Ti-doped Lithium Iron Phosphate (LiFePO₄) Cathode Materials: Synthesis and Electrochemical Evaluation Keqiang Ding^{1,*}, Wenjuan Li¹, Hongwei Yang¹, Suying Wei² and Zhanhu Guo^{3,†} ¹College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P.R. China ²Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA ³Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA Received: November 28, 2011, Accepted: January 09, 2012, Available online: January 25, 2012 **Abstract:** The Ti doped LiFePO₄ samples, i.e., LiFe_{1-x}Ti_xPO₄(X=0.01, 0.03 and 0.05), were prepared by a modified solid state method. The obtained samples were thoroughly characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). XRD patterns indicated that an olivine-type LiFePO₄ was fabricated, and SEM images revealed that the particle size of LiFe_{0.99}Ti_{0.01}PO₄ was the smallest among the obtained samples. The charge-discharge curves showed that LiFe_{0.99}Ti_{0.01}PO₄ delivered the discharge capacity of 153.5 mAh/g at 0.2 C, the largest one among the as-prepared samples, which is rather different from the published report that LiFe_{0.97}Ti_{0.03}PO₄ manifested the most promising cycling performance among the samples of LiFe_{1-x}Ti_xPO₄(X=0.01, 0.03, 0.05, 0.07 and 0.09). Keywords: Ti-doping; carbon-coating; LiFePO₄; electrochemical performance. # 1. INTRODUCTION Olivine-type LiFePO₄ has been widely investigated as a cathode material especially since its first publication by Goodenough and its coworkers in 1997[1]. LiFePO₄ has many advantages, including low environmental impact, low cost, and high thermal/chemical stability, when compared to the conventional cathode materials such as LiCoO₂, LiNiO₂ and LiMn₂O₄[2]. However, poor electrical conductivity and weak rate capability have greatly limited its application, especially in the fields of electric vehicles (EV) and hybrid electric vehicles (HEV) [2]. Thus, many methods have been developed to solve the above problems [3]. Generally, there are two typical methods to improve the properties of LiFePO₄. The first one is to use carbon-coating or carbon-doping method to enhance the conductivity of the cathode materials. For example, Gu et al.[4] reported the synthesis of LiFePO₄-multiwalled carbon nanotubes (MWCNTs) composites prepared by a hydrothermal method, where carbon nanotubes were employed as the carbon sources. Peng et al.[5] published his work on the preparation of sisted simple rheological phase method. The second is to use metal-element doping, i.e., using a substitutional metal doping for Fe to improve the bulk electronic conductivity. For instance, Jang et al.[6] probed the Cr-doped LiFePO₄ and pointed out that the chromium doping can facilitate the phase transformation between triphylite and heterosite during cycling, due to the fact that the doped Cr can replace Fe and/or Li sites in LiFePO₄. Wang et al.[7] investigated the Ni-doped LiFePO₄ and found that the doped Ni²⁺ not only maintained the phospho-olivine structure of LiFePO₄, but also enhanced the electronic conductivity of LiFePO₄ greatly, in which the reason to cause these phenomena was not presented. Many metal elements such as Cu [8] and Mn[9] were also doped into LiFePO₄, with an intention to enhance the electrochemical performance of LiFePO₄. LiFePO₄/carbon composites fabricated by a soluble starch sol as- Ti has been doped into LiFePO₄ by many different methods. For example, Wu et al.