 24 shows concentration profiles for various values 

of the Schmidt number Sc . From this figure it is clear that 
the concentration boundary layer thickness decreases as the 

Schmidt number Sc increases that analogous to the effect 
of increasing the Prandtl number on the thickness of a 
thermal boundary layer.

5. CONCLUSIONS

In this article a mathematical model has been presented 
for the hydromagnetic boundary layer flow over an inclined 
radiate isothermal permeable surface with thermophoresis 
present and also heat generation effects and viscous and 
Joule heating with variable. Using transformations a set of 
ordinary differential equations has been derived for the 
conservation of mass, momentum and species diffusion in 
the boundary layer regime. These nonlinear, coupled 
differential equations have been solved under physically 
valid boundary conditions using the Runge-Kutta fourth 
order along with shooting method. . Fluid velocity and fluid 
temperature increase with the increase in parameter 

.Magnetic field has been shown in the present flow scenario 
to infact induce acceleration of the flow, rather than 
deceleration, but to reduce temperatures and increase 
concentration of particles in the boundary layer. Fluid 
velocity decreases with the application of suction and 
increases in case of injection of fluid in the boundary layer. 
A positive increase in Eckert number is shown to reduce 
temperatures in the flow, as experienced via both viscous 
dissipation and Joule (Ohmic) heating. Themophoresis for 
the case of a cold wall (positive ) is shown to initially 
increase concentration of particles in the boundary layer, but 
a short distance from the wall this trend is reversed. The 
computations have important implications in aerosol 
deposition dynamics, hydronautics of blades, and also 
optical fiber manufacture under magnetic field control. 
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ABSTRACT





A two-dimensional mathematical model is presented for the laminar heat and mass transfer of an electrically-conducting, viscous and Joule (Ohmic) heating fluid over an inclined radiate isothermal permeable surface in the presence of the variable thermal conductivity, thermophoresis and heat generation. The Talbot- Cheng-Scheffer-Willis formulation (1980) is used to introduce a thermophoretic coefficient into the concentration boundary layer equation. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable. The resulting coupled nonlinear equations are solved under appropriate transformed boundary conditions using the Runge-Kutta fourth order along with shooting method. Comparisons with previously published work are performed and the results are found to be in very good agreement. Computations are performed for a wide range of the governing flow parameters, viz., magnetic field parameter, thermophoretic coefficient (a function of Knudsen number), Eckert number (viscous heating effect), angle of inclination, thermal conductivity parameter, heat generation parameter and Schmidt number. The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and magnetohydrodynamic energy generators.









1.  INTRODUCTION



	Thermophoresis is the migration of aerosol and other particles in the direction of a decreasing temperature gradient. Such a phenomenon has received considerable attention in the engineering analysis community owing to major applications in optical fiber production, heat exchanger fouling, aerosol reactors etc. In optical fiber synthesis, thermophoresis has been identified as the principal mechanism of mass transfer as used in the technique of modified chemical vapour deposition (MCVD) [1]. In this procedure a gaseous mixture of reactive precursors is directed over a heated substrate where solid film deposits are located. In particular the mathematical modeling of the deposition of silicon thin films using MCVD methods has been accelerated by the quality control measures enforced by the micro-electronics industry. Such topics involve a variety of complex fluid dynamical processes including  thermophoretic transport of particlauet deposits, heterogenous/homogenous chemical reactions, homogenous particulate nucleation and coupled heat and energy transfer. Boundary layer theory has proven to be











instrumental in simplifying the flow regimes to facilitate numerical solutions via CFD and also user-specified numerical codes. Thermophoresis is also a key mechanism of study in semi-conductor technology, especially controlled high-quality wafer production as well as in radioactive particle deposition in nuclear reactor safety simulations and MHD energy generation system operations. A number of analytical and experimental papers in thermophoretic heat and mass transfer have been communicated. Brock [2] provided an early analysis of aerosol thermophoretic dynamics. Batchleor and Shen [3] later analyzed the thermophoretic migration of particles in a gaseous flow. Goren [4] considered the thermophoretic deposition of particles in flat plate boundary layers. Talbot et al [5] presented a seminal study, considering boundary layer flow with thermophoretic effects, which has become a benchmark for subsequent studies (this model is extended in the present paper). The thermophoretic flow of larger diameter particles was investigated by Kanki et al. [6]. Lin and Ahn [7] studied thermophoretic flows in semi-conductor materials. Shen [8] discussed thermophoresis in twodimensional and axisymmetric flow near cooled bodies. Sasse et al. [9] considered laminar thermophoretic flows in various flat surface and concentric geometries.

