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ABSTRACT 

This paper investigates the combined effect of heat source/sink and radiative heat transfer to steady flow of a 
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1. INTRODUCTION 

The study of heat transfer to viscous flow has many 

important applications in engineering and geophysics. In 

recent times, quite a number of researches have been done 

on the heat transfer analysis to oscillatory flows through a 

channel filled with saturated porous medium. For example, 

[1] investigated the combined effect of a transverse 

magnetic field and radiative heat transfer to unsteady flow 

of a conducting optically thin fluid through a channel filled 

with saturated porous medium and non-uniform walls 

temperature. In a related study, [2] reported the effect of slip 

on the unsteady oscillatory flow of an incompressible 

viscous fluid through a planer channel filled with saturated 

porous medium. Other notable work on the convective heat 

flow based on Bejan’s contructal theory includes [3]-[4]. 

Since the linear Newtonian shear-strain cannot 

predict the complex rheological behaviour of some complex 

fluids, over the years a number of models to study this 

nonlinear behaviour has been developed, one of these 

models is the Erying-Powel model, which has visco-elastic 

properties [5]-[6].  In a recent paper, the heat transfer to 

steady magnetohydrodynamic visco-elastic fluid flow with 

slip through a saturated porous medium in the presence of 

thermal radiation in the optically thin limit was studied in 

[7] using the Erying-Powell model.   

In all the studies above, radiative heat transfer to 

steady hydromagnetic visco-elastic, electrically conducting 

optically thick fluid flowing through a channel with 

saturated porous medium in the presence of heat source/sink 

have not been investigated. However, the study is 

significant for flows occuring at a very high temperature, for 

instance in polymer melts and metal processing, various 

aspects of this radiative heat transfer are documented in [8] 

– [12].   

The objective of the paper is to study the combined 

effect of thermal radiation in the optically thick limit and the 

heat source/sink on the conducting visco-elastic fluid flow 

through porous medium taking the effect of slip at the 

interface into consideration. In the following sections, the 

flow governing equations are formulated and non-

dimensionalized. Section 3 of the paper deals with the 

analytical solution of the problem by using Adomian 

decomposition method [15] and section 4 presents the effect 

of each parameter in the model on both the temperature and 

velocity profiles while section 5 concludes the paper. 

 

 

2.  MODEL FORMULATION 

We consider steady flow of an incompressible, visco-elastic, 

electrically conducting and heat-absorbing fluid flow 

through a saturated porous medium, which is subject to slip 

boundary condition at the interface of porous and fluid 

layers. A uniform transverse magnetic field of magnitude B0 

applied to the channel in the presence of thermal radiation, 

neglecting the induced magnetic field and the Hall effects. 

Take a Cartesian coordinate system (x, y) where the x-axis 

lies along the centre of the channel, y is the distance 

measured in the normal section as shown in figure 1 below. 

 

 
Figure 1:- Problem geometry 

 

Then the governing equations for the fluid flow is given by 
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Under these assumptions, the appropriate boundary 

conditions for velocity involving slip flow and temperature 

fields are given as [2], [7] and [11] 









===

===

.0

,0

1

0

hyTTu

yTT
dy

duK
u

α
                 (2) 

The Eyring-Powel visco-elastic model can be written as 
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The heat source/sink parameter is given as [12]-[114] to be 

( )TTQQ −= 00
.                 (5) 

While the radiation heat flux rq  is obtained by the 

Rosseland approximation  
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Assuming that the temperature differences within the flow 

are such that the term 
4T  can be expressed as a linear 

function of temperature. Therefore, by expanding 
4T  in a 

Taylor series about 0T  and neglecting second and higher 

order terms, we get 
4
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Substituting (3)-(7) in (1), we obtain 
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Where 

 'u  is the axial velocity, 'T - fluid temperature, 'p - 

pressure, g -gravitational force, c,0β -Erying–Powell 

parameters, ν -the kinematic viscosity, β-coefficient of 

volume expansion due to temperature, k-thermal 

conductivity K- porous medium permeability coefficient, B0 

-electromagnetic induction, 0Q -heat source/sink parameter, 

σe -conductivity of the fluid, ρ- fluid density σ -Stefan–

Boltzmann constant, 'k -mean absorption coefficient,α -

porous parameter. 

 

Introducing the following non-dimensional quantities  
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We have the dimensionless equation together with 

appropriate boundary conditions 
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When 0<δ  implies heat absorption while 0>δ  heat 

emission. Da  the Darcy number, δ - heat source/sink 

parameter, γ  dimensionless Navier slip parameter, b is a 

parameter that measures the nonlinearity of the elastic part of 

the Erying-Powell model, 2s  is the porous medium shape 

factor parameter. The parameters RaHGr ,, 2  are the 

Grashof number, Hartmann’s number and thermal radiation 

parameter respectively. 