[10] reported the preparation and characterizations of the ${\rm Ti}^{4+}$ -doped LiFe_{1-x}Ti_xPO₄, in which ${\rm Ti}^{4+}$ was doped in the form of TiO₂ and LiFe_{1-x}Ti_xPO₄ was synthesized via a solution route followed by a heat-treatment at 700 °C for 8 hours under N₂ flowing condition. The prepared LiFe_{0.97}Ti_{0.03}PO₄ powders were found to demonstrate the most promising cycling performance. While, Okada et al.[11] reported that Ti doping was not effective to improve the rate capability of LiMnPO₄. Wu et al.[12] pointed out that the TiO₂-coating imposes a deteriorating effect on the cycle performance of the LiFePO₄/carbon composites, though the TiO₂ coating reduces the capacity fading of the LiFePO₄/Li cells. Thus, the discrepancy on the influence of Ti doping on the electrochemical performance of LiFePO₄ intrigued us to probe the Ti doping further. In the present study, a modified solid-state reaction without inert gas protection was introduced to prepare LiFePO₄ doped with different Ti levels in a carbon-coated crucible. LiFe_{1-x}Ti_xPO₄ with three different Ti doping levels were synthesized (X=0.01, 0.03 and 0.05). The effects of Ti doping on the particles were investigated. The electrochemical performance of the cells comprised of the obtained samples at room temperature was well measured by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The possible mechanism of preparing the Ti-doped LiFePO₄ was also proposed based on the results from FT-IR spectra and TG-DSC measurement. ### 2. EXPERIMENTAL ### 2.1. Materials All the used materials, including α -Fe₂O₃, LiOH·H₂O, NH₄H₂PO₄, TiO₂, glucose and oxalic acid, were all purchased from Tianjin Chemical Reagent Co. Ltd. All materials used in the electrochemical measurement, such as acetylene black, polytetrafluoroethylene (PTFE) binder, electrolyte of 1 M LiClO₄ and the cell were all supported by the Tianjin Lianghuo S&T Developing Co. Ltd. All the chemicals are used as-received without any further treatment. # 2.2. Preparation of LiFe_{1-x}Ti_xPO₄ Briefly, based on the molecular formula of $LiFe_{1-x}Ti_xPO_4$ (x = 0.01, 0.03, 0.05), stoichiometric amount of α-Fe₂O₃, LiOH·H₂O, TiO₂ and NH₄H₂PO₄ were mixed thoroughly with 9 wt% glucose and 30 wt% oxalic acid, which was dissolved in distilled water to form a brown-red suspension solution. The solution was then dried at 150 °C for about 13 hours until fluffy powders were obtained. After cooling down to room temperature, the resultant powders were thoroughly ground in a mortar and placed in a crucible. And then the crucible was covered by carbon powder (~10.0 g), leading to a carbon-coated crucible, denoted as a carbon-coating method. The carbon-coated crucible was transferred into an electric furnace with temperature controlled at 700 °C for 3 hours without nitrogen gas flow. As a result, samples of LiFe_{0.99}Ti_{0.01} PO₄, LiFe_{0.97}Ti_{0.03}PO₄ and Li Fe_{0.95}Ti_{0.05}PO₄ were prepared. For comparison, pure LiFePO4 was also prepared by following the above procedures in the absence of TiO2. It should be mentioned that the simplicity and the lower cost are the main advantages of this developed carbon-coating method, when compared to the traditional method using the inert gas as the protection gas. #### 2.3. Characterization X-ray diffraction (Bruker AXS, D8 ADVANCE, Germany) was used to examine the phase homogeneity. The particle morphology was observed by scanning electron microscopy (HITACHI, SEM S-570) and transmission electron microscopy (HITACHI, TEM H- Figure 1. XRD patterns of the as-prepared LiFePO₄ samples. (a) LiFe_{0.99}Ti_{0. 