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1. INTRODUCTION 

While a good num ber of works have made significant 
contributions for the development of t he theory, an equally 
good number of works have  been devoted to many 
engineering applications that include electronic or computer 
equipment, thermal energy storage systems and etc. We shall 
refer to a few important works that may serve as background 
for the present work. The na tural convection in enclosures 
continues to be a very active area of research during t he past 
few decades. 

Double diffusive convection of wa ter has been studied 
by Bahloul et al. [1], Nithyadevi and Yang [2] , Sezai and 
Mohamad [3], Sivasankaran and Kandaswam y [4, 5]. Yet, 
most work done c onsiders flow inside closed enclosures, the 
applications included, such as pol lution dispersion inlakes, 
chemical deposition, and m elting and solidification process. 
Diffusion of m atter caused by  temperature gradients (Soret 
effect) and diffusi on of heat caused by concentration 
gradients (Dufour effect) become very significant when t he 
temperature and c oncentration gradients are very large. 
Generally these effects are considered as second order 
phenomenon. These effects may become important in some 
applications such as t he solidification of b inary alloys, 
groundwater pollutant migration, chemical reactors, and 
geosciences. The importance of these effects has also seen in 
Mansour et al. [6], Joly et al. [7], Platten [8] and Patha et al. 
[9]. 

Double diffusive and Soret induced convection in a 
shallow horizontal enclosure is analytically and numerically 

studied by Bahloul et al. [1] and also studied numerically by 
Mansour et al. [6]. They found that the Nusselt number has 
decreases in general with the Soret parameter while the 
Sherwood number increases or decreases with this parameter 
depending on t he temperature gradient induced by each 
solution. Joly et al. [7] m ade the Soret effect on nat ural 
convection in a vertical enclosure. They analyzed the 
particular situation where the buoyancy forces induced by the 
thermal and solutal effects are opposing e ach other and of 
equal intensity.  

In the above studies convection heat transfer is due to the 
imposed temperature gradient between the opposing walls of 
the enclosure taking the e ntire vertical wall to be thermally 
active. But in many naturally occurring situations and 
engineering applications it is only a part of the wall which is 
thermally active. For example in solar energy collectors due 
to shading, it is only the unshaded part of the wall that is 
thermally active. In order to have the results to possess 
applications, it is essential to study heat transfer in an 
enclosure with partially heated active walls. Only a few 
studies are reported in the literature concerning heat transfer 
in enclosures with partially heated side walls, by Oztop [10], 
Frederick and Quiroz [11] and Erbay et al. [12]. 

 

 

 

 
SORET AND DUFOUR EFFECTS ON DOUBLE DIFFUSIVE NATURAL 

CONVECTION IN A CHAMBER UTILIZING NANOFLUID 
 

Rehena Nasrin * and M. A. Alim 

Department of Mathematics, Bangladesh University of Engineering & Technology, 
Dhaka-1000, Bangladesh. *E-mail: rehena@math.buet.ac.bd.

ABSTRACT 
 
A study has been carried out to analyze the combined effects of Soret (t hermal-diffusion) and Dufour (diffusion-thermo) 
coefficients and Schmidt number on natural convection in a partially heated square chamber. The wo rking fluid is water 
based Al2O3 nanofluid. Energy and concentration equations take into account of Dufour and Soret effects respectively. The 
governing differential equations are transformed into a set of non-linear coupled ordinary differential equations and solved 
using similarity analysis with numerical technique using appropriate boundary conditions for v arious parameters. The 
numerical solution for the go verning nonlinear boundary value problem is based on Penalty Finite Element Method using 
Galerkin’s weighted residual scheme over the entire range of relevant parameters. The variation of the dimensionless 
velocity, temperature and concentration profiles are depicted graphically and analyzed in detail. Favorable comparison with 
previously published work of the problem is obtained. Numerical results for average Nusselt and Sherwood numbers, 
average temperature and concentration and horizontal and vertical velocities at the m iddle of the chamber are presented as 
functions of the governing parameters mentioned above. 
 