	The study of magnetohydrodynamic viscous radiate flows has important industrial, technological and geothermal applications such as high-temperature plasmas, cooling of nuclear reactors, liquid metal fluids, MHD accelerators, and power generation systems. Hossain and Takhar [10] analyzed the effect of radiation using the Rosseland diffusion approximation which leads to non-similar solutions for the forced and free convection flow of an optically dense fluid from vertical surfaces with constant free stream velocity and surface temperature. Hossain et al. [11] studied the effect of radiation on free convection heat transfer from a porous vertical plate. Duwairi and Damseh [12, 13] studied the radiation–conduction interaction in free and mixed convection fluid flow for a vertical flat plate in the presence of a magnetic field effect. Mbeledogu and Ogulu [14] studied the heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer. Rahman and Sattar [15] studied the transient convective heat transfer flow of micropolar fluid past a vertical porous plate in the presence of thermal radiation. Alam et al. [16] studied the effects of variable suction and thermophoresis on steady MHD combined free-forced convective heat and mass transfer flow over a semi-infinite permeable inclined plate in the presence of thermal radiation.  Gnaneswara Reddy and Bhaskar Reddy [17] studied the radiation and mass transfer effects on unsteady MHD free convection flow past a vertical porous plate with viscous dissipation by using finite element method. Recently, Gnaneswara Reddy and Bhaskar Reddy [18] investigated mass transfer and heat generation effects on MHD free convection flow past an inclined vertical surface in a porous medium.

	The viscous and joule heating of ionized gases on forced convection heat transfer in the presence of magneto and thermal radiation effect was investigated by Duwairi [19]. Recently, Osalusi et al. [20] studied the effectiveness of viscous dissipation and Joule heating on steady MHD flow and heat transfer of a Bingham fluid over a porous rotating disk in the presence of Hall and ion-slip currents.

	The objective of the present paper is to study the combined effects of viscous dissipation and Joule heating on steady magnetohydrodynamic free convective heat and mass transfer flow of a viscous incompressible fluid past a semi-infinite inclined radiate isothermal permeable moving surface in the presence of thermophoresis and heat generation with variable thermal conductivity.



2. GOVERNING EQUATIONS











































	Consider a two-dimensional steady magnetohydrodynamic laminar free convective heat and mass transfer flow of a viscous incompressible and electrically conducting fluid past a continuously moving semi-infinite inclined porous flat plate with an acute angle a to the vertical with surface temperature , surface concentration, both constant and thermal conductivity, , which obeys a linear temperature law according to  where  denotes thermal conductivity in the free stream of the flow, is a thermophysical constant dependent on the fluid          (for lubrication oils, hydromagnetic working fluids andfor air or water) and is the thermal conductivity variation parameter. The -axis measured along the plate, a magnetic field of uniform strength is applied in the -direction that is normal to the flow direction. Fluid suction or injection is imposed at the plate surface. The temperature of the surface is held uniform at which is higher than the ambient temperature. The species concentration at the surface is maintained uniform at, which is taken to be zero and that of the ambient fluid is assumed to be. The effect of thermophoresis and variable thermal conductivity is being taken into account to help in the understanding of the mass deposition variation on the surface. We further assume that (i) the mass flux of particles is sufficiently small so that the main stream velocity and temperature fields are not affected by the thermophysical processes experienced by the relatively small number of particles, (ii) due to the boundary layer behavior the temperature gradient in the -direction is much larger than that in the -direction and hence only the thermophoretic velocity component which is normal to the surface is of importance, (iii) the fluid has constant kinematic viscosity and thermal diffusivity, and that the Boussinesq approximation may be adopted for steady laminar flow, (iv) the particle diffusivity is assumed to be constant, and the concentration of particles is sufficiently dilute to assume that particle coagulation in the boundary layer is negligible, (v) the magnetic Reynolds number is assumed to be small so that the induced magnetic field is negligible in comparison to the applied magnetic field and (vi) the fluid is considered to be gray; absorbing–emitting radiation but non-scattering medium and the Rosseland approximation is used to describe the radioactive heat flux in the direction is considered negligible in comparison to the -direction.

