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ABSTRACT 
The problem of an oscillatory three dimensional flow past an infinite vertical porous plate with Soret and Dufour 

effects is presented. Analytical solutions to the coupled non-linear equations governing the flow and heat and 

mass transfer are solved by regular perturbation technique. The expression for the velocity field, temperature 

field, species concentration, the Skin-friction, Nusselt number and Sherwood number at the plate are obtained in 

non-dimensional forms. The velocity distribution, temperature, chemical species concentration, Coefficient of 

Skin-friction, Nusselt number and Sherwood number at the plate are demonstrated graphically and the effects of 

different parameters viz. the Suction Reynolds number, the Grashof numbers, the Soret number and the Dufour 

number on these fields are discussed 

 

 
1. INTRODUCTION 

 
       In the last few years, it has been observed that the 

investigation of the problems of laminar flow control has 

gathered a considerable importance in the fields of 

aeronautical engineering in view of its application to reduce 

drag and hence the vehicle power requirement by a 

substantial amount. Theoretical and experimental research 

reports have cited that the transition from laminar to the 

turbulent flow which causes the drag coefficient to increase 

may be prevented by suction of the fluid and the heat 

transfer from boundary layer to the wall. The development 

on this subject had been initiated by Lachmann in 1961[1]. 

       Model studies on the problems of convection flows 

arising in fluids as a result of interaction of the force of 

gravity and density differences caused by simultaneous 

diffusion of thermal energy and chemical species have been 

carried out by many authors due to their applications in 

many branches of science and technology.  Some of these 

are by Raptis and Kafousias[2] , Bejan and Khair [3] and 

Ahmed et al.[4]. 

       Extensive work has been done on the effect of the three 

dimensional flow caused by the periodic suction 

perpendicular to the main flow when the difference between 

the wall temperature and free stream temperature gives rise 

to buoyancy force in the direction of free stream on heat 

transfer characteristics. In this regard, we may present the 

work done by Choudhary and Chand [5], Ahmed and Sarma 

[6] and Singh et al. [7]. The effect of transverse sinusoidal 

injection velocity distribution on three dimensional free 

convective Couette flow of a viscous incompressible fluid 

in slip flow regime under the influence of heat source was 

investigated by Jain and Gupta [8]. An analytical solution to 

the problem of the three-dimensional free convective flow 

of an incompressible viscous fluid past a porous vertical 

plate with transverse sinusoidal suction velocity taking in to 

account the presence of species concentration was obtained 

by Ahmed et al. [9].  

       It will be worthwhile to mention that, several authors 

have carried out their research works to investigate the 

effects of thermal diffusion on some mass transfer related 

problems. Some of them are Sattar and Alam [10], Singh et 

al. [11], Raju et al. [12], Ahmed and Sarmah [13] and 

recently by Ahmed and Goswami [14]. However in the 

above mentioned works, the Dufour effect was not taken in 

to account. The Dufour effect is the energy flux due to a 

mass concentration gradient. In view of the importance of 

the Dufour effect, a number of workers have carried out 

their research works, to investigate the Dufour effect on 

some mass transfer related flow problems. A few of them 

are Mortimer and Eyring [15], Alam et al. [16], Alam and 

Rahman [17], Ferdows et al [18], Motsa [19], Reddy and 

Rao [20], Shekar and Madhu [21] etc. The problem of 

Constructal design of cavities inserted into a cylindrical 

solid body was investigated by Lorenzini et al. [22].Very 

recently Biserni et al.[23] have  studied the Geometric 

optimization of a convective T-shaped cavity on the basis of 

constructal theory. 

       As the present authors are aware till now, no attempt 

has been made to study analytically the Soret and Dufour 

effects simultaneously on an oscillatory three dimensional 

flow past an infinite vertical plate. Such an attempt has been 

made in the present work. 

 

2. BASIC EQUATIONS 

 
     We now consider the unsteady, free and forced 

convection flow of an incompressible viscous fluid taking 

into account the species concentration, Dufour effect and 

Soret effect past a vertical porous plate with transverse 

sinusoidal suction velocity as mentioned earlier by making 

the following assumptions: 
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(1) All fluid properties except density in the 

buoyancy force term are constant. 

(2) The viscous dissipative energy is negligible. 

(3)  
wT T∞〉   and 

wC C∞〉 .      

