
 

 

 

 

1. INTRODUCTION 

 

     The study of boundary layer flows over a stretching 

surface is important as it occurs in several engineering 

processes. Such processes are paper production, glass 

blowing wire drawing and glass fiber production. The 

dynamics of the boundary layer flow over a stretching surface 

originated from the pioneering work of Sakiadis [1] and [2] 

who initiated the study of  boundary layer flow over a 

continuous solid surface moving with constant speed. Crane 

[3] extended it to analyze the steady two dimensional 

boundary layer flow caused by the stretching of elastic flat 

surface which moves in its plane with velocity varying 

linearly with distance from a fixed point. Many authors 

presented some mathematical results, and good amount of 

references can be found in the papers by Ali [4] and [5], 

Elbashbeshy [6], Ishak et al. [7] and Elbashbeshy and Bazid 

[8] . The studies carried out in these papers in the case steady 

state flow. The unsteady state problem over a stretching 

surface, which is stretched with a velocity that depends on 

time, is considered by Anderson et al. [9], Elbashbeshy and 

Bazid [10], Ishak et al. [11] and Elbashbeshy and Dalia [12]-

[14]. The boundary layer flow and heat transfer of a 

Newtonian fluid over a stretching surface have been 

investigated by several authors [15]-[18]. The above 

investigations for the case of classical Newtonian fluids do 

not give satisfactory results if the fluid is a heterogeneous 

mixture such as liquid crystals, Ferro liquid and animal blood. 

In these fluids there are several constitutive equations, which 

do not obey the Newtonian laws. To overcome such a 

difficulty, Eringen [19] and [20] formulated the theory of 

micropolar fluids. Many researchers have considered with 

stretching surface in micropolar fluid by Elarabawy [21], 

Aldawody and elbashbeshy [22], Rahman et al. [23] and 

Ishak et al.[24] and [25]. 

The aim of the present paper is to discuss the unsteady 

boundary layer flow and heat transfer over a stretching  

 

surface in a micropolar fluid in the presence of the thermal 

radiation. Particular cases of the present results have been 

compared with Ishak et al. [25]. 

 

 

2. FORMULATION OF THE PROBLEM 

                                                                                         

     Let us consider an unsteady, laminar, two-dimensional 

boundary layer flow of a viscous incompressible micropolar 

fluid over a continuous moving stretching surface in the 

presence of thermal radiation. The fluid is considered to be a 

gray, absorbing-emitting radiation but non-scattering medium 

and the Rosseland approximation is used to describe the 

radiative heat flux in the energy equation. The radiative heat 

flux in the x- axis is negligible with that in the y- axis. At 

time 0t , the surface is impulsively stretched with velocity 

),( txU w along the x -axis keeping the origin fixed in the 

fluid of ambient temperature T .The stationary Cartesian 

coordinate system has its origin located at the leading edge of 

the surface with positive x -axis extended along the surface, 

while the y -axis is normal to the x -axis. The equations 

governing the flow in the boundary layer of an unsteady, 

laminar and incompressible micropolar fluid are 
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Subject to the boundary conditions 
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Where x  and y  represent coordinate axes along the 

continuous surface in the direction of motion and normal to it, 

respectively. u  and v  are the velocity components along the 

x -axes and y -axes, respectively, t  is the time,   is the 

coefficient of dynamic viscosity   is the density, k  is the 

vortex viscosity, N is the microrotation, /j c  is the 

micro-inertia density,   is the spin gradient viscosity, T is 

the fluid temperature within the boundary layer, pc  is the 

specific heat of the fluid, 
/k  is the thermal conductivity, 

rq is radiative  heat flux, wT  is the surface temperature, T  

is the free stream temperature and n  is constant (0 1)n  . 

It should be mentioned that the case 0n  , we obtain 0N  

which represents a no–spin condition i.e., the microelements 

in a concentrated particle flow close to the wall are not able to 

rotate (called the strong concentration). The case 5.0n  

represents vanishing of the anti-symmetric part of the stress 

tensor (called weak concentration). The case 1n  is 

representative of turbulent boundary layer. We assume that 

  is given by ( 0.5 ) (1 0.5 ) ,k j K j      (See Ishak et 

al. [11]), where /K k   is the material parameter. It is 

assumed that the stretching velocity ( , )wU x t  and the heat 

flux ),( txqw  are of the form ( , ) / (1 ),wU x t ax ct   

 ( , ) / (1 )wq x t bx ct  .Where ,  a b  and c  are constants 

with 0,0  ba  and 0c (with )1ct  and both a  and 

c  have dimension time
1

. The radiative heat flux rq , under 

Rosseland diffusion approximation [12], has the following 

form 
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Where s  is the Stefan-Boltzman constant, and *k  is the 

absorption coefficient.  