01}PO₄, (b)LiFe_{0.99}Ti_{0. 03}PO₄ and (c)LiFe_{0.95}Ti_{0. 05}PO₄. The circled diffraction peaks are used for comparison. 7650). Fourier transform infrared spectrometry (FT-IR) measurements are carried out on a Hitachi FT-IR-8900 spectrometer (Japan). The thermal behavior of the precursor was characterized with a thermogravimetric anylyzer (TGA7, Perkin-Elmer, USA) and a differential scanning calorimetry (DSC7, Perkin-Elmer, USA) under nitrogen flow. The sample was heated from ambient to 800 °C at the rate of 10 °C min⁻¹. The cathodes used for the electrochemical characterization were fabricated by blending the prepared active material powders with acetylene black and polytetrafluoroethylene (PTFE) binder in a weight ratio of 85:10:5. Two-electrode electrochemical cells consisting of lithium metal foil as the negative electrode, Celgard 2400 separator, and an electrolyte of 1 M LiClO₄ in ethylene carbonate (EC):diethyl carbonate (DEC):dimethyl carbonate (DMC) (2:5:11, vol.) were assembled in a nitrogen-filled glove box. The electrochemical cycle tests were performed using a LAND series battery testing system (Wuhan Kinguo Electronics Co., Ltd. China) at various rates (1 C=170 mAh/g) between 2.7 and 4.2 V at room temperature. ## 3. RESULTS AND DISCUSSION # 3.1. Characterization of the as-prepared LiFe₁. $_xTi_xPO_4$ Fig. 1 shows the XRD patterns of the prepared samples. The XRD patterns of all the obtained samples are consistent with the Table 1. Crystal parameters of as-prepared LiFePO₄ | samples | Lattice parameters | | | Crystal Cell Volume | |--------------------------------|--------------------|-------|-------|---------------------| | | a/ Å | b/ Å | c/ Å | V/ (ų) | | LiFePO ₄ /C | 10.319 | 6.001 | 4.693 | 290.61 | | $LiFe_{0.99}Ti_{0.01}PO_4\!/C$ | 10.322 | 5.997 | 4.702 | 291.06 | | $LiFe_{0.97}Ti_{0.03}PO_4\!/C$ | 10.321 | 6.003 | 4.693 | 290.76 | | $LiFe_{0.95}Ti_{0.05}PO_4\!/C$ | 10.317 | 6.005 | 4.692 | 290.68 | Figure 2. SEM microstructures of the as-prepared (a) LiFePO₄, (b) LiFe_{0.99}Ti_{0.01}PO₄, (c) LiFe_{0.97}Ti_{0.03}PO₄ and (d) LiFe_{0.95}Ti_{0.05}PO₄. The circled particles in image **d** are thought as TiO₂ particles standard XRD patterns of LiFePO₄ very well, indicating that the olivine phase of LiFePO4 is prepared by this carbon-coating method [13]. Based on space group Pnma, the lattice parameters obtained from Rietveld refinement are shown Table 1[14]. For pure LiFePO₄, the lattice parameters are: a=10.319 Å, b=6.001 Å, c=4.693 Å and V=290.61 Å³, while for LiFe_{0.99}Ti_{0.01}PO₄: a=10.322 Å, b=5.997 Å, c=4.702 Å and V=291.06 Å³. These estimated lattice parameters are very close to the reported data of LiFePO₄ [15]. For example, the lattice parameters for pure LiFePO₄ are reported [16] to be: a=10.2923 Å, b=6.0085 Å, c=4.7126 Å and V=291.4332 Å³. The values of a, c and V for the $LiFe_{0.99}Ti_{0.01}PO_4$ sample are the largest among all the prepared powders, Table 1, indicating the doped one had the widest Li⁺ ion pathway[17]. Also, the lattice parameter b of LiFe_{0.99}Ti_{0.01}PO₄ is the smallest one among these samples. The decrease of the lattice parameter b is proposed to shorten the diffusion distance of Li ions