      We introduce a co-ordinate system ( , , )x y z   with X-

axis vertically upwards along the plate, Y-axis perpendicular 

to it directed into the fluid region and Z-axis along the width 

of the plate. Let ˆˆ ˆq iu jv kw= + +
r

 be the fluid velocity at the 

point ( , , )x y z . 

       The suction velocity distribution is taken as follows: 

            0( ) 1 cosw

i tz
v z V e

L

ωπ
ε = − +  

                        (2.1)    

which consists of a basic steady distribution 
0-V  (

0 0V > ) 

with a superimposed weak distribution cos0

i ω tπz
εV e

L

 −  
 

, 

where L  is the wave length of the periodic suction and ε  is 

a small amplitude of suction velocity. Since the plate is 

infinite in length in X-direction, therefore all the quantities 

except possibly the pressure are assumed to be independent 

of x . 

       With these assumptions and under usual boundary layer 

approximations, the equations governing the flow become 

Equation of continuity: 

0
v w

y z

∂ ∂
+ =

∂ ∂
     (2.2) 

Momentum equations: 

( ) ( )
u u u

v w g T T g C C
t y z

β β∞ ∞

∂ ∂ ∂
+ + = − + −

∂ ∂ ∂
  

                                                       
2 2

2 2

u u

y z
υ
 ∂ ∂

+ + 
∂ ∂ 

 (2.3) 

2 2

2 2

1v v v p v v
v w

t y z y y z
υ

ρ
 ∂ ∂ ∂ ∂ ∂ ∂

+ + = − + + 
∂ ∂ ∂ ∂ ∂ ∂ 

  (2.4) 

2 2

2 2

1w w w p w w
v w

t y z z y z
υ

ρ
 ∂ ∂ ∂ ∂ ∂ ∂

+ + = − + + 
∂ ∂ ∂ ∂ ∂ ∂ 

 (2.5) 

Energy equation:  
2 2

2 2

p

T T T k T T
v w

t y z C y zρ
 ∂ ∂ ∂ ∂ ∂

+ + = + 
∂ ∂ ∂ ∂ ∂ 

 

                                     
2 2

2 2

M T

S p

D K C C

C C y z

 ∂ ∂
+ + 

∂ ∂ 
 (2.6)      

Species concentration equation: 
2 2

2 2M

C C C C C
v w D

t y z y z

 ∂ ∂ ∂ ∂ ∂
+ + = + 

∂ ∂ ∂ ∂ ∂ 
     

                                           
2 2

2 2

M T

M

D K T T

T y z

 ∂ ∂
+ + 

∂ ∂ 
 (2.7)      

 The relevant boundary conditions are:  

At 0y = :   0u = ,
wv v= , 0w = ,

wT T= , 
wC C=  (2.8) 

At y →∞ : u U= ,
0v V= − , 0w = ,T T∞= ,C C∞= ,  

                                                                   p p∞=  (2.9) 

We introduce the following non-dimensional quantities: 

,
y

y
L

= ,
z

z
L

=
0

,
u

u
V

=
0

,
v

v
V

=
0

,
w

w
V

=
0

,
U

U
V

=

,
W

T T

T T
θ ∞

∞

−
=

−
,

µ
υ

ρ
= 0 ,

V t
t

L
= ,

W

C C

C C
φ ∞

∞

−
=

−
,

pC
P r

k

µ
=  

,
M

Sc
D

υ
=

( )
,

( )

M T W

M W

D K T T
Sr

T C Cυ
∞

∞

−
=

− 2

0

( )
,WL g T T

Gr
V

β ∞−
=  

2

0

( )
,WLg C C

Gm
V

β ∞−
= 0 ,

V L
Re

υ
=

2
,

p
p

L

υ
ρ

=
 
 
 

2
,

p
p

L

υ
ρ

∞
∞ =

 
 
 

0

,
L

V

ω
ω =

( )

( )

M T W

S p W

D K C C
Du

C C T T υ
∞

∞

−
=

−
 

       The non-dimensional form of the equations (2.2), (2.3), 

(2.4), (2.5), (2.6) and (2.7) are   

0
v w

y z

∂ ∂
+ =

∂ ∂
     (2.10) 