 
KEYWORDS: Soret and Dufour coefficients, double-diffusive natural convection, finite element method, water-Al2O3 
nanofluid. 
 

109



 

Natural convection in an encl osure with partially active 
walls is studied by Nithyadevi et al. [13, 14] and 
Kandaswamy et al. [15] wi thout Soret and Dufour effects. 
Present study deals with the natural convection in a square  
enclosure filled with water and partially heated vertical walls 
for three different combinations of heating location in t he 
presence of sol ute concentration with Soret and Dufour 
effects. The hot region is located at the top, m iddle and 
bottom of the left vertical wall of the enclosure. 

Oztop and Abu -Nada [16] num erically studied natural 
convection in partially heated rectangular enclosures filled 
with nanofluids. Rouboa et al. [17] analyzed convective heat 
transfer in nanofluid. Esfahani and Bord bar [18] st udied 
double diffusive natural convection heat transfer 
enhancement in a square enclosure using nanofluids. Gorla et 
al. [19] analyzed mixed convective boundary layer flow over 
a vertical wedge em bedded in a porous medium saturated 
with a nanofluid: Natural Convection Dominated Regime. 
Kuznetsov and Nield [20] performed double-diffusive natural 
convective boundary-layer flow of a nanofluid past a vertical 
plate where si milarity solution was perfo rmed in order to 
obtain correlation formulas giving the reduced Nusselt 
number as a funct ion of the various relevant parameters. At 
the same year, Nield and Kuznetsov [21, 22] conduct ed the 
onset of double-diffusive convection in a nanofluid layer and 
the Cheng–Minkowycz problem for the double-diffusive 
natural convective boundary layer flow in a porous medium 
saturated by a nanofluid. The stability boundaries for both 
non-oscillatory and oscillatory cases had been approximated 
by simple analytical expressions. For the porous medium the 
Darcy model is employed. 

Effects of Sore t Dufour, chemical reaction and thermal 
radiation on MH D non-Darcy unsteady mixed convective 
heat and mass transfer over a stretching sheet was 
investigated by Pal and Mondal [23]. The author used 
shooting algorithm with Runge–Kutta–Fehlberg integration 
scheme to solve the governing equations.  Natural convection 
heat transfer of nanofluids in a vertical cavity: Effects of non-
uniform particle diameter and t emperature on thermal 
conductivity was performed by Lin and Violi [24]. Moreover, 
Saleh et al. [25] studied natural convection heat transfer in a  
nanofluid-filled trapezoidal enclosure. They found that acute 
sloping wall and Cu nanopart icles with high concentration 
were effective to enhance the rate of heat transfer. 

2. FORMULATION OF PROBLEM 

Fig. 1 shows a schem atic diagram of a partially heated 
square enclosure. The fl uid in the cavity is water-based 
nanofluid containing Al2O3 nanoparticles with Soret and 
Dufour coefficients. The nanofluid is assumed 
incompressible and the flow is considered to be laminar. It is 
taken that water and nanoparticles are in thermal equilibrium 
and no slip occurs between them.  The top horizontal wall has 
constant temperature Tc, while bottom wall is partially heated 
Th, with Th > Tc. The concentration in top wall is maintained 
higher than bottom wall (Cc < Ch). The remaining bottom 
wall and the two vertical walls are considered adiabatic. The 
thermophysical properties of the nanofluid are taken from 
Saleh et al. [25] and given in Table 1. The density of t he 
nanofluid is approximated by the Boussinesq model.  

