
 

 

 

 

 
 

1.  Introduction 

 

       The mixed convection boundary layer flow along a 

vertical surface embedded in porous media has received 

considerable theoretical and practical interest. The mixed 

convection flow occurs in several industrial and technical 

applications such as electronic devices cooled by fans, 

nuclear reactors cooled during an emergency shutdown, a 

heat exchanger placed in a low-velocity environment, solar 

collectors and so on. A number of studies have been 

reported in the literature focusing on the problem of mixed 

convection about different surface geometries in porous 

media. A review of convective heat transfer in porous 

medium is presented in the book by Nield and Bejan [1]. 

The majority of these studies dealt with the traditional 

Newtonian fluids. It is well known that most fluids which 

are encountered in chemical and allied processing 

applications do not satisfy the classical Newton's law and 

are accordingly known as non-Newtonian fluids. Due to the 

important applications of non-Newtonian fluids in biology, 

physiology, technology, and industry, considerable efforts 

have been directed towards the analysis and understanding 

of such fluids. A number of mathematical models have been 

proposed to explain the rheological behavior of non-
Newtonian fluids. Among these, a model which has been 

most widely used for non-Newtonian fluids, and is 

frequently encountered in chemical engineering processes, 

is the power-law model. Although this model is merely an 

empirical relationship between the stress and velocity 

gradients, it has been successfully applied to non-

Newtonian fluids experimentally.  

      The prediction of heat or mass transfer characteristics 

for mixed or natural convection of non-Newtonian fluids in 

porous media is very important due to its practical 

engineering applications, such as oil recovery and food 
processing. Abo-Eldahab and Salem [2] studied the problem 

of laminar mixed convection flow of non-Newtonian 

power-law fluids from a constantly rotating isothermal cone 

or disk in the presence of a uniform magnetic field. Kumari 

and Nath [3] considered the conjugate mixed convection 

conduction heat transfer of a non-Newtonian power-law 

fluid on a vertical heated plate which is moving in an 

ambient fluid. Degan et al. [4] presented an analytical 

method to investigate transient free convection boundary 

layer flow along a vertical surface embedded in an 

anisotropic porous medium saturated by a non-Newtonian 

fluid. Chamkha and Al-Humoud [5] studied mixed 

convection heat and mass transfer of non-Newtonian fluids 

from a permeable surface embedded in a porous medium 

under uniform surface temperature and concentration 

species. Chen [6] considered the problem of magneto 

hydrodynamic mixed convective flow and heat transfer of 

an electrically conducting, power-law fluid past a stretching 

surface in the presence of heat generation/absorption and 

thermal radiation. Elgazery and Abd Elazem [7] analyzed 

numerically a mathematical model to study the effects of a 

variable viscosity and thermal conductivity on unsteady 

heat and mass transfer in a non-Newtonian power-law fluid 

flow through a porous medium past a semi-infinite vertical 

plate with variable surface temperature in the presence of 

magnetic field and radiation. Effect of double dispersion on 

mixed convection heat and mass transfer in a non-
Newtonian fluid-saturated non-Darcy porous medium has 

been investigated by by Kairi and Murthy [8]. Chamkha et 

al. [9] studied the effects of melting, thermal radiation and 

heat generation or absorption on steady mixed convection 

from a vertical wall embedded in a non-Newtonian power-

law fluid saturated non-Darcy porous medium for aiding 

and opposing external flows. Hayat et al. [10] investigated 

the Magneto hydrodynamic (MHD) mixed convection 

stagnation-point flow and heat transfer of power-law fluids 

towards a stretching surface using the homotopy analysis 

method (HAM). 
 

Stratification of fluid arises due to temperature variations, 

concentration differences, or the presence of different fluids. 
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In practical situations where the heat and mass transfer 

mechanisms run parallel, it is interesting to analyze the 

effect of double stratification (stratification of medium with 

respect to thermal and concentration fields) on the 

convective transport in power-law fluid. The analysis of 

natural convection in a doubly stratified medium is a 

fundamentally interesting and important problem because of 

its broad range of engineering applications. The applications 

include heat rejection into the environment such as lakes, 

rivers and the seas; thermal energy storage systems such as 

solar ponds and heat transfer from thermal sources such as 

the condensers of power plants. Although the effect of 

stratification of the medium on the heat removal process in 

a fluid is important, very little work has been reported in the 

literature.   Jumah and Mujumdar [11] studied the free 

convection heat and mass transfer of non-Newtonian power 

law fluids with yield stress from a vertical flat plate in 

saturated porous media.  Murthy et al.[12] discussed the 

effect of double stratification on free convection heat and 

mass transfer in a Darcian fluid saturated porous medium 

using the similarity solution technique for the case of 

uniform wall heat and mass flux conditions.  Lakshmi 
Narayana and Murthy [13] analyzed the free convection 