2 2 2

2 2 2

1u u u u u u
v w Gr Gm

t y z Rey y z
θ φ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + + + 

∂ ∂ ∂ ∂ ∂ ∂ 
 (2.11) 

2 2

2 2 2

1 1v v v p v v
v w

t y z y ReRe y z

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + 

∂ ∂ ∂ ∂ ∂ ∂ 
 (2.12) 

2 2

2 2 2

1 1w w w p w w
v w

t y z z R eRe y z

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + 

∂ ∂ ∂ ∂ ∂ ∂ 
 (2.13) 

2 2 2 2

2 2 2 2

1 Du
v w

t y z P r Re Rey z y z

θ θ θ θ θ φ φ   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (2.14) 

2 2 2 2

2 2 2 2

1 Sr
v w

t y z ScRe R ey z y z

φ φ φ φ φ θ θ   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (2.15) 

with relevant boundary conditions: 

( )0 : 0, 1 cos , 0, 1, 1i ty u v ze wωε π θ φ= = = − + = = =  (2.16) 

: , 1, 0, 0, 0,y u U v w p pθ φ ∞→∞ = = − = = = =  (2.17)
 

 
 
3. METHOD OF SOLUTION  

 

             We assume the solutions of the equations (2.10) to 

(2.15) to be of the following forms 
iωt 2

0 1u u (y) εu (y,z) e 0(ε )= + +     (3.1) 

iωt 2

0 1v v (y) εv (y,z) e 0(ε )= + +    (3.2) 

iωt 2

0 1w w (y) εw (y,z) e 0(ε )= + +    (3.3) 

iωt 2

0 1p p (y) εp (y,z) e 0(ε )= + +    (3.4) 

iωt 2

0 1θ θ (y) εθ (y,z) e 0(ε )= + +    (3.5) 

iωt 2

0 1(y) ε (y,z) e 0(ε )φ φ φ= + +    (3.6) 

with  0 0, 0p p w∞= =  

Substituting these in equations (2.10) to (2.15) and by 

equating the coefficients of the similar terms and 

neglecting
2ε , the following differential equations are 

obtained. 

Zeroth-order equations:  

00
dv

dy
=       (3.7) 

2

0 0

0 0 0 2

du d u1
v Grθ Gm
dy Re dy

φ= + +    (3.8) 
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2 2

0 0 0

0 2 2

dθ d θ d1 Du
v
dy PrRe Redy dy

φ
= +    (3.9) 

2 2

0 0 0

0 2 2

d d d θ1 Sr
v
dy ScRe Redy dy

φ φ
= +    (3.10) 

First-order equations:  

  1 1 0
v w

y z

∂ ∂
+ =

∂ ∂
      (3.11)             

2 2

1 1

2 2

10 1

1 1 1

duu u u
v Grθ Gm

y dy Re y z
φ

 ∂ ∂ ∂
− + = + + + 
∂ ∂ ∂ 

 

                                                        
1iωu−   (3.12) 

2 2

1 1 1 1

2 2 12

v p v v1 1
iωv

y y ReRe y z

 ∂ ∂ ∂ ∂
− = − + + − 
∂ ∂ ∂ ∂ 

 (3.13) 

2 2

1 1 1 1

2 2

1
12

w p w w1
iωw

y z ReRe y z

 ∂ ∂ ∂ ∂
− = − + + − 
∂ ∂ ∂ ∂ 

 (3.14) 

2 2 2 2

1 1 1 1 1

2 2 2 2

0

1

dθθ θ θ1 Du
v

y dy P rRe Rey z y z

φ φ   ∂ ∂ ∂ ∂ ∂
− + = + + +   
∂ ∂ ∂ ∂ ∂   

 

                                                            
1iωθ−   (3.15) 

2 2 2 2

1 1 1 1 1

2 2 2 2

0

1

d 1 Sr
v

y dy ScRe R ey z y z

φφ φ φ θ θ   ∂ ∂ ∂ ∂ ∂
− + = + + +   
∂ ∂ ∂ ∂ ∂   

 

                                                            
1iωφ−   (3.16) 

with the boundary conditions:  

0y =  : 
0 0u = , 01u = , 10v = − , cos1v πz= − , 00w = ,      

            01w = ,
0 1θ = ,

1 0θ = , 10φ = ,
1 0φ =   (3.17) 

y→∞ : 
0u U= , 01u = , 

0 1v = − , 01v = , 00w = , 01w = ,    

             00θ = , 01θ = , 00φ = , 0φ = , 01p =  (3.18)      

