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 Ave River Basin, located in the northern region of Portugal, was once tagged as one of the 

most polluted of Europe. Although many authors have given prominence to point source 

pressures, the present study reveals challenging results, by exposing strong effects of 

landscape metrics in water quality. In twelve sampling sites, the Portuguese benthic 

macroinvertebrate index (IPtIN) was measured during the winter and summer of 2017. For 

each site, it was delineated drainage sections, ranging from 100 meters to the entire drainage 

area. For each section, it was calculated landscape metrics for generic land-use types, and it 

was also calculated the Spearman’s rank correlation coefficient, between each metric in each 

scale with IPtIN. The preliminary analysis of results led to understand during the winter edge 

length and number of patches of artificial surfaces revealed a negative impact. Variables such 

as connectance of agricultural land use patches only revealed a negative influence during 

summer, in a short-range spatial extent. The contrast between agricultural land uses with 

forested and with artificial areas was the metric with a notable effect, since maximum 

correlations were achieved for the contrast between forested and agriculture, and minimum 

in the contrast between agriculture with artificial areas. 
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1. INTRODUCTION 

 

With the demographic expansion and intense economic 

development, multiple threats to water quality arisen. The 

availability of freshwater resources is one of the global 

concerning subjects, not only in terms of quantity but also the 

quality is a crucial aspect. To relieve heavy demands and 

mitigate/prevent pollution effects, many experts have been 

continuously conducting studies identifying the most alarming 

contaminants [1], diversity of pollution sources [2], and 

treatment technologies [3]. The complex interplay among 

causes and effects involving natural and anthropogenic 

phenomena and intrinsic connection between Earth 

compartments makes the study of water quality quite 

challenging, due to many interactions such as surface and 

ground waters [4], self-depuration [5] and the cascade of 

effects hypothesized as River Continuum Concept [6]. The 

continuous world changes such as arisen of new threats [7] and 

climate changes [8], plead for continuous and systematic water 

quality research in an environmental scope, to support 

sustainable management [9]. 

Among many threats to water quality, point source 

pressures are the most evident. Wastewater Treatment Plants 

(WWTP) are designed to decrease contaminant loads but still 

when WWTP are not under proper functioning [10] surface 

waters are directly affected, reaching unsustainable pollutant 

concentrations. Discharges from urban wastewater treatment 

stations contain high organic loads, comparatively to the 

majority of industrial wastewater treatment stations [11]. The 

composition of effluents from industrial activities is highly 

variable due to the diversity of industries, which can contain 

heavy metals from mining [12] or metallurgic [13] or even 

high organic loads can be released from food production 

industries [14, 15]. Diffuse pressures are pollution sources that 

occupy considerable areas and transfer contaminants to 

surface and groundwaters through mechanisms such as rainfall, 

runoff or soil infiltrations [16]. Vast agricultural areas and 

livestock production fields [17, 18] are threatening diffuse 

pollution sources, especially were no runoff control 

mechanisms exist, such as riparian vegetation [19]. Thus land 

use is strongly connected to water quality since in artificial 

surfaces occurs urban runoff [20], agricultural areas can 

contaminate freshwater resources with a high diversity of 

contaminants resultant from fertilizers and pesticides [18]. 

Besides forestry areas promote freshwater resources [21] even 

forestry areas managed for wood production areas can disturb 

freshwaters due to high fertilizer applications [22]. Not only 

the presence of specific land uses but also configuration and 

shape affect water quality [23]. For such reasons, many 

authors resorted to landscape metrics to explain water quality 

degradation. In a generic point of view, authors noted that 

metrics associated to artificial surfaces and agricultural land 

uses are strongly connected to water degradation, while 

forested land uses have negative correlations with contaminant 

concentrations [24, 25]. However, when many studies are 

compared some results can be considered as inconsistent. 

Many factors can contribute to such differences, such as study 

design, topography [26], season [27] and one of the most 

important aspects is the spatial extent [28], which can vary 

from close range buffers to entire drainage areas. Some 
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authors defend that the usage of entire watersheds is the most 

suitable [29] while others assume that local phenomena can be 

dominant, accessed by close distance buffers [24]. For such 

reasons, is highly recommended to explore more than a single 

spatial extent, since the effect of a metric in the contamination 

of specific pollutants can be traced in a short scale [30] and for 

others in a long scale [31]. 