heat and mass transfer from a vertical flat plate in a doubly 

stratified non-Darcy porous medium using series solution 

technique. Cheng [14] discussed the combined heat and 

mass transfer in natural convection flow from a vertical 

wavy surface in a power-law fluid saturated porous medium 

with thermal and mass stratification. Recently, Postelnicu et 

al. [15] analyzed the free convection heat and mass transfer 

in a doubly stratified porous medium saturated with a 

power-law fluid.  

 

     Motivated by the investigations mentioned above, the 
purpose of the present work is to investigate the thermal and 

solutal stratification effects on mixed convection heat and 

mass transfer from vertical plate in Darcy porous media 

saturated with power-law fluid with variable surface 

temperature and concentration conditions. 

2. MATHEMATICAL FORMULATION 

 
 
Figure1: Flow model and physical coordinate system. 

      Consider the mixed convection heat and mass transfer 

along a vertical plate in a non-Newtonian power-law fluid 

saturated Darcy porous medium. Choose the coordinate 

system such that x- axis is along the vertical plate and y-axis 

normal to the plate. The plate is maintained at variable 

temperature and concentration, Tw(x) and Cw(x) 

respectively. The temperature and concentration of the 

ambient medium are T∞ (x) and C∞(x) respectively as shown 

in Fig.1. Assume that the fluid and the porous medium have 

constant physical properties except for the density variation 

required by the Boussinesq approximation. The flow is 

steady, laminar, two dimensional. The porous medium is 

isotropic and homogeneous. The fluid and the porous 
medium are in local thermo dynamical equilibrium. In 

addition the thermal and solutal stratification effects are 

taken in to consideration. The ambient medium is assumed 

to be vertically non-linearly stratified with respect to both 

temperature and concentration in the form T∞ (x)= T∞,0+G x
l
 

and C∞ (x)= C∞,0+H x
m
 respectively, where G and H are 

constants and varied to alter the intensity of stratification in 

the medium. 

 

   Using the Boussinesq and boundary layer approximations, 

the governing equations for the power law fluid are given 

by 
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where u and v are the Darcian velocity components along x 

and y directions, T is the temperature, C is the 

concentration, υ is the kinematic viscosity, K is the 

permeability, g is the acceleration due to gravity, βT  is the 

coefficient of thermal expansion, βC is the coefficient of 

concentration expansion, αm is the thermal diffusivity,  Dm 
is the mass diffusivity of the porous medium, n is the 

power-law index. When n = 1, the Eq. (2) represents a 

Newtonian fluid. Therefore, deviation of n from a unity 

indicates the degree of deviation from Newtonian behavior. 

For n < 1, the fluid is shear thinning and for n > 1, the fluid 

is shear thickening. 
 

The boundary conditions are 

0=v ,  )x(TT w= , )(xCC w=    at 0=y           (5a)                                                                

∞= uu ,  )(xTT ∞→ , )(xCC ∞→    as  ∞→y      (5b)   

                                                        

where the subscripts w and ∞ indicate the conditions at the 

wall and at the outer edge of the boundary layer 

respectively. 

            It is noticed that the similarity transformations are 

possible only when the variation in the temperature and 
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concentration of the plate are in the form 

3/

0, ))(( n

w xETxT =− ∞
  and 3/

0, ))(( n

w xFCxC =− ∞
 

respectively and the temperature and concentration 

stratifications are in the form 3
0

/n
, GxT)x(T += ∞∞

 and 

3
0

/n
, HxC)x(C += ∞∞  respectively. 

                 
In view of the continuity eq.(1), we introduce the 

stream function ψ by 
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                                   (6)                                                                  

Substituting eq.(6) in eqs.(2),(3) and  (4)  and then using the 

following similarity transformations 
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we get the following nonlinear system of differential 

equations.  
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where primes denote differentiation with respect to η  alone.  
 