and enhance the Li⁺ intercalation/de-intercalation process[18]. Meanwhile, the intensity of the XRD patterns of the LiFe_{0.99}Ti_{0.01}PO₄ powders, the circled part in Figure 1, became slightly stronger when compared to that of pure LiFePO₄, which indicates an increased crystallinity [19]. Figure 2 shows the SEM microstructures of the as-prepared samples. Pure LiFePO₄ is observed to be irregular and layered particles, Figure 2(a). While for LiFe_{0.99}Ti_{0.01}PO₄, more regular and ball-shaped particles are observed, Figure 2(b). With the increase of Ti content, more irregular particles were displayed, Figure 2(c&d). Interestingly, for the LiFe_{0.95}Ti_{0.05}PO₄, as shown by the circled particles, some small particles were clearly observed. The morphology of LiFe_{0.99}Ti_{0.01}PO₄ is almost identical to that of the reported LiFePO₄ [20], in which LiFePO₄ was prepared by a one-step microwave method using CH₃COOLi2H₂O and FeSO₄ as the starting materials. Obviously, the particle size of LiFe_{0.99}Ti_{0.01}PO₄ is the smallest one among the obtained samples. As reported by Gaberscek et al., [21] the smaller size favors the intercalation/de-intercalation process of the Li ions and the discharge capacity drops more or less linearly with increasing the particle size. Thus, Figure 3. TEM images of the as-prepared samples. Image (a) LiFePO₄, (b) LiFe_{0.99}Ti_{0.01}PO₄, (c) LiFe_{0.99}Ti_{0.03}PO₄and (d) Li Fe_{0.95}Ti_{0.05}PO₄. The marked nano-web structures by green arrows correspond to carbon, and the circled particles in image d are TiO₂ particles $LiFe_{0.99}Ti_{0.01}PO_4$ implies its promising electrochemical performance. Figure 3 shows the TEM microstructures of the obtained samples. The particle size of the LiFePO₄ is in the range from 120 to 310 nm; while the LiFe_{0.99}Ti_{0.01}PO₄ particles are in the range from 110 to 350 nm, which is consistent with the SEM observations, Figure 2. For LiFe_{0.97}Ti_{0.03}PO₄ and LiFe_{0.95}Ti_{0.05}PO₄, the particles sizes are from 100 to 290 nm and from 120 to 240 nm, respectively. Some small particles are also observed in LiFe_{0.95}Ti_{0.05}PO₄. Wu et al.[10] pointed out that TiO₂ could be observed with TEM in the Ti⁴⁺-doped LiFePO₄ prepared with doping level higher than 5 mol%. Also, the nano-web structures in the light grey region around the particles, marked with arrows in Figure 3, correspond to carbon [22], which favors an enhanced electrical conductivity of LiFePO₄[23]. # **3.2.** Electrochemical performance of the asprepared samples Figure 4 shows the typical charge-discharge curves of the cell at 0.2 C rate using the as-prepared samples as the cathodes. The cells were cycled at 0.2 C rate between 2.7 and 4.2 V vs. Li/Li⁺, two voltage plateaus at around 3.46 V in the charging cycle and at about 3.38 V in the discharging cycle, corresponding to the lithium deintercalation and intercalation[24], are clearly displayed. And the initial discharge capacity for LiFePO₄, LiFe_{0.99}Ti_{0.01}PO₄, Li Fe_{0.97}Ti_{0.03}PO₄ and Li Fe_{0.95}Ti_{0.05}PO₄ at 0.2 C are 131.6, 153.5, 139.3 and 102.3 mAh/g, respectively. The content of Ti is observed Figure 4. The charge and discharge curves of as-prepared samples of (a) LiFePO₄;.