The governing equations for l aminar natural convection 
in a solar collector filled with water-alumina nanofluid in 

terms of the Navier-Stokes and energy equation (dimensional 
form) are given as: 
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The boundary conditions are: 

at all solid boundaries u = v = 0 
at y = 0, 0.3 0.7x≤ ≤ ,    T = Th,  c = Cc 
at y = 1,     T = Tc,  c = Ch 

at the remaining boundaries 0, 0T c
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where, ( )1nf f sρ φ ρ φρ= − +  is the density,  

( ) ( )( ) ( )1p p pnf f s
C C Cρ φ ρ φ ρ= − + is the heat capacitance,  

( )1nf f sβ φ β φβ= − + is the thermal expansion coefficient,  

( )nf nf p nf
k Cα ρ= is the thermal diffusivity,  

the dynamic viscosity of B rinkman model [26] 
is ( ) 2.51nf fμ μ φ −= −    
and the thermal conductivity of Maxwell Garnett (MG) 
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Fig. 1: Schematic diagram of the enclosure 
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To make the above equations non-dimensionalized we 
use the following dimensionless dependent and independent 
variables: 

 
 
 
 
 
 
 

The obtained dimensionless form of t he governing 
equations are:  
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The corresponding boundary conditions take the 
following form: 
at all solid boundaries U = V = 0 
at Y = 0, 0.3 0.7X≤ ≤ ,    1θ = , C = 0 
at Y = 1,     0θ = , C = 1 

at the remaining boundaries 0, 0C
N N
θ∂ ∂
= =
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The average Nusselt and Sherwood numbers at the 
heated and concentrated surfaces of the enclosure may be 
expressed, respectively as  
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The mean bulk temperature and concent ration of the 
working fluid inside the c avity may be writ ten as 

/av dV Vθ θ= ∫  and /avC C dV V= ∫ , where V is the 
volume of the enclosure. 

 

Table 1: Thermo physical properties of fluid and 
nanoparticles [25] 

Physical Properties Fluid phase (Water) Al2O3 

Cp(J/kgK) 4179 765 

ρ (kg/m3) 997.1 3600 

k (W/mK) 0.6 46 

β×10-5 (1/K) 21 0.63 

 

3. NUMERICAL PROCEDURE 

The Galerkin finite element method [28, 29] is used to 
solve the non-di mensional governing equations along with 
boundary conditions for the considered problem. The 
equation of cont inuity has bee n used as a constraint due to 
mass conservation and this restriction may be used to find the 
pressure distribution. The penalty finite element method [30] 
is used to s olve the Eqs. (2) - (4), where the pressure P is 
eliminated by a penalty constraint. The continuity equation is 
automatically fulfilled for large values of this penalty 
constraint. Then the velocity components (U, V), temperature 
(θ) and concentration (C) are expanded using a basis set. The 
Galerkin finite element technique yields the subsequent 
nonlinear residual equations. Three points Gaussian 
quadrature is used to evaluate the integrals in these equations. 
The non-linear residual equations are solved using Newton–
Raphson method to determine the coefficients of t he 
expansions. The convergence of sol utions is assumed when 
the relative error for e ach variable between consecutive 
iterations is recorded below the convergence criterion ε such 
that 1 410n nψ ψ+ −− ≤ , where n is the number of iteration and 

Ψ is a function of U, V, θ and C. 
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Fig. 2: Mesh generation of the cavity 

111



 

Table 2:  Grid Sensitivity Check at Pr = 6.2, Df = Sr = 0.5, Sc 
= 5, φ = 5% and Ra = 104 

3.1 Mesh Generation 

In the finite element method, the mesh generation is the 
technique to subdivide a domain into a set  of sub-domains, 
called finite elements, control volume, etc. The discrete 
locations are defined by the num erical grid, at which the 
variables are to be ca lculated. It is basically a discrete 
representation of the geometric domain on which the problem 
is to be sol ved. The computational domains with irregular 
geometries by a collection of finite elements make the 
method a valuable practical tool for the solution of boundary 
value problems arising in various fields of engineering. Fig. 2 
displays the finite element mesh of the present physical 
domain. 