The solutions of the equations (3.7) to (3.10) under the 

boundary conditions (3.17) and (3.18) 

( ) 10v y = −  

1 2

3 4( )
A y A y

0 y A e A eφ − −= +  

1 2

8 9( )
A y A y

0 y A e A eθ − −= +  

1 2

13 14
eR y A y A y

0 15u ( y ) U A e A e A e
− − −= + + +  

The constants involved in the solutions are obtained but not 

presented here for the sake of brevity. 

  

4. CROSS FLOW SOLUTION  

 

       We shall first consider the equations (3.11), (3.13) and 

(3.14) for
1v ( y,z ) , 1w ( y,z )  and 

1p ( y,z )  which are 

independent of the main flow component
1u , temperature 

field 
1θ  and concentration field

1φ . 

     The suction velocity distribution 1w

iωt
v ( ε cos πze )= − +  

consists of a basic uniform distribution -1 with 

superimposed weak sinusoidal distribution cos iωtε πze . 

Hence the velocity components v , w  and p  are also 

separated into mean and small sinusoidal components
1v , 

1w  and
1p . 

We assume   
1v , 

1w  and 
1p  as 

1 cos11v π v (y) πz= −  

( )sin'

1 11w v y πz=  

1 cos2

11p Re p (y) πz=  

       On substitution of the above, the equation (3.11) is 

satisfied and the equations (3.13) and (3.14) reduce to the 

following ordinary differential equations: 

2

11 11 11 11

/ / / /Re
v Rev ( i R e )v pπ ω

π
+ − + = −  

2

11 11 11 11

/ / / / / /v R ev ( i R e )v R epπ ω π+ − + = −  

The corresponding boundary conditions are  

0y = : 
11

1
v

π
= ,  /

11 0v =  

y→∞ : 011v = , /

11 0v =           

The solutions of these equations are                 

 1616

11

16

1

( )

A yyA
v e e

A

π

π π
−−− 

= + −  
 

 1616

11 17 18

16( )

A yyA
p A e A e

Re A

π

π π
−−−  = + −

 

where 

( )2 2

16 17

4
, ,

2

Re Re i R e
A A Re i R e

π ω
π ω

+ + +
= = − −  

2 2

18 16 16A ReA A i Reπ ω= − + +  

Hence the solutions for the velocity components 
1v ,

1w  and 

pressure 
1p  are as follows 

16
1 16

16

1
cos

( )

A yyv A e e z
A

π π π
π

−− = − −
 

1616

1

16

sin
( )

A yyA
w e e z

A

π π
π

−− = − −
 

1616

1 17 18

16( )

e A yyR A
p A e A e coz z

A

π π
π π

−− = − + −
 

 

5. Solution for first order flow, Concentration and 

temperature field 

 

       We now consider the equations (3.12), (3.15) and 

(3.16). The solutions for velocity components u, 

temperature field  θ  and concentration field φ  are also 

separated into mean and sinusoidal components 
1u , 

1θ  and 

1φ .To reduce the partial differential equations (3.12), 

(3.15)and (3.16) into ordinary differential equations, we 

consider the following  assumptions for  
1u , 

1θ  and 
1φ . 

1 cos11u u (y) πz=      (5.1) 

1 11( ) cosy zθ θ π=     (5.2) 

1 cos11(y) πzφ φ=      (5.3) 

        Substituting the above expressions in equations (3.12), 

(3.15) and (3.16), the following ordinary differential 

equations are derived. 
/ / / 2 /

11 11 11 11 0( )u Reu i R e u Rev uπ ω π+ − + = −  

                                            
11 11GrRe GmReθ φ− −  (5.4) 

/ / / 2 /

11 11 11 11 0( )P rRe i P rR e P rRevθ θ π ω θ π θ+ − + = −  

                                            / / 2

11 11( )P rDu φ π φ− −  (5.5) 
/ / / 2 /

11 11 11 11 0( )ScRe i ScRe ScRevφ φ π ω φ π φ+ − + = −  

                                              / / 2

11 11( )SrSc θ π θ− −  (5.6) 

with boundary conditions:  