In the present study, the effects of landscape metrics on the 

ecological status of Ave River basin were studied, resorting to 

different spatial extents. This region, located in the northwest 

of Portugal, was chosen due to the vast water contamination 

background. During the second half of the 20th century, it was 

tagged as one of the most polluted River Basins in Europe due 

to the high loads of effluent discharges, predominantly from 

industrial activities. Pioneer studies focused on the heavy 

metal contamination in surface water, sediments and aquatic 

fauna [13, 32] and such causes were directly attributed to 

industrial discharges without treatment. Due to such 

problematic, the Portuguese government committed to an 

ambitious plan to remediate this river basin, leading to an 

improvement of water quality that can be noted by the 

decreased concentration of heavy metals  [33]. Still, other 

problems persisted in the river basin, such as diffuse 

discharges [34] from agricultural [35] and livestock practices 

as threats to water quality [36]. 

 

 

2. METHODOLOGY 
 

The present study aims to demonstrate how the distribution 

and shape of land use patches affect ecological integrity as 

well as the variation of these relationships with the adopted 

scale. The first step to fulfil this task was to measure the IPtIN 

(North Invertebrate Portuguese Index) in 12 points in Ave 

River Basin, Figure 1 (A), numbered from 101 to 112, Figure 

1 (B), during the winter and summer of 2017. This index was 

chosen because the calculation is based on the quantity and 

diversity of benthic macroinvertebrates, which are sensitive to 

different types of pollution. For such reason, this index was 

used as an evaluator of water quality, for more information on 

measurement processes, please see the paper [31]. For each 

sampling site, it was delineated the upstream drainage area, 

using ArcMap [37] and ArcHYDRO [38] tools, Figure 1 (B). 

In order to trace the variations for each different scale, it was 

intersected each drainage area, with buffers surrounding each 

sampling site, delineating different drainage sections for each 

sampling site, varying from 100 meters to 56 km, in Figure 1 

(C) the sections are shown for sampling site 108. For the 

calculation of landscape metrics, it was used the Portuguese 

Land Cover map of 2015 (COS 2015) as input for the Python 

toolbox [39]. It was calculated a total of 17 metrics (Table 1) 

for generic land uses: artificial surfaces, forested and semi-

natural areas, and agricultural areas. 

The effect of each landscape metric in water quality was 

accessed through the Spearman’s rank correlation coefficient 

[40]. It was chosen to use this coefficient since it is a 

nonparametric approach to determine the associated 

monotonic relationship two variables. Besides Pearson 

correlation is widely used to measure the linear correlation 

between two variables [41], it was not used the Pearson 

correlation since it requires certain assumptions such as 

normal distribution an absence of outliers [42], that can be 

found in the analysed variables. It was interpreted a total of 

1508 correlations, between the landscape metrics calculated 

for different scales, with the IPtIN values collected in summer 

and winter. 

 

 
 

Figure 1. Study area representation; (A) Portugal; (B) Ave River Basin; (C) Drainage area of sampling site 108 and traced 

drainage sections 
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Table 1. Calculated Landscape metrics [39] 

    

Metric Defenition Description 

Class Area ca area of the patches of the corresponding class within the statistical zone 

Number of Patches  npc number of patches for each corresponding classwithin the statistical zone 

Zone Area zone_area area of the statistical zone in which landscape metrics are calculated  

Percentage of Zone pz percentage of the area of the corresponding class per statistical zone  

Largest Patch index 
lpi percentage of statistical zone total area taken by the largest patch 

lpi_class name of the largest patch class 

Total Class Edge tc_edge length of edges of all patches in selected classes within the statistical zone 

Edge Density ed edge density 

Shannon Diversity shdi Shannon diversity index (SHDI) per zone. 

Edge Lenght 
el_a_class edge length of the focus class 

el edge length of focus class boundary shared with contrast class/es 

Contrast Class Edge cce percentage of edge length of the focus class shared with contrast classes. 