3.2 Grid Independent Test 

An extensive mesh testing procedure is conducted to 
guarantee a grid-independent solution for Ra = 104, Pr = 6.2, 
Df = Sr = 0.5, Sc = 5, φ  = 5% in the chamber. In the present 
work, we examine five different non-uniform grid systems 
with the following number of elements within the resolution 
field: 2569, 4730, 6516, 8457 and 10426. The num erical 
scheme is ca rried out for highl y precise key in the average 
Nusselt (Nu) and S herwood (Sh) numbers for the aforesaid 
elements to develop an understanding of the grid fineness as 
shown in Table 2 and Fig. 3. The scale of the average Nusselt 
and Sherwood numbers for 8457 elements shows a little 
difference with the results obtained for the other elements. 
Hence, considering the non-uniform grid system of 8457 
elements is preferred for the computation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Comparison 

The present numerical solution is validated by comparing 
the current code re sults for streamlines, isotherms and 
concentration profiles using Df = Sr = 0.5, Sc = 5, Pr = 11.573 
and RaT = 105 with the graphical representation of Nithyadevi 
and Yang [2] which was reported for double diffusive natural 
convection in a parti ally heated enclosure with Soret and 
Dufour effects. Fig. 4 demonstrates the a bove stated 
comparison. As shown i n Fig. 4, the numerical solutions 
(present work and Nit hyadevi and Yang [2]) are i n good 
agreement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. RESULTS AND DISCUSSION 

In this section, numerical results of streamlines and 
isotherms for various val ues of Soret (Sr) and Dufour ( Dr) 
coefficients and the Schmidt number (Sc) with Al2O3 /water 
nanofluid in a square enclosure are displayed. Ra = RaT  = Rac 
is assumed for the present numerical calculation. The 
considered values of Df,  Sr, Sc are Df  = (0, 0.5 a nd 1) = Sr 
and  Sc (= 1, 3 and 5). But the Prandtl number Pr = 6.2, the 
Rayleigh number Ra = 104 and solid volume fraction of the 
nanofluid φ  = 5% are kept  fixed for this study. In addition, 
the values of the average Nusselt and S herwood numbers, 
mean temperature and concentration as well as horizontal and 
vertical velocities at the middle of the cavity have been 
calculated for different mentioned parameters.  

Fig. 5 (a) - (c ) exposes the effect of Sr on the flow, 
thermal and concentration fields while Df = 0.5 and Sc = 5. At 
the absence of the Soret coefficient (Sr) a p rimary 
anticlockwise circulating cell occupies the bulk of the 
chamber. The size of the inner vortex of t his cell becomes 
larger with the increasing of the Soret coefficient. In addition 
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Fig. 3: Grid test for the geometry 
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Fig. 4: Comparison between present work and Nithyadevi 
and Yang using [2]  R = 0.5, N = 1, Df = Sr = 0.5, Sc = 5 and 

RaT = 105 
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for the largest value of Sr, the streamlines form rectangular 
pattern whereas initially they are circular. As well as another 
vortex is appeared near the left wall of the chamber. The 
isotherms and iso-concentrations are crowded around the 
active location on the bottom surface of the enclosure for (Sr 
= 1). In addi tion, the temperature lines corresponding to Sr = 
1 become less bended. Decreasing Soret effect leads to 
deformation of the thermal and concentration boundary layers 
at the right part of the cold upper wall and middle of t he 
bottom surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of Df on the flow, thermal and concentration 
fields is presented in Fig. 6 (a) - (c) while Sr = 0.5 and Sc = 5. 
A primary anticlockwise recirculation cell occupying the 
whole cavity is found for t he absence of the Dufour 
coefficient (Df). The fluid rises along the right wall and falls 
along the left wall. The size of the inner vortex of this cell 
becomes larger with the increasing of the Dufour coefficient. 
The strength of the flow circulation, the thermal current and 
concentration activities are m uch more activated with 
escalating Df. Increasing Df, the temperature and 
concentration lines at the middle part of t he enclosure 
become vertical whereas initially they are almost horizontal. 
Due to rising values of Df, the temperature and concentration 
distributions become distorted resulting in an increase in the 
overall heat and mass transfer. It is worth noting that as the 
Dufour coefficient increases, the thickness of the thermal 
boundary layer near the  horizontal surfaces rises which 
indicates a steep temperature and c oncentration gradients. 
Hence, an increase in the overall heat and mass transfer 
within the cavity is observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results are presented in terms of fluid flow, heat and 
mass transfer for various Schmidt number Sc in Fig. 7(a)–(c). 
In this figure we find t hat the fluid flow covers the entire 
cavity at the lowest value of Sc.  The  streamlines have no 
significant change due to rising Sc except the core of the 
vortex becomes slightly larger. The nature of streamlines 
takes horizontal pattern from vertical with the increasing of 
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(a) (b) 