0y = :      011u = , 011θ = ,   011φ =   (5.7) 

y→∞ :   011u = , 
11 0θ = ,  011φ =    (5.8) 
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The solutions of the equations (5.4), (5.5) and (5.6) subject 

to the boundary conditions (5.7) and (5.8) are as follows: 
3 1 164 2

31 29 49 50 1
1y (A +A )yλ y (π+A )y (π+A )y

11
θ B e B e A e A e B e

λ− −− − −= + + + +  

                                                           2 1 6

2

(A + A )y
B e

−+  (5.9) 

3 4 1

3 0 3 1 1 0 2 9 1 1 1 2

λ y y ( π + A ) yy

1 1 B e B B e B B e B eλπφ − − −−= + + +  

                 1 1 6 2 1 62

1 3 1 4 1 5

(A + A )y (A + A )y( + A )y
B e B e B e

π − −−+ + +  (5.10) 

 
5 1 2

54 45 46 47 48
16y (Re+A )y (π+A )y (π+A )y(π+Re)y

11
u B e B e B e B e B eλ− − − −−= + + + +  

1 1 6 2 1 6 3 4

4 9 5 0 5 1 5 2

( A + A ) y (A + A ) y y y
B e B e B e B e

λ λ− − − −+ + + +  

                                                            
5 3

y
B e

π−+  (5.11) 

The constants involved in the solutions are obtained but not 

presented here for the sake of brevity. 

Now we have, 

cos0 11

iωtu u (y) ε e u (y) πz = + r i= u i u+ , 

110

iωtθ θ (y) ε e ( y )cos z θ π= + r i= iθ θ+ , 

cos0 11

iωt(y) ε e (y) πz φ φ φ= + r i= iφ φ+ , 

where r r ru , ,θ φ , i i iu , ,θ φ  have been obtained but not 

shown here for brevity’s sake.  

 

 6. Coefficient of skin-friction at the plate 

 

       The non-dimensional coefficient of skin-friction τ  at 
the plate in the direction of the free stream is given by: 

     
0y

2

0

u
µ
y

τ
ρV

=

∂
∂ 

= −  

       

0y

1 u

Re y
=

 ∂
= −  ∂ 

 

       
' ' iωt

0 11

1
u (0) εu (0)cos πz e

Re
 = − +   

       r iiτ τ= +                  

                            

7. The co-efficient of heat flux 
 

      The heat flux at the plate at 0y =  in terms of Nusselt 

number Nu  is given by: 

        
0y

W

T
L

y
Nu

(T T )

=

∞

 ∂
 ∂ 

=
−

 

               

0y
y

θ

=

 ∂
=  ∂ 

   

               ' ' iωt

0 11θ (0) εθ (0)cosπz e = +   

               r iNu i Nu= +  

 

8. The co-efficient of mass flux 

 

       
0y

w

C
L

y
Sh

(C C )

=

∞

 ∂
 ∂ 

=
−

  

            

0y
y

φ

=

 ∂
=  ∂ 

 

            
' ' iωt

11(0) ε (0)cos πz eφ φ = +    

         r iSh i Sh= +    

   The expressions for r i,τ τ , r iNu , Nu , r iSh , Sh  have been 

obtained but not presented here for the sake of brevity. 

 

9. Discussion of the results 

 

       In order to study the effects of  Dufour number Du , 

suction Reynolds number Re , Soret number Sr , Schmidt 

number Sc , Grashof number for mass transfer Gm  , 

Grashof number for heat transfer Gr  and free stream 

velocity U  ,we have carried out the  numerical calculations  

for ru , rθ , rφ , rτ , rNu  and rSh  which are respectively the 

real parts of the non dimensional velocity, temperature, 

chemical species concentration, skin friction, Nusselt 

number and Sherwood number at the plate surface and their 

profiles are demonstrated in graphs. In our investigation the 

value of the Prandtl number Pr is taken to be equal to 0.71 

which corresponds to air. Since the water vapor is used as a 

diffusing chemical species of common interest in air 

therefore the value of Sc  is taken to be 0.60 (water vapor). 

Through out our investigation, ω  and t are chosen in such a 

way that 
π

ωt
2

=  and   the frequency of oscillation ε  is 

considered as 0.001 and the remaining parameters namely 

Dufour number Du , suction Reynolds number Re , Soret 

number Sr , Schmidt number Sc , Grashof number Gm  , 

Grashof number Gr  and free stream velocity U  are chosen 

arbitrarily. 