	Under the above assumptions, the governing equations for this problem can be written as

Continuity equation



                                              	 	      (1)

Momentum equation



(2)

Energy equation



   					    	     	    (3)

Species equation
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where  and are the velocity components in the ,  directions, respectively, is the kinematic viscosity, is the fluid viscosity,  is the acceleration due to gravity, is the density of the fluid,  is the volumetric coefficient of thermal expansion, , and  are the temperature of the fluid inside the thermal boundary layer, the plate temperature and the fluid temperature in the free stream, respectively, while , and  are the corresponding concentrations, is the magnetic induction, is the electrical conductivity, is the thermal conductivity of fluid, is the specific heat at constant pressure, is the radiative heat flux in the -direction,  is heat generation constant,  is the molecular diffusivity of the species concentration and is the thermophoretic velocity.

	The appropriate boundary conditions for the above model are as follows:





  (5)









where  is the uniform plate velocity and represents the permeability of the porous surface. Here, we confine our attention to the suction/injection of fluid through the porous surface and for these we also consider that the transpiration function variable is of the order of.



	The radiative heat flux  under Rosseland approximation has the form



      	              	           		   (6)









where  is the Stefan-Boltzmann constant and - the mean absorption coefficient. It should be noted that by using the Rosseland approximation, the present analysis is limited to optically thick fluids. If the temperature differences within the flow are sufficiently small, then Equation (6) can be linearized by expanding  into the Taylor series about, which after neglecting higher order terms takes the form 
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Using Eqs. (6) and (7) in Eq. (3) we have



						(8)

The second, third, fourth and fifth terms on the RHS of Eq. (8) denote the viscous, thermal radiation, magnetic heating and heat generation terms, respectively.



Now the thermophoretic velocity, which appears in Eq. (4), can be written as (see Talbot et al. [21]):
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where is some reference temperature and  is the thermophoretic coefficient which ranges in value from 0.2 to 1.2 as indicated by Batchelor and Shen [22] and is defined from the theory of Talbot et al. [21] by



(10)



















where, , ,, , are constants, and are the thermal conductivities of the fluid and diffused particles, respectively, and is the Knudsen number.



A thermophoretic parameter can be defined (see Mills et al. [23] and Tsai [24]) as follows:



				   (11)









Typical values of  are 0.01, 0.05 and 0.1 corresponding to approximate values of  equal to 3, 15 and 30  for a reference temperature of.





	The equations (1), (2), (8) and (4) are strongly coupled, parabolic and nonlinear partial differential equations. An analytical solution cannot be obtained and therefore we seek numerical solutions. Numerical computations are greatly facilitated by non-dimensionalization of the equations.  Proceeding with the analysis, we introduce the following similarity transformations and dimensionless variables which will convert the partial differential equations from two independent variables  to a system of coupled, non-linear ordinary differential equations in a single variable i.e. coordinate normal to the plate. In order to write the governing equations and the boundary conditions in dimensionless form, the following non-dimensional quantities are introduced (Chamkha and Issa [25]).



		(12)





Where is the dimensionless stream function and   is the dimensional stream function defined by





 and                              	(13)

Then, introducing the equation (12) into equation (1), we obtain





   and          (14)



Here, prime denotes ordinary differentiation with respect to the similarity variable. Substituting Eqs. (12) and (14) in Eqs. (2), (8) and (4), we obtain the following non-linear differential equations



		(15)





	(16) 	   	 (17)



The non-dimensional parameters that appeared in the above equations are defined as follows:  The corresponding boundary conditions are
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where is the permeability of the porous surface which is positive for suction and negative for injection. The parameters,, , , ,,, are the local buoyancy parameter, magnetic field parameter, Prandtl number, Eckert number, Radiation parameter, heat generation parameter,  thermophoretic parameter and Schmidt number respectively.



3. METHOD OF SOLUTION





	The systems of non-linear ordinary differential Eqs.   (15) - (17) with the relevant boundary conditions (18) are solved numerically for the velocity, temperature and concentration distributions, by using the Runge-Kutta fourth order along with Shooting method.  First of all, higher order non-linear differential Equations (15)-(17) are converted into simultaneous linear differential equations of first order and they are further transformed into initial value problem by applying the shooting technique (Jain et al. [26]). The resultant initial value problem is solved by employing Runge-Kutta fourth order technique. The step size is used to obtain the numerical solution with five decimal place accuracy as the criterion of convergence.