We assume that the temperature difference within the flow is 

sufficiently small so that 4T  can be expanded in a Taylor’s 

series about T  and neglecting higher orders we get: 
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In view of equations (6) and (7), equation (4) reduces to: 
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The equation of continuity is satisfied if we choose a stream 

function ),( yx  such that: / , /u y v x        

The mathematical analysis of the problem is simplified by 

introducing the following dimensionless similarity variables 
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Where   is the similarity variable. The transformed 

nonlinear ordinary differential equations are: 
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Where primes denote differentiation with respect to  , 

/A c a  is the unsteadiness parameter, Pr /pc k   is 

Prandtl number, 3 /16 / 3sR T k k 
  is the thermal radiation 

parameter. Where 0 1/ (1 )k R  . It is worth mentioning 

here that when 10 k , the thermal radiation effects not 

considered. 

The boundary conditions (5) now become  
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3. NUMERICAL SOLUTIONS 

 

     The Eqs. (7)-(9) can be converted to a system of 

differential equations of first order, by using  
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Subjected to the initial conditions 
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Where a, b and c are unknown to be determined as a part of 

the numerical solution. Using mathematica, a function (F) has 

been defined such that F [a, b, c]:=NDSolve [system (14) and 

(15)]. The value of a, b and c are determined upon solving the 

equations, 2 max 4 max 6 max( ) 0,  ( ) 0 and ( ) 0y y y      to 

get the solution. NDSolve first searches for initial conditions 

that satisfy the equations, using a combination of Solve and a 

procedure much like Find Root. Once a, b and c are 

determined the system (14) and (15) is closed, it can be 

solved numerically using the NDSolve function. 

To validate the numerical method used in this study, the 

Newtonian flow case K= 0, was considered and the results for 

Temperature gradient are compared with the numerical 

solution which is reported in Ishak [25]. The quantitative 

comparison is shown in table (1) and found to be in a good 

agreement. 

 

Table 1- Comparison of θ (0) for a various values of pr and A   

at K =0, R =0, n= 0.5, 

 

A Pr Elbashbeshy [6] Ishak[25] Numerical results 

0 
0.72 

 

1.2253 

 

1.2367 

 
1.236655 

0 1 
1.0000 

 

1.0000 

 
1.00000 

1 
0.72 

 
 

0.9116 

 
0.911554 

1 1  
0.8591 

 
0.859175 

 

 

4. SKIN FRICTION COEFFICIENT, COUPLE STRESS 

AND NUSSELT NUMBER. 

 

     The parameters of physical and engineering interest for 

present are the skin friction fC , dimensionless couple stress 

xM and Nusselt number xNu which are defined as 
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where w  is the surface shear stress 
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where wM  is the surface couple stress  
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Table 2- Results of the local Nusselt number (1 ) / (0)R   

for different values of unsteadiness parameter A, n and  

Prandtl number Pr at R=1 and K=1 

 

pr 0.72 1 10 

A n=0 n=0.5 n=0 n=0.5 n=0 n=0.5 

0 1.1317 1.0899 1.4051 1.3596 5.2651 5.2063 

0.8 1.2333 1.1988 1.4979 1.4579 5.4793 5.4138 

1 1.2599 1.2270 1.5310 1.4934 5.5442 5.4795 

1.2 1.2882 1.2569 1.5617 1.5257 5.6163 5.5530 

 

Table 3- esults of the local Nusselt number (1 ) / (0)R   for 

different values of unsteadiness parameter A and material 

parameter (K) at n=0.5, Pr=0.72 and R=1 

 

K 0 3 5 

 

A 
n=0 n=0.5 n=0 n=0.5 n=0 n=0.5 

0 1.0721 1.0032 1.2349 1.1834 1.2858 1.2403 

0.8 1.1320 1.1630 1.3195 1.2627 1.3556 1.3088 

1 1.1705 1.1912 1.3335 1.2970 1.3772 1.3310 

1.2 1.2057 1.2210 1.3547 1.3220 1.40015 1.3549 

 

Table 4- Results of local Nusselt number (1 ) / (0)R   for 

different values of unsteadiness parameter A and thermal 

radiation parameter (R) at n=0, 0.5, Pr=0.72 and K=1 

 