        Figures 1, 4, 7, 8, 9 and 10 demonstrate the behaviors 

of the real part of fluid velocity u namely ru . Figures 1, 7, 

8 and 9 respectively indicate an increase in ru as each 

of Du ,Gm ,Gr and U rises. On the other hand, it is 

observed from figures 1, 4 and 10 that a rise in Sr or Sc or 

Re  results in a fall in ru . Clearly, the Dufour effect, the 

increasing buoyancy effect and the increasing free stream 

accelerate the main flow. Further the Soret effect, 

decreasing chemical molecular mass diffusivity and 

increasing suction retard the flow field ru . It is worthwhile 

to mention that the product of Soret and Dufour numbers is 

taken to be constant for given values of 
MD , 

TK , 
SC , 

PC , 

υ  and 
MT . We fix this product as Sr .Du=1 . 

       It is inferred from figures 2 and 3 that the Soret effect 

reduces the temperature field rθ  as well as the 

concentration field rφ . However each of the 

temperature rθ and species concentration rφ  registers a rise 

under Dufour effect. 

      The figures 5,6,11 and 12 indicate that a rise in Schmidt 

number Sc  and suction Reynolds number Re  leads to a fall 

in both rθ  and rφ . It is seen both rθ  and rφ  exhibit reverse 

trend at large distances from the plate’s surface. 

        It is observed from figures 13, 16, 17 and 18 that the 

magnitude of the skin friction rτ  at the plate  registers a fall 

with an increase in each of Sc ,Gm ,Gr  and U . Thus a 

decrease in chemical molecular mass diffusivity or increase 

in free stream velocity or rise in buoyancy effects (owing to 

temperature and species concentration differences ) causes a 

fall in | rτ |. 
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        It is noticed from figure 19 that the magnitude of the 

skin friction rτ  at the plate (i.e. | rτ |) increases under 

Dufour effect and decreases under Soret effect. 

        As observed from 14 and 15, a rise in Sc  (decrease in 

chemical molecular mass diffusivity) raises both | rNu |and 

| rSh | (the magnitudes of the Nusselt number rNu  and the 

Sherwood number rSh respectively).  

       Figures 20 and 21 exhibit a fall in both | rNu |and | rSh | 

under Dufour effect where as the Soret effect leads to a rise 

in each of | rNu |and | rSh |. 
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Figure 1: Velocity ru  against y, for variations of 

Dufour and Soret numbers when 0 22Sc .= , 

0 71Pr .= , 0 5Re .= , 0 001.ε = , 10Gr = , 5Gm = , 

0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 

 

Figure 2: Temperature rθ  against y, for variations of 

Dufour and Soret numbers Du  and Sr  respectively, 

when 0 22Sc .= , 0 71Pr .= , 0 5Re .= , 0 001.ε = , 

10Gr = , 5Gm = , 0 5.ω = , 1t = , 0 5U .=  and 

0 25z .= . 

 

Figure 3: Concentration rφ  against y, for variations of 

Dufour and Soret numbers Du  and Sr  respectively, 

when 0 22Sc .= , 0 71Pr .= , 0 5Re .= , 0 001.ε = , 

10Gr = , 5Gm = , 0 5.ω = , 1t = , 0 5U .=  and 

0 25z .= . 

Figure 4: Velocity ru  against y, for variation of 

Schmidt number Sc  when 0 5Du .= , 2Sr = , 

0 71Pr .= , 0 5Re .= , 0 001.ε = , 10Gr = , 5Gm = , 

0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 

 

Figure 5: Temperature rθ  against y, for variation of 

Schmidt number Sc  when 0 5Du .= , 2Sr = , 

0 71Pr .= , 0 5Re .= , 0 001.ε = , 10Gr = , 5Gm = , 

0 5.ω = , 1t = , 0 5U .=  and 0 25z .= .  
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Figure 6: Concentration rφ  against y, for variation of 

Schmidt number Sc  when 0 5Du .= , 2Sr = , 

0 71Pr .= , 0 5Re .= , 0 001.ε = , 10Gr = , 5Gm = , 

0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 

 