           

3.       METHOD OF SOLUTION 

Let us give a brief introduction of the method in its standard 

form, consider the standard operator [11] 

mNwRwLw =++ ,                   (13) 

Where w is the unknown function, L is the highest order 

derivative that assumed to be easily invertible, R is a linear 

differential operator of order less than L, Nu represents the 

nonlinear terms, and m is the source term. Applying the 

inverse operator 1−
L  to both sides of (13) and using the 

given conditions we obtain  
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Where v represents the terms arising from integrating the 

source term m and from the auxiliary conditions, the 

standard ADM defines the solution w by the series 
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Where nA  are the Adomian polynomials. Substituting (15) 

in (16) we get, 
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By Taylors’ series expansion, for any nonlinear 

function ( )wf , then the Adomian polynomials (17) are 

given by 
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The components ,...,, 210 www are then determined 

recursively by using the relation 
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Where 0w is referred to as the zeroth component. An n-

components truncated series solution is thus obtained as  
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Now, a direct integration of (11) gives  
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using the boundary condition (12), we obtain 
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Where 
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d
e
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other boundary condition in (12). 

 

Also integrating (9), we get 
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where ( ) ( )
dy

du
cub

0
,0 ==  are to be determined using the 

boundary conditions (10). 

To obtain the solution of the integral equations (22) - (23) 

we assume a series solution of the form  
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While upon substitution of (25) in (23), we get 
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where nA  represent the nonlinear term in (23), by using (18) 

we get 
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From (26) we obtain the recursive relations for the 

temperature field as 
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While the recursive relation for the series solution is given 

by 
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Obtaining few terms of the (29) and (30) we obtain the 

partial sum 
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The accuracy of the solution (31) and (32) can be improved 

by obtaining more components of the recursive relations. 

 

4. DISCUSSION OF RESULTS 

Using mathematica we obtain the following results for the 

partial sum (31) – (32) and the result are presented in figures 

(1) – (13). In figure 1, it is observed that for negative value 

of the heat source/sink parameter there is a rise in the fluid 

temperature however for positive value of the same 

parameter in there is a decrease in fluid temperature as 

observed in figure 2.  
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Figure 1: - Temperature profile for variations in heat source 

parameter  
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Figure 2: - Temperature profile for variations in heat sink 

parameter  
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Figure 3: - Temperature profile for variations in Prandtl 

number  
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Figure 4: - Temperature profile for variations in radiation 

parameter  
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Figure 5: - velocity profile for variations in Grashof number  
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Figure 6: - velocity profile for variations in heat source 

parameter 
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Figure 7: - velocity profile for variations in heat sink 

parameter 
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Figure 8: - velocity profile for variations in slip parameter 
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Figure 9: - velocity profile for variations in Hartmann’s 

number 
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Figure 10: - velocity profile for variations in non-Newtonian 

parameter 
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Figure 11: - velocity profile for variations in Darcy number 
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Figure 12: - velocity profile for variations in Prandtl number 
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Figure 13: - velocity profile for variations in viscosity 

parameter 
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Figure 14: - velocity profile for variations in Radiation 

parameter 
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Moreover, figure 3 shows the plot of temperature against the 

Prandtl number, it is observed here that as the Prandtl 

number increases there is decrease in the fluid temperature 

due to decrease in the fluid thermal diffusivity. Figure 4 

represents the effect of thermal radiation on the temperature 

profile, as observed from the graph that as the fluid radiation 

parameter increases the fluid temperature also rises this is 

because the fluid absorbs heat from the heated wall. The 

effect of increase in the Grashof number on the flow is 

observed in figure 5, and it shows that increase in the 

Grashof number leads to an increase in the flow velocity 

due to increase in the buoyancy force. Figures 6 and 7 

shows the influence of heat generation and absorption on the 

velocity profile; as observed from the graph when the fluid 

absorbs heat there is increase in fluid velocity while 

emission of heat reduces the fluid velocity as seen in figure 

7. In figure 8, the increase in the fluid slip parameter 

enhances fluid flow velocity at the lower wall. The plot of 

the flow velocity against the magnetic field parameter as 

observed in figure 9 shows that as the Hartmann’s number 

increases the fluid velocity also decreases, this true due to 

the presence of Lorentz force in the magnetic field. The 

force has a retarding effect on the flow when the magnetic 

field is placed across the channel. In figure 10, the fluid 

velocity increases with increases in the non-Newtonian 

parameter this is due to the rise in the elasticity of the fluid. 

It is important to note here that if the negative part of the 

absolute value in (4) is in use then any increase in the non-

Newtonian parameter will reduce the flow velocity. Figure 

11, shows that increase in channel porous permeability leads 

to an increase in the fluid flow velocity. In figure 12, the 

fluid velocity is observed to drop with increase in Prandtl 

number so also in figure 13 it is observed that increase in 

fluid viscosity reduces the flow velocity due to increase in 

frictional force within the fluid particles. Finally as observed 

from figure 14, it is observed that increase in thermal 

radiation improves the flow velocity.  

 

5.   CONCLUSION 

The combined effects of thermal radiation and heat source 

and sink on non-Newtonian Magneto hydrodynamics visco-

elastic fluid flow through a saturated porous medium with 

slip at the cold plate has been investigated. Using Adomian 

decomposition method, analytical solutions of momentum 

and energy equations are obtained. The results show that 

increase in both radiation and heat absorption parameters 

increase the fluid temperature and flow velocity of the non-

Newtonian fluid within the channel while increase in the 

heat emission reduce both the fluid temperature and velocity 

profiles.  
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