R 1 2 3 

A n=0 n=0.5 n=0 n=0.5 n=0 n=0.5 

0 1.1317 1.0899 1.2964 1.2336 1.4161 1.3580 

0.8 1.2333 1.3769 1.4832 1.6109 1.6409 1.90451 

1 1.2599 1.4282 1.5322 1.7275 1.7676 2.0080 

1.2 1.2882 1.4252 1.5356 1.7388 1.8976 2.0177 

 

5. RESULTS AND DISCUSSION 

 

     It is worth mentioning that for K 0 (Newtonian fluid), 

A=0 (steady state flow),  ko (thermal radiation effects not 

considered) the problem is reduced to those considered by 

Elbashbeshy [6] and for K=0 & ko the problem is reduced 

those considered by Ishak et al. [11] and for kothe 

problem is reduced to those considered by Ishak et al. [25]. 

The quantitative comparison is shown in Table 1 and it is 

found to be in a very good agreement. 
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Figure 1 Velocity profiles ( )f  for some values of A   

 

 

 
 

 Figure 2  Velocity profiles ( )f  for some values of K 

 

 
Figure 1 and Figure 2 show the effects of the unsteadiness 

parameter A and material parameter K on the fluid velocity 

respectively. The effect of increasing A is to decrease the 

velocity of the fluid. The fluid velocity is incraesed due to 

increasing the value of the parameter K. 

 

 
 

Figure 3 Temperature profiles ( )  for some  values of A 

 

 

  

Figure 4 Temperature profiles ( )  for some values  of  K  

 

 

 
 

Figure 5 Temperature profiles ( )  for some values of   Pr   

 

 

 
 

Figure 6 Temperature profiles ( )  for some values of R 

 

 
Figures (3)-(6) show the temperature profile for different 

values of the unsteadiness parameter (A), material parameter 

(K), Prandtl number (Pr) and thermal radiation parameter (R). 

Representative temperature profile is presented in Figure 3, 

for n=0.5, R=0.2, K=Pr=1 and different values of the 

unsteadiness parameter (A).The results show that the 

temperature decreases with the distance from the stretching 

surface. In addition, increasing the value of the unsteadiness 
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parameter (A) tends to decrease the temperature within the 

boundary layer. Figure 4 shows that the effect of the material 

parameter (K) on the temperature.The temperature within the 

boundary layer increases with the increase of the material 

parameter (K), while in Figure 5, the temperature decreases 

with the increase of the Prandlt number (Pr), as the Prandtl 

number increases, viscous forces tend to suppress the 

buoyancy forces and cause the temperature in the thermal 

boundary layer to decrease. 

It is also observed that (Figure 6) increasing the value of R 

have the tendency to increase the conduction effects and to 

increase the thermal boundary layer, so the fluid temperature 

is to increase 

 

 
 

Figure 7 Angular velocity profiles ( )g  for some values of A   

 

 

 
 

Figure 8 Angular velocity profiles ( )g   for some values of K 

 

 

Figures (7) and (8) display the effects of the unsteadiness 

parameter (A) and the material parameter (K) on the micro 

rotation (angular velocity) profile. It is clear that as the 

unsteadiness parameter (A) and the material parameter (K) 

increase the angular velocity profile decreases in the region 

near of the surface and after a short distance from the surface 

these profiles overlap and then increase with increase of the 

unsteadiness parameter (A) and the material parameter (K). 

In Tables (2)-(4) we have presented the local Nusselt number 

for various values of n, A, Pr, R, and K. These Tables show 

that the local Nusselt number is increased for all values of R, 

Pr, A, and K. This can be explained from the fact that as the 

Prandtl number increases the thermal boundary layer 

thickness decreases and the wall temperature gradient 

increases. 

 

 

6.CONCLUSION 

 

     In this paper, we have studied the problem of the  

boundary layer flow of a micropolar fluid and heat transfer on 

an unsteady stretching surface in the presence of thermal 

radiation effect. The governing boundary layer equations 

were solved numerically .A discussion of the effects of the 

governing parameters; the unsteadiness parameter 

(A),material parameter (K), the Prandtl number (Pr) and the 

thermal radiation parameter (R) on the heat transfer 

characteristics in the cases n 0, 0.5, Pr0.72, 1, 10, R=1, 2, 

3, 4, K0, 1, 2, 3, 4 and A 0, 0.2, 0.4, 0.5 has been 

done.We found that the heat transfer rate at the surface 

(1 ) / (0)R   increases with the increase of R, Pr, A, and K. 
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