(b) Fe $_{0.99}$ Ti $_{0.01}$ PO₄; (c) LiFe $_{0.99}$ Ti $_{0.03}$ PO₄; and (d) Li Fe $_{0.95}$ Ti $_{0.05}$ PO₄ at 0.2 C. Figure 5. Cycling performance of the cells assembled by obtained samples at 1 C. Lines a, b, c and d are for LiFePO₄, $\text{LiFe}_{0.99}\text{Ti}_{0.01}\text{PO}_4$, $\text{LiFe}_{0.97}\text{Ti}_{0.03}\text{PO}_4$ and $\text{LiFe}_{0.95}\text{Ti}_{0.05}\text{PO}_4$, respectively. to have a dramatic effect on the discharge capacity value. The LiFe $_{0.99}$ Ti $_{0.01}$ PO $_4$ delivered the largest discharge capacity among asprepared samples. The discharge capacity value of LiFe $_{0.99}$ Ti $_{0.1}$ PO $_4$ is comparative to the value of 157 mAh/g at 0.2 C as reported by Huang et al.[24] While, Wu et al. reported[10] that LiFe $_{0.97}$ Ti $_{0.03}$ PO $_4$ showed the largest initial discharge capacity of 135 mAh/g at 30 °C and 0.1 C rate among the as-prepared samples. The discrepancy is attributed to the different preparation and measuring conditions. Figure 5 shows the specific discharge capacity of the as-prepared samples as a function of the cycle number at 1 C at room temperature. The discharge capacity for the second cycle corresponding to LiFePO₄, LiFe_{0.99}Ti_{0.01}PO₄, LiFe_{0.97}Ti_{0.03}PO₄ and LiFe_{0.95}Ti_{0.05}PO₄ at 1 C is 101.3, 128.3, 111.6 and 79.6 mAh/g, respectively, while after 30 cycles, the discharge capacities are Figure 6. . Cyclic voltammograms (CVs) of the cells assembled by the as-prepared samples. Black, red and blue curves correspond to the cell assembled by pure LiFePO₄, LiFe_{0.99}Ti_{0.01}PO₄ and LiFe_{0.97}Ti_{0.03}PO₄, respectively. Scan rate: 0.5 mV/s. 108.9, 126.7, 118.7 and 86.1 mAh/g, respectively. It can be concluded that a satisfactory cycle performance is well displayed by all samples. Figure 6 shows the cyclic voltammograms (CVs) of the cells assembled by the as-prepared samples. Well-defined redox peaks corresponding to the intercalation/de-intercalation of the lithium ions were observed in all the cells, indicating that Li ions can intercalate/deintercate in/from the as-prepared LiFePO4 freely. For pure LiFePO₄, the oxidation and reduction peaks appear at around 3.719 and 3.206 V, respectively. For LiFe_{0.99}Ti_{0.01}PO₄ and Li Fe_{0.97}Ti_{0.03}PO₄, the oxidation and reduction peaks appear at around 3.638 and 3.282 V, 3.640 and 3.215 V, respectively. The peak potential difference ΔE_p ($\Delta E_p = E_{pa} - E_{pc}$, E_{pa} is the anode peak potential, and E_{pc} is the cathode peak potential) for LiFePO₄, LiFe_{0.99}Ti_{0.01}PO₄ and LiFe_{0.97}Ti_{0.03}PO₄ are 513, 356 and 423 mV, respectively. A smaller peak potential difference ΔE_p normally indicates a more reversible process [25,26]. Therefore, the reversibility for the intercalation/deintercalation process of the lithium ions in LiFe_{0.99}Ti_{0.01}PO₄ is superior to that occurring in LiFePO₄ and LiFe_{0.97}Ti_{0.03}PO₄. More interestingly, the oxidation peak current and the reduction peak current displayed by LiFe_{0.99}Ti_{0.01}PO₄ are both higher than those displayed by LiFePO4 and Li Fe_{0.97}Ti_{0.03}PO₄. Gu et al.