Fig. 5: Effect of Sr on (a) Streamlines, (b) Isotherms and 
(c) Concentration at Df = 0.5 and Sc = 5 
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Fig. 6: Effect of Df on (a) Streamlines, (b) Isotherms and (c) 
Concentration at Sr = 0.5 and Sc = 5 
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Fig. 7: Effect of Sc on (a) Streamlines, (b) Isotherms and 
(c) Concentration at Df  = Sr = 0.5 
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the Schmidt number. For all values of Schmidt number, 
isotherms and iso-c oncentrations are almost similar to the 
active parts of the partially heated chamber. As Sc enhances 
from 1 to 5, the isotherms and i so-concentrations contours 
tend to get affected considerably. 

The average Nusselt (Nu) and Sherwood (Sh) numbers, 
average temperature (θav) and concentration (Cav) along with 
the Soret coefficient (Sr) are depicted in Fi g. 8 (i )-(ii). It is 
seen from Fig. 8 (i) that Nu enhances gradually whereas Sh 
remains almost invariant for mounting Sr.  Consequently Fig. 
8 (ii) shows that (θav) devalues and (Cav) rises sequentially for 
all values of Soret coefficient Sr.  

Fig. 9 (i)-(ii) shows the mid-height horizontal and 
vertical velocity profiles inside the chamber for different Sr 
effect. It is observed that the fluid particle moves with greater 
velocity for the absence of Soret coefficient Sr. The waviness 
devalues for higher values of Sr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 (i)-(i i) displays the mean Nusselt and Sherwood 
numbers, average temperature (θav) and concentration (Cav) 
for the effect of Dufour coefficient Df. Both Nu and Sh grow 
up for varying Df.  The rate of heat transfer is found to be 
more effective than the mass transfer rate. On the other hand, 
θav and Cav has notable changes with different values of Df. 
The value of mean concentration is always higher than that of 
average temperature at a part icular value of Dufour 
coefficient.  

The U and V velocities at the middle of the cavity for 
various Df are depicted in Fig. 11 (i)-(ii). A small variation in 

velocity is found due t o changing Df. Some perturbations are 
seen in t he horizontal velocity graph for Df = 0 and i n the 
vertical velocity profile for Df = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average Nusselt (Nu) and Sherwood (Sh) 
numbers, average temperature (θav) and conce ntration (Cav) 
along with the Schmidt number (Sc) are depicted in Fig. 12 
(i)-(ii). It is seen from Fig. 12 (i) t hat for mounting Sc, both 
Nu and Sh enhance steadily.  The rat es of heat and mass 
transfer rise 12% and 10% respectively for the variation of Sc 
number. This is well known that heat transfer rate is more 
effective than mass transfer rate and it is verified for the 
present study. Consequently Fig. 12 (ii) shows that (θav) and 
(Cav) lessen slowly for all Schmidt number.  

 

Fig. 13 (i)-(ii) shows the mid-height Y-U and X-V 
velocity distributions inside the chamber for the effect of Sc. 
No significant variation is shown in velocities with different 
Sc by the Fig.13. But the fluid particle moves with 
comparatively greater velocity for t he highest Schmidt 
number Sc. 