4. RESULTS AND DISCUSSION





















	In order to get a physical insight into the problem, a parametric study is carriedout. Throughout the numerical calculations the Prandtl number  is chosen as 0.71 which corresponds air at and atmosphere of pressure. For numerical computations, the default values of the other parameters considered areunless otherwise specified. 
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Fig.1. Comparison of temperature profiles [image: ]







	In order to assess the accuracy of our computed results, the present result has been compared with Alam et al. [27] for different values of on the velocity field is shown Fig. 1 with. It is observed that the agreements with the solution of velocity profiles are excellent.
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Fig.2. Velocity profiles for different values of 
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Fig.3. Temperature profiles for different values of 
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Fig.4. Concentration profiles for different values of [image: ]







	Figs. 2-4, respectively, show the dimensionless velocity, temperature and concentration profiles for different values of magnetic field parameter for both suction  as well as injection cases. From Fig. 2 we observe that increasing the magnetic field parameter decreases the velocity inside the boundary layer as a result of the increased retarding force. On the other hand, from Fig. 3 we see that the magnetic field increases the temperature of the fluid inside the boundary layer because of excess heating and consequently decreases the heat flux. Increasing the magnetic field parameter is found to decrease the velocity boundary layer thickness and increase the thermal boundary layer thickness in the case of fluid withdrawing as well as for fluid injecting. Therefore, magnetic field can be used to control the flow and heat transfer characteristics. From Fig.4 we see that the concentration profile decreases with the increase of the magnetic field parameter. 



	The effect of buoyancy parameter on the velocity, temperature and concentration profiles are shown in Fig. 5-7, respectively. 
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Fig.5. Velocity profiles for different values of 
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Fig.6. Temperature profiles for different values of 

[image: ]

Fig.7. Concentration profiles for different values  of [image: ]

It is obvious that an increase in the buoyancy parameter results in increasing velocity and concentration within the boundary layer. As buoyancy parameter increases the temperature decreases.











	Figs. 8, 9 and 10 show the effects of thermal conductivity parameter on dimensionless velocity, temperature and concentration functions versus transverse coordinate. Fig.8 shows that the dimensionless velocity increase as the thermal conductivity parameter  increases. This is because as  increases the thermal conductivity of the fluid increases.

[image: ]Fig.8. Velocity profiles for different values of [image: ]
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Fig. 9. Temperature profiles for different values of 
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Fig.10. Concentration profiles for different values of 

















This is because as  increases the thermal conductivity of the fluid increases. A rise in from zero (constant thermal conductivity of fluid) through  to1, induces a significant increase in the temperature in the flow domain (figure 9). All profiles decay smoothly to zero from maximum values at the wall to zero in the free stream (edge of the boundary layer). Fluid temperature is therefore maximized with larger values of. A similar but less marked trend is seen for the distribution of concentration function with  (figure 10), where again  values are seen to rise with an increase in, in particular nearer to the wall. All profiles ascend from zero at the wall to unity in the free stream.
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Fig.11. Velocity profiles for different values of 



[image: ]Fig.12.  Temperature profiles for different values  of 
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Fig.13. Concentration profiles for different values of 









	Figs. 11–13, respectively, show the dimensionless velocity, temperature and concentration profiles for different values of conduction–radiation parameter. From Fig. 11 we see that increasing the values of  decreases the velocity of the fluid inside the hydrodynamic boundary layer for both case of constant fluid suction or injection. From Fig. 12 it is found that the increasing of conduction–radiation parameter increases the temperature gradients near the porous wall for both case of constant fluid suction or injection, which increases heat transfer rates, this is due to the fact that radiation effect increases temperatures of the fluids and the absence of radiation defines small temperatures. Therefore, radiation intensifies the buoyancy force. Fig. 12 also reveals that for sufficiently strong radiation effect (not precisely determined) in connection with the effect of injection overshoot the temperature profile near the surface of the plate. Fig. 13 shows that decreasing effect of radiation on the concentration profile for fluid suction is less compared to that of fluid injection.
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Fig.14. Velocity profiles for different values  of 
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Fig.15. Temperature profiles for different values of 



[image: ]



Fig.16. Concentration profiles for different values of 

	