[4] reported that the CVs of Li-LiFePO₄, in which LiFePO4 is a composite containing LiFePO4 and multiwalled carbon nanotubes (MWCNTs). At a scan rate of 0.1 mV/s, the oxidation and reduction peaks are reported to appear at around 3.64 and 3.2 V, respectively, and the potential interval between the oxidation and reduction peaks was 440 mV, which is comparable to the potential interval of 356 and 423 mV for LiFe_{0.99}Ti_{0.01}PO₄ and Li Fe_{0.97}Ti_{0.03}PO₄ at the scan rate of 0.5 mV/s. Electrochemical impedance spectroscopy (EIS) is one of the most powerful tools to analyze the electrochemical reactions, such as those processes occurring at the electrode/electrolyte interfaces and the lithium ion intercalation/deintercalation occurring in anode/cathode[27, 28]. To discuss the role of doping Ti in LiFePO₄, Figure 7. The relationship plot between Z and $\omega^{-1/2}$ at low-frequency region. The inset is the Nyquist plots obtained for (a) LiFePO₄ and (b) LiFe_{0.09}Ti_{0.01}PO₄. Figure 8. FTIR spectra for as-prepared samples, Curve a, b, c and d correspond to LiFePO₄, LiFe_{0.99}Ti_{0.01}PO₄, LiFe_{0.97}Ti_{0.03}PO₄ and LiFe_{0.95}Ti_{0.05}PO₄, respectively. The circled absorption band in line **d** corresponds to the absorption peak of TiO₂. Nyquist plots of LiFePO₄ and LiFe_{0.99}Ti_{0.01}PO₄ were shown in the inset of Figure 7. Generally, a semicircle in the medium frequency region is related to the charge transfer process and an inclined line in the low frequency region represents the Warburg impedance, which is associated with the lithium-ion diffusion in LiFePO₄[4]. The charge transfer resistances (R_{ct}) for LiFePO₄ and LiFe_{0.99}Ti_{0.01}PO₄ from inset of Figure 7 are calculated to be around 51 and 27 Ω , respectively. This indicates that the intercalation/deintercalation process of the lithium ions in LiFe_{0.99}Ti_{0.01}PO₄ is easier than that occurring in pure LiFePO₄, which is consistent with the results obtained from CVs, Figure 6. Recently Liu et al.[29] reported the R_{ct} of about 300 Ω for pure LiFePO₄ and 190 Ω for the ZrO₂-coated LiFePO₄ composites, which are larger than the value of R_{ct} observed here. The lithium-ion diffusion coefficient (D) can be calculated from Equation (1)[30]. $$D = R^2 T^2 / 2A^2 n^4 F^4 c^2 \sigma^2 \tag{1}$$ where R is the gas constant, T is the absolute temperature, A is the surface area of the cathode, n is the number of electrons per molecule during oxidization, F is the Faraday constant, C is the concentration of the lithium ions $(7.69 \times 10^{-3} \text{ mol/cm}^3)$ [4], and σ is the Warburg factor which is associated with Z. Figure 7 shows the relationship plot between Z' and reciprocal square root of the angular frequency (ω) at low-frequency region. The lithium-ion diffusion coefficients for LiFePO₄ and LiFe_{0.99}Ti_{0.01}PO₄ are calculated to be 6.87×10^{-13} and 1.92×10^{-12} cm²/s, respectively, which are higher than the reported value of 1.5×10⁻¹⁴ cm²/s for the LiFePO₄-MWCNTs composites[4], The D value for LiFe_{0.99}Ti_{0.01}PO₄ is larger than that of LiFePO₄, which is supported by the Nyquist plot, inset of Figure 7. This observation is attributed to the smaller particle size of LiFe_{0.99}Ti_{0.01}PO₄ relative to pure LiFePO₄ as evidenced by SEM observation, Figure 2, favoring the intercalation/deintercalation process of the Li ions in the cathode materials[21]. To discuss the influence of Ti doping on the obtained samples, FT-IR spectra for all the samples were recorded, Figure 8. The absorption bands centered at 636, 968, 1053, 1094 and 1138 cm⁻¹ correspond to the symmetric and asymmetric modes of PO₄³⁻ groups [31]. In the lower wavenumber region, the absorption peaks at 469, 501, 549 and 577 cm⁻¹ are attributed to the symmetric and asymmetric bending modes of P–O bonds[30]. In addition, the absence of banks at 762 and 1180 cm⁻¹ suggests that the sample is free of LiFeP₂O₇[32]. In the