Figure 7: Velocity ru  against y, for variation of 

Grashof number Gm  when 0 5Du .= , 2Sr = , 

0 71Pr .= , 0 5Re .= , 0 001.ε = , 10Gr = , 

0 22Sc .= , 0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 

 

Figure 8: Velocity ru  against y, for variation of 

Grashof number Gr  when 0 5Du .= , 2Sr = , 

0 71Pr .= , 0 5Re .= , 0 001.ε = , 5Gm = , 

0 22Sc .= , 0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 

 

Figure 9: Velocity ru  against y, for variation of U  

when 0 5Du .= , 2Sr = , 0 71Pr .= , 0 5Re .= , 

0 001.ε = , 5Gm = , 0 22Sc .= , 0 5.ω = , 1t = , 

10Gr =  and 0 25z .= . 

 

Figure 10: Velocity ru  against y, for variation of 

suction Reynolds number Re  when 0 5Du .= , 

2Sr = , 0 71Pr .= , 0 5U .= , 0 001.ε = , 5Gm = , 

0 22Sc .= , 0 5.ω = , 1t = , 10Gr =  and 0 25z .= . 

 

Figure 11: Temperature rθ  against y, for variation of 

suction Reynolds number Re  when 0 5Du .= , 

2Sr = , 0 71Pr .= , 0 22Sc .= , 0 001.ε = , 10Gr = , 

5Gm = , 0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 
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Figure 12: Concentration rφ  against y, for variation 

of suction Reynolds number Re  when 0 5Du .= , 

2Sr = , 0 71Pr .= , 0 22Sc .= , 0 001.ε = , 10Gr = , 

5Gm = , 0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 

Figure 13: Skin friction rτ  against Reynolds number 

Re , for variation of Schmidt number Sc  when 

0 5Du .= , 2Sr = , 0 71Pr .= , 0 001.ε = , 10Gr = , 

5Gm = , 0 5.ω = , 1t = , 0 5U .=  and 0 25z .= . 

 

Figure 14: Nusselt number rNu  against Reynolds 

number Re , for variation of Schmidt number Sc  

when 0 5Du .= , 2Sr = , 0 71Pr .= , 0 001.ε = , 

10Gr = , 5Gm = , 0 5.ω = , 1t = , 0 5U .=  and 

0 25z .= . 

 

Figure 15: Sherwood number rSh  against Reynolds 

number Re , for variation of Schmidt number Sc  

when 0 5Du .= , 2Sr = , 0 71Pr .= , 0 001.ε = , 10Gr =
, 5Gm = , 0 5.ω = , 1t = , 0 5U .= and 0 25z .= . 

Figure 16: Skin friction rτ  against Reynolds number 

Re , for variation of Grashof number Gm  when 

0 5Du .= , 2Sr = , 0 71Pr .= , 0 001.ε = , 10Gr = , 

0 5.ω = , 1t = , 0 5U .= , 0 22Sc .=  and 0 25z .= . 

Figure 17: Skin friction rτ  against Reynolds number 

Re , for variation of Grashof number Gr  when 

0 5Du .= , 2Sr = , 0 71Pr .= , 0 001.ε = , 5Gm = , 

0 5.ω = , 1t = , 0 5U .= , 0 22Sc .=  and 0 25z .= . 
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10. CONCLUSIONS 

 

       Based on our flow model, our investigation may be 

summarized to the following conclusions: 

(i) A decrease in chemical molecular mass diffusivity, 

Grashof numbers for heat and mass transfer (buoyancy 

effects) and free stream velocity reduces the magnitude of 

the skin friction rτ  at the plate. 

(ii) A decrease in chemical molecular mass diffusivity 

causes the magnitudes of the Nusselt number rNu  and 

Sherwood number rSh  at the plate to rise. 

(iii) An increase in Dufour effect or a decrease in Soret 

effect leads to a rise in the magnitude of the skin friction rτ  

at the plate.  

 (iv) The magnitudes of the Nusselt number rNu  and the 

Sherwood number rSh at the plate, register a fall with a rise 

in Dufour effect or a fall in Soret effect. 

 (v) The thermal and the species concentration boundary 

layers are analogous to one another. Further, the profiles for 

the Nusselt number rNu  and the Sherwood number rSh  

are very similar to one another indicating the fact that the 

heat and the mass transfer processes are analogous to one 

another. 