 

 

 

(ii) 

Fig. 8: Effect of Sr on (i) Nu and Sh and (ii) θav and Cav 
at Df = 0.5 and Sc = 5 

(i) 

(i) (ii) 

Fig. 9: Mid height (i) horizontal and (ii) vertical velocities 
for different Sr with Df = 0.5 and Sc = 5 

(ii) 

Fig. 10: Effect of Df on (i) Nu and Sh and (ii) θav 
and Cav at Sr = 0.5 and Sc = 5 

(i) 

(i) (ii) 

Fig. 11: Mid height (i) horizontal and (ii) vertical 
velocities for different Df  at Sr = 0.5 and Sc = 5 
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5. CONCLUSION 

The influence of nanopart icles on nat ural convection 
boundary layer flow inside a square cavity with water-Al2O3 
nanofluid is acc ounted. Various Soret-Dufour coefficients 
and Schmidt number have been considered for t he flow, 
temperature and concentration fields as well as the hea t and 
mass transfer rate, horizontal and vert ical velocities at the 
middle height of the enclosure while Pr, Ra and φ  are fixed 
at 6.2, 104 and 5% respect ively. The results of the numerical 
analysis lead to the following conclusions: 

• The structure of the fluid streamlines, isotherms and 
iso-concentrations within the chamber is found t o 
significantly depend upon the Soret-Dufour 
coefficients and Schmidt number. 

• The Al2O3 nanoparticles with the highest Sr, Df and 
Sc is established to be most effective in enhancing 
performance of heat transfer rate than the rat e of 
mass transfer. 

• Greater variation is observe d in velocities at a 
particular point for the changes of Sr with compared 
to that of Df and Sc. 

• Average concentration is higher than average 
temperature inside the chamber for the pertinent 
parameters.   

Overall the analysis also defines the operating range where 
water-Al2O3 nanofluid can be considered effectively in 
determining the level of heat and mass transfer augmentation. 
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7.NOMENCLATURES 

c Dimensional concentration (kg m-3) 
C Non-dimensional concentration 
Cp Specific heat at constant pressure (kJ kg-1 K-1) 
Cs Concentration susceptibility 
D Solutal diffusivity (m2 s-1) 

Df Dufour parameter, ( )
( )

Tf h c
f

s p h cf

k C CDD
ν C C T T

−⎛ ⎞= ⎜ ⎟ −⎝ ⎠
 

g Gravitational acceleration (m s-2) 
h Local heat transfer coefficient (W m-2 K-1) 
k Thermal conductivity (W m-1 K-1) 

KT Thermal diffusion ratio 
L Lengh of the enclosure (m) 
Nu Nusselt number, Nu = hL/kf 
Pr Prandtl number, /f fPr ν α=  

Sc Schmidt number, 
f

νSc
D

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Sh Sherwood number, Sh = hL/kf 

Sr Soret parameter, ( )
( )

Tf h c
r

m h cf

k T TDS
ν T C C

−⎛ ⎞= ⎜ ⎟ −⎝ ⎠
 

Ra  Rayleigh number, ( )3
f h c

f f

g L T T
Ra

β
ν α

−
=  

T Dimensional temperature (oK) 
u, v Dimensional x and y components of velocity (ms-1) 
U, V Dimensionless velocities, / , /f fU uL V vLν ν= =  

X, Y Dimensionless coordinates, / , /X x L Y y L= =  

x, y Dimensional coordinates (m) 

Greek Symbols 
α Fluid thermal diffusivity (m2 s-1) 
β Thermal expansion coefficient (K-1) 
φ  Nanoparticles volume fraction 
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θ Dimensionless temperature, ( ) ( )/c h cT T T Tθ = − −  

μ Dynamic viscosity (N s m-2) 
ν Kinematic viscosity (m2 s-1) 
ρ Density (kg m-3) 

Subscripts 
av average 

c cold 
f fluid 
h hot 
m mean 
nf nanofluid 
s solid particle 
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