sample with the molar ratio of Fe to Ti Figure 9. TG-DSC curves of the used precursors for the preparation of sample (a) pure LiFePO₄, (b) LiFe_{0.99}Ti_{0.01}PO₄, (c) LiFe_{0.97}Ti_{0.03}PO₄ and (d) LiFe_{0.95}Ti_{0.05}PO₄. 95:5, a new absorption peak was observed at around 750 cm⁻¹, line **d** of Figure 8, corresponding to TiO_2 , as observed in the naked rutile $TiO_2[33]$. TG-DSC was used to probe the formation mechanism of the asprepared samples. TG curves of all the precursors used for the samples comprised three regions, Figure 9. The first region, 150-200 °C, is related to the dehydration of hydrates[34], the second region (230–300 °C) corresponds to the anaerobic thermal decomposition of the starting materials including glucose, oxalic acid and NH₄H₂PO₄, and the third region (470-560 °C) is attributed to the complete decomposition of the residual starting materials. No differences are observed in the TG curves of the three precursors, suggesting that the Ti doping does not affect the thermal behaviors of the precursors. While in the DSC curves, obvious differences are observed. The observed endothermic peak at 250 °C, Figure 9, corresponds to the generation of LiFePO4, consistent with the LiFe_{1-x}Nd_xPO₄ compounds synthesized with CH₃COOLi·2H₂O, FeC₂O₄·2H₂O and NH₄H₂PO₄ as the starting materials [34]. The exothermic peak at around 470 °C in the DSC curve here corresponds to the carbothermal reduction, consistent with the result in the LiFePO₄/C composites with FePO₄·4H₂O and LiOH·H₂O as the starting materials and asphalt powders as carbon source [35]. Interestingly, for the LiFe_{0.95}Ti_{0.05}PO₄, the exothermal peak at 470 °C disappeared, instead, two weak new exothermal peaks at around 500 and 580 °C are observed, respectively, suggesting that a new phase transformation took place. To the best of our knowledge, this is the first time to report the TG-DSC curves of the precursors for preparing Ti-doped LiFePO₄, though the Ti-doped has been probed by several research groups [10]. TG-DSC curves presented demonstrated that the doped Ti can alter the formation mechanism of $LiFe_{1-x}Ti_xPO_4$ especially when the molar ratio of Fe to Ti is equal to 5%. #### 4. CONCLUSION The olivine-structure LiFePO₄ cathode materials with different Ti doping levels were prepared by a modified solid state reaction method in the absence of inert gas protection. The particle size of the as-prepared samples was observed to be greatly affected by the doped Ti as revealed by SEM and TEM observations. The LiFe_{0.99}Ti_{0.01}PO₄ is observed to be the smallest among the obtained samples. The CV and charge-discharge investigations indicates that LiFe_{0.99}Ti_{0.01}PO₄ possess the largest initial discharge capacity among the obtained samples, which is rather different from previously published results. FT-IR spectra and TG-DSC reveal the mole ratio of Fe to Ti played an important role in the formation mechanism and the final products. #### 5. ACKNOWLEDGMENTS This work was financially supported by the National Natural Science Foundation of China (No. 21173066), Natural Science Foundation of Hebei Province of China (No.B2011205014), Key Project Fund of Hebei Normal University (L2008Z08) and Special Assist Project of Hebei Province Personnel Bureau (106115). Z.G. acknowledges the support from the U.S. National Science Foundation (Nanoscale Interdisciplinary Research Team and Materials Processing and Manufacturing) under Grant CMMI 10-30755. ### REFERENCES - A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997). - [2] D. Jugovic', D. Uskokovic', J. Power Sources, 190, 538 (2009). - [3] C. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, J. Am. Chem. Soc., 133(7), 2132 (2011). - [4] B. Jin, E. M. Jin, K.-H. Park, H.-B. Gu, Electrochem. Commun., 10, 1537 (2008). - [5] Y. Huang, H. Ren, S. Yin, Y. Wang, Z. Peng, Y. Zhou, J. Power Sources, 195, 610 (2010). - [6] H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim, B.W. Cho, Electrochim. Acta, 53, 7946 (2008). - [7] Y. Ge, X. Yan, J. Liu, X. Zhang, J. Wang, X. He, R. Wang, H. Xie, Electrochim. Acta, 55, 5886 (2010). - [8] J. Morales, J. Santos-Pena, E. Rodríguez-Castellón, S. Franger, Electrochim. Acta, 53, 920 (2007). - [9] T. Nedoseykina, M.G. Kim, S.-A. Park, H.-S. Kim, S.-B. Kim, J. Cho, Y. Lee, Electrochim. Acta, 55, 8876 (2010). - [10]S.-H. Wu, M.-S. Chen, C.-J. Chien, Y.-P. Fu, J. Power Sources, 189, 440 (2009). - [11]T. Shiratsuchi, S. Okada, T. Doi, J. Yamaki, Electrochim. Acta, 54, 3145 (2009). - [12]H.-H. Chang, C.-C. Chang, C.-Y. Su, H.-C. Wu, M.-H. Yang, N.-L. Wu, J. Power Sources, 185, 466 (2008). - [13]B. Wang, Y. Qiu, L. Yang, Electrochem. Commun., 8, 1801 (2006). - [14]Y. Huang, H. Ren, Z. Peng, Y. Zhou, Electrochim. Acta, 55, 311 (2009). - [15]J. Ni, M. Morishita, Y. Kawabe, M. Watada, N. Takeichi, T. Sakai, J. Power Sources, 195, 2877 (2010). - [16]X. Yin, K. Huang, S. Liu, H. Wang, H. Wang, J. Power Sources, 195, 4308 (2010). - [17]C.Y. Ouyang, D.Y. Wang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, Chin. Phys. Lett., 23, 61 (2006). - [18]L.Q. Sun, R.H. Cui, A.F. Jalbout, M.J. Li, X.M. Pan, R.S. Wang, H.M. Xie, J. Power Sources, 189, 522 (2009). - [19]M.-R. Yang, T.-H. Teng, S.-H. Wu, J. Power Sources, 159, 307 (2006). - [20]Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, M. Liu, Electrochim. Acta, 54, 3206 (2009). - [21]M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun., 9, 2778 (2007). - [22]K.-F. Hsu, S.-Y. Tsay, B.-J. Hwang, J. Mater. Chem., 14, 2690 (2004). - [23]C.H.Mi, X.G. Zhang, X.B. Zhao, H.L. Li, Mater. Sci. Eng., B, Solid-State Mater. Adv. Technol., 129, 8 (2006). - [24]Y. Huang, H. Ren, S. Yin, Y. Wang, Z. Peng, Y. Zhou, J. Power Sources, 195, 610 (2010). - [25]K. Ding, Z. Jia, Q. Wang, X.He, N. Tian, R. Tong, X. Wang, J. Electroanal. Chem. 513, 67 (2001). - [26]K. Ding, Russ, J. Electrochem., 45, 320 (2009). - [27]F. Nobili, S. Dsoke, F. Croce, R. Marassi, Electrochim. Acta, 50, 2307 (2005). - [28]K. Ding, G. Yang, S. Wei, P. Mavinakuli, Z. Guo. Ind. Eng. Chem. Res., 49, 11415 (2010). - [29]H. Liu, G.X. Wang, D. Wexler, J.Z. Wang, H.K. Liu, Electrochem. Commun., 10, 165 (2008). - [30]A.J. Bard, L.R. Faulkner, Electrochemical Methods, second ed., Wiley, 2001, p. 231. - [31]A.A. Salah, P. Jozwiak, J. Garbarczyk, K. Benkhouja, K. Zaghib, F. Gendron, C.M Julien, J. Power Sources, 140, 370 (2005). - [32]K. Zaghib, N. Ravet, M. Gauthier, F. Gendron, A. Mauger, J.B. Goodenough, C.M. Julien, J. Power Sources, 163, 560 (2006). - [33]Y. Zhang, H. Yin, A. Wang, M. Ren, Z. Gu, Y. Liu, Y. Shen, L. Yu, T. Jiang, Appl. Sur. Sci., 257, 1351 (2010). - [34]X. Zhao, X. Tang, L. Zhang, M. Zhao, J. Zhai, Electrochim. Acta, 55, 5899 (2010). - [35] W. Zhang, X. Zhou, X. Tao, H. Huang, Y. Gan, C. Wang, Electrochim. Acta, 55, 2592 (2010).