(vi)  The suction is useful in controlling the rates of heat and 

mass transfer at the plate and in minimizing the skin friction 

at the plate surface.  

 
 

11. NOMENCLATURE 
 

Symbol     Quantity                                         SI unit 

 

C           Species concentration                       
3

Kmol

m
   

PC        Spefic heat at  

              constant pressure                             /J kg K×  

SC         Concentration susceptibility            ( )2 2Kmol s  

Figure 18: Skin friction rτ  against Reynolds number 

Re , for variation of U  when 0 5Du .= , 2Sr = , 

0 71Pr .= , 0 001.ε = , 5Gm = , 10Gr = , 0 5.ω = , 

1t = , 0 22Sc .=  and 0 25z .= . 

 

Figure 19: Skin friction rτ  against Reynolds number 

Re , for variations of Dufour and Soret numbers Du  

and Sr  respectively, when 0 71Pr .= , 0 001.ε = , 

5Gm = , 10Gr = , 0 5.ω = , 1t = , 0 22Sc .= , 

0 5U .=  and 0 25z .= . 

 

Figure 20: Nusselt number rNu  against Reynolds 

number Re , for variations of Dufour and Soret 

numbers Du  and Sr  respectively, when 0 71Pr .= , 

0 001.ε = , 5Gm = , 10Gr = , 0 5.ω = , 1t = , 

0 22Sc .= , 0 5U .=  and 0 25z .= . 

 

Figure 21: Sherwood number rSh  against Reynolds 

number Re , for variations of Dufour and Soret 

numbers Du  and Sr  respectively, when 0 71Pr .= , 

0 001.ε = , 5Gm = , 10Gr = , 0 5.ω = , 1t = , 

0 22Sc .= , 0 5U .=  and 0 25z .= . 

 

16

http://www.neevia.com


C∞         Species concentration in the 

              free stream                                                 
3

Kmol

m
 

MD        Co-efficient of chemical  

              molecular mass diffusivity                         2 1m s−  

TD         Co-efficient of chemical  

              thermal diffusivity                                   
Kmol

mK s
 

Du        Dufour number     - 

Gr         Grashof number for heat transfer  - 

Gm        Grashof number for mass transfer  - 

g           Acceleration due                                        

               to gravity                                                   m/s
2
 

TK         Thermal Diffusion ratio                            Kmol  

k            Thermal conductivity                                  
W

mK
 

Pr         Prandtl number    - 

p           Pressure                                              Pa  (Pascal) 

p           Non dimensional  pressure   - 

p∞         Non dimensional  pressure   - 

              in the free stream 

Re         Suction Reynolds number   - 

Sc         Schmidt number    - 

Sr         Soret number    - 

T          Temperature in the boundary layer          0K or C      

MT         Mean fluid temperature                           0K or C  

T∞         Temperature in the free stream                0K or C  

t           Time                                                       s (second)                                         

 t           Non dimensional time   -     

U          Free stream velocity                                   m/s 

U          Non dimensional free stream velocity  - 

                     

( )u,v,w      Components of the   

                   fluid velocity                                          m/s 

( )u,v,w       Non dimensional  

                   components of the  fluid velocity- 

r iu , u         The real and imaginary 

                   parts of u 

 Nu            Nusselt number at the plate  - 

r iNu , Nu   The real and imaginary    

                   parts of Nu    - 

Sh              Sherwood number  

                   at the plate    - 

r iSh , Sh     The real and imaginary 

                   parts of Sh .    - 

      

Greek            Quantity                                             SI unit    

Symboles      

 

 

β               Coefficient volume expansion                  1K    

                   for heat transfer 

β               Co-efficient of volume  

                   expansion for mass transfer                  
1

Kmol
 

υ                Kinematic viscosity                               2 /m s   

ρ               Fluid density                                          3/kg m     

θ                Non dimensional temperature              0
K or C  

r i,θ θ         The real and imaginary parts ofθ  - 

φ                Non dimensional chemical  

                   species concentration   - 

r i,φ φ         The real and imaginary parts ofφ  - 

ω               Frequency parameter                                
zH      

ε                 Amplitude of the suction velocity          1ms−        

τ                Coefficient of skin friction at the plate - 

r i,τ τ          The real and imaginary parts of τ  - 
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