 
E

nG
=

1
ε  is the thermal stratification parameter , 

F

nH
=

2
ε    is the  solutal stratification parameter,                                             

 
E

F
N

T

C

β

β
=    is the buoyancy ratio,                                                          

 
m

m

D
Le

α
=   is the Lewis number.                      

 Making use of dimensional analysis, we get    
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The boundary conditions (5) in terms of  f, θ, and φ  

become  

0=f ,  1=θ ,   1=φ    at      0=η           (11a) 

11 =f ,   0=θ ,     0=φ     as     ∞→η           (11b) 

The parameters of engineering interest for the present 

problem are the Nusselt and Sherwood numbers, which are 

given by the expressions 
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3. SHOOTING METHOD NUMERICALPROCEDURE 

       The flow Eq.(8) coupled with the energy and 

concentration Eqs.(9) and (10) constitute a set of nonlinear 

non-homogeneous differential equation for which closed-

form solution cannot be obtained. Hence the problem is 

solved numerically using shooting technique along with 

fourth order Runge-Kutta integration. The basic idea of 

shooting method for solving boundary value problem is to 

try to find appropriate initial condition for which the 

computed solution “hit the target” so that the boundary 

conditions at other points are satisfied. Furthermore, the 
higher order non-linear differential equations are converted 

into simultaneous linear differential equations of first order 

and they are further transformed into initial valued problem 

applying the shooting method incorporating fourth order 

Runge-Kutta method. The iterative solution procedure was 

carried out until the error in the solution became less than a 

predefined tolerance level.  

 

The non-linear differential equations (10) - (12) are 

converted into in to the system of first order linear 

differential equations and then integrated using the fourth 
order Runge - Kutta method from η = 0 to η = ηmax over 

successive steps Dη by giving appropriate initial guess 

values for for f
1
(0), θ1

(0) and φ1
(0) as they are not specified 

in (13). Here ηmax is the value of η at ∞ and chosen large 
enough so that the solution shows little further change for η 

larger than ηmax. The accuracy of the assumed initial values 

f
1
(0), θ1

(0) and φ1
(0) is then checked  by comparing the 

calculated values of f1(0), θ1(0) and φ1(0) at η = ηmax with 

their given value in (11). If a difference exists, another set 

of initial values for f
1
(0), θ1

(0) and φ1
(0) are assumed and 

the process is repeated until the agreement between the 

calculated and the given condition at η = ηmax is within the 

specified degree of accuracy.   In order to see the effects of 

step size (Dη) we ran the code for our model with three 

different step sizes as Dη = 0.01, Dη = 0.001 and Dη = 0.005 

and in each case we found very good agreement between 

them.  A step size of Dη = 0.01 is selected to be satisfactory 
for a convergence criterion of 10

-6
 in all cases. In the 

present study, the boundary conditions for η at ∞ vary with 

parameter values and it is suitably chosen at each time such 

that the velocity approach to one and temperature and 

concentration approach zero at the outer edge of the 

boundary layer. Extensive calculations are performed to 

obtain the wall velocity, temperature and concentration 

fields for a wide range of parameters. 

4. RESULTS AND DISCUSSION      

     The non-dimensional heat and mass transfer coefficients 

(Nux and Shx)) is plotted against power-law index (n) for 

different values of thermal and solutal stratification 

parameters in Figs.2-5 with N = 1,  Le = 1.  It is observed 
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from Fig.2 that the increasing the power -law index (n), 

increases the Nusselt number (Nux), but increasing the value 

of thermal stratification parameter (ε1),  Nusselt number is 
decreased.  It is noted from Fig.3 that the increasing the 

power-law index (n), increases the Sherwood number (Shx), 

but increasing the value of thermal stratification parameter 

decreases Shx. It is noted from Fig.4 that the Nusselt 

number (Nux) is increased with increasing the power -law 

index (n), but increasing the value of solutal stratification 

parameter (ε2) decreases Nux.  Fig.5 demonstrates that 
increasing the power-law index (n), increases the Sherwood 

number (Shx), but increasing the value of solutal 

stratification  parameter Sherwood number is decreased. 

 

Figure-6 illustrates the variation of heat transfer 

coefficient (Nusselt number,  Nux) with Lewis number (Le) 

for different values of power-law index (n) and N =1, 

ε1=0.5 and ε2=0.5. It is observed from the figure that 

increasing Lewis number decreases the Nusselt number, but 

increasing the values of power law index increases Nusselt 

number (Nux). 