	The effect of viscous dissipation parameter or Eckert number on the velocity, temperature and concentration profiles are shown in Fig. 14 -16, respectively. These figures reveal that increasing the Eckert number broadens the velocity, temperature as well as concentration distributions inside the velocity, thermal and concentration boundary layers. Increasing effect of on the concentration profiles for the case of suction is less pronounceable. But for the case of injection this effect is quite significant.
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Fig.17. Velocity profiles for different values of 
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Fig.18. Temperature profiles for different values of 
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Fig.19. Concentration profiles for different values of 



























	Figures 17, 18 and 19 to illustrate the influence of heat generation parameter on the dimensionless velocity temperature and concentration fields through the boundary-layer. It is seen from Figure 17 that the velocity profile is influenced considerably and increases when the value of heat generation parameter increases. As expected a rise in positive value of from  to and induces a clear increase in temperature function throughout the flow domain normal to the plate. Physically heat generation in the fluid will add thermal energy to the flow and therefore for positive  temperatures will rise. Such a heat source phenomenon is possible in energy system devices or hot spots in industrial treatment systems. In Fig.18, the case of no heat source logically lies at the interface between the minimal values of positive. The trend for all temperature plots, in consistency with the wall and free stream boundary conditions is a gradual decay from the plate (wall) to the edge of the boundary layer, where we observe all profiles converging to zero at approximately. These effects are very similar to nonmagnetic studies, indicating that heat source effects are not influenced by the presence of a transverse magnetic field. A similar but less dramatic trend is observed for the distribution of concentrationin the domain (Fig. 19). Again  is increased with a positive rise in i.e. increasing heat generation. 
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Fig.20. Velocity profiles for different values of 
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Fig.21. Temperature profiles for different values   of 
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Fig.22. Concentration profiles for different values of 









	Representative velocity profiles for three typical angles of inclination  are presented in Fig. 20 for both fluid suction as well as injection cases. It is observed from Fig. 20 that increasing the angle of inclination decreases the velocity inside the hydrodynamic boundary layer. This is because the angle of inclination decreases the effect of the buoyancy force due to thermal diffusion by a factor of. Consequently the driving force to the fluid decreases as a result velocity of the fluid decreases. The velocity of the injecting fluid amplifies the fluid velocity within the boundary layer. The combined effects of injection and the buoyancy force (which is maximum for) overshoots the main stream velocity significantly. From Fig. 21-22 we observe that both the thermal as well as concentration boundary layer thickness increases as the angle of inclination increases. The increasing effect of a on these boundary layers thickness is quite strong for the case of injection.
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Fig.23. Concentration profiles for different values of 



	The effect of thermophoretic parameter on the concentration field is shown in Fig. 23. From this figure we observe that concentration boundary layer thickness increases as the thermophoretic parameter increases for fluid suction as well as for fluid injection.
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Fig.24. Concentration profiles for different values of 

	





	Fig. 24 shows concentration profiles for various values of the Schmidt number. From this figure it is clear that the concentration boundary layer thickness decreases as the Schmidt number  increases that analogous to the effect of increasing the Prandtl number on the thickness of a thermal boundary layer.



5. CONCLUSIONS







	In this article a mathematical model has been presented for the hydromagnetic boundary layer flow over an inclined radiate isothermal permeable surface with thermophoresis present and also heat generation effects and viscous and Joule heating with variable. Using transformations a set of ordinary differential equations has been derived for the conservation of mass, momentum and species diffusion in the boundary layer regime. These nonlinear, coupled differential equations have been solved under physically valid boundary conditions using the Runge-Kutta fourth order along with shooting method. . Fluid velocity and fluid temperature increase with the increase in parameter.Magnetic field has been shown in the present flow scenario to infact induce acceleration of the flow, rather than deceleration, but to reduce temperatures and increase concentration of particles in the boundary layer. Fluid velocity decreases with the application of suction and increases in case of injection of fluid in the boundary layer. A positive increase in Eckert number is shown to reduce temperatures in the flow, as experienced via both viscous dissipation and Joule (Ohmic) heating. Themophoresis for the case of a cold wall (positive) is shown to initially increase concentration of particles in the boundary layer, but a short distance from the wall this trend is reversed. The computations have important implications in aerosol deposition dynamics, hydronautics of blades, and also optical fiber manufacture under magnetic field control. 
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