 

      Fig.7 depict the variation of mass transfer coefficient 

(Sherwood number, Shx) with Lewis number (Le) for 

different values of power -law index (n) and N = 1,  ε1=0.5 

and ε2=0.5. It is observed from the figure that increasing 
Lewis number increases the Sherwood number. Also, 

increasing the power -law index increases Shx. 

 

5. CONCLUSIONS 

 

     In this paper, mixed convection heat and mass transfer 

along a vertical plate embedded in a power-law fluid 

saturated Darcy porous medium in presence thermal and 

solutal stratification has been considered. The wall is 

maintained at variable temperature and concentration 

)( xTw
and )( xC w

respectively. It can be concluded from 

the present analysis that the increasing the of thermal  

stratification  parameter decreases the Nusselt  number and  

Sherwood number. The same trend is observed in case of 

solutal stratification parameter increases the Nusselt and 

Sherwood numbers decreases.  An increase in the values of 

the power-law index parameter Nusselt and Sherwood 

numbers increased.  Also, the higher value of Lewis number 

Nusselt number decreases, but Sherwood number increases. 

It is also observed that as Lewis number increases, that is, 

the thermal boundary layer thickness increases and the 

concentration boundary layer thickness decreases rapidly. 

The Lewis number has a more pronounced effect on the 

concentration field than on the temperature field. 

 

 
Figure 2. Variation of non-dimensional heat transfer 

coefficient with n for varying ε1 for N=1, Le =1, ε2=0.5. 
 

 

 
Figure 3. Variation of non-dimensional mass transfer 

coefficient with n for varying ε1 for N =1, Le =1, ε2=0.5. 

 
Figure 4. Variation of non-dimensional heat transfer 

coefficient with n for varying ε2 for N =1, Le =0.5, ε1=0.5. 
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Figure 5. Variation of non-dimensional mass transfer 

coefficient with n for varying ε2 for N =1, Le =1, ε1=0.5. 

 

 

 
 

Figure 6. Variation of non-dimensional heat transfer 

coefficient with Le for varying n for N=1, ε1=0.5 and 

ε2=0.5. 

 
Figure 7. Variation of non-dimensional mass transfer 

coefficient with Le for varying n for N=1, ε1=0.5 and 

ε2=0.5 
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 Nomenclature 

 

A dimensional constant.  (-) 

B   dimensional constant. (-) 
G Slope of ambient temperature.(-) 
H Slope of ambient concentration.(-) 
C Concentration. ( 3−

kmolm ) 
Cw Wall concentration. ( 3−kmolm ) 

C∞,0 Ambient concentration. ( 3−kmolm ) 
Dm Mass diffusivity. ( 12 −

sm ) 
N Buoyancy ratio. (-) 
g  Gravitational acceleration. ( 2−ms ) 

K Darcy Permeability. (m
n+!

) 

 kT   Thermal diffusion ratio. (-) 

Le Lewis number. (-) 

xNu  Local Nusselt number. (-) 

n Power-law index. (-) 

xSh  Local Sherwood number. (-) 

k Thermal conductivity. (-) 

Kp Permeability of porous medium. 

Nux Local Nusselt number. (-) 

T Temperature. (K) 

Tm Mean temperature. (K) 

Tw Wall temperature. (K) 

T∞ Ambient temperature. (K) 

u,v Velocity components in x and y 

directions. ( 1−
ms ) 

 
 

 

 

Greek Letters 

αm Thermal diffusivity. ( 12 −sm ) 

βT, βC  Coefficients of thermal and solutal 

expansion. ( 1−
K ) 

η Similarity variable. (m) 

θ  Dimensionless temperature. (-) 

φ  Dimensionless concentration. (-) 

µ  Dynamic viscosity. ( 11 −− skgm ) 

υ Kinematic viscosity. ( 12 −sm ) 

ρ  Density of the fluid. ( 3−kgm ) 

ψ Stream function. (-) 

1
ε

 
Thermal stratification parameter.(-) 

2
ε  solutal stratification parameter.(-) 

Subscripts 
w Wall condition 

∞ Ambient condition 

C Concentration 

T Temperature 

Superscript 
/
       Differentiation with respect to η 
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