Connectance Index  

ci_np number of connected patches 

ci_pa patch area within range of connection 

ci_pp percentage of patch area within range of connection to statistical zone area 

ci_ca area of the connection zone between patches 

ci_cp percentage of connection zone between patches to statistical zone area 

 

 

3. RESULTS AND DISCUSSION 
 

The IPtIN measurements in summer and winter in Ave River 

basin are presented in Table 2. This index varies from 0 

(indicating poor water quality) to 1.05 (indicating excellent 

water quality). Values ranged from 0.113 to 1.05 in winter and 

0.275 to 1.017 in summer. The selected sampling sites were 

suitable for this study since it is caught the entire spectrum of 

IPtIN classifications, only the “good” status was not found in 

the sampling sites measurements (Table 2). 

 

Table 2. IPtIN measurements in the twelve sampling sites and 

respective classification 

 
Site Winter 2017 Summer 2017 

101 0.42 Poor 0.98 Excellent 

102 0.63 Moderate 0.4 Poor 

103 0.39 Poor 0.36 Poor 

104 0.11 Poor 0.5 Moderate 

105 1.05 Excellent 1.02 Excellent 

106 0.31 Poor 0.51 Moderate 

107 1.05 Excellent 0.94 Excellent 

108 0.49 Moderate 0.58 Moderate 

109 0.14 Poor 0.35 Poor 

110 0.52 Moderate 0.31 Poor 

111 0.43 Moderate 0.4 Poor 

112 0.22 Poor 0.28 Poor 

 

Spearman correlations were calculated for all the landscape 

variables in different distances paired with the IPtIN 

measurements. The critical values of Spearman’s Rank 

Correlation Coefficient (rs) for two-tailed probabilities of 0.05 

and 0.005 are 0.587 and 0.776, respectively [43]. The first 

value was chosen as a threshold of significance since the 

probability of 0.05 is commonly accepted to reject the null 

hypothesis (h0: there is no effect between variables). In Figure 

2 (A) and (B), are shown the scatter plots between the IPtIN in 

winter with the SHDI in a distance of 100 meters and 56 km, 

respectively, while in Figure 2 (C) and (D) are shown the same 

scatter for IPtIN measurements in summer. In Figure 2 (E) is 

shown the correlation variations between IPtIN and SHDI for 

distances 13 different scales. For the distances of 100, 250, 500, 

1000, 2000, 3000, 4000, 5000, 7000, 10,000, 15,000, 20,000, 

and 56,000 meters, the log10 values are 2, 2.4, 2.7, 3, 3.3, 3.5, 

3.6, 3.7, 3.8, 4, 4.2, 4.3 and 4.7, respectively. 

Through the analysis of Figure 2 (E) is concluded that SHDI 

decreases IPtIN since rs values are negative (exception of rs 

calculated for IPtIN in summer with SHDI for distances 

between 500 m and 2 km). Besides the majority of correlations 

are negative these are only statistically significant for long 

distances, in summer period at 20 and 56 km, while in winter 

at distances higher than 4 km, particularly at 20 km where rs is 

equal to -0.790. This indicates that SHDI negative effect in 

water quality occurs for both seasons, but the effects are 

stronger during the winter period, only at the longest spatial 

extent (56 km) correlations converge. Besides correlations 

between SHDI and IPtIN demonstrate relevant results, among 

other metrics it was obtained significant correlations. In Figure 

3 is shown the variables where it was found strongest 

correlations in each spatial extent, maximums and minimums 

are underlined. Significant correlations (α≤0.05) were 

highlighted in red and green, for positive and negative values, 

respectively. Correlations with high significance (α≤0.005)  

were marked in bold. 

By paying particular attention to the correlations with 

statistical significance, is seen that majority of the correlations 

are concordant to theoretical expectations. Metrics respective 

to forestry land uses have positive correlations, while 

agricultural and artificial land uses correlations are negative. 

Only for “ci np (Art)” at 500 an 1000 meters and “ci np (Art)” 

at 100 meters are found positive correlations, which is hard to 

explain. As seen in Figure 3, metrics effects are influenced not 

only by the season but also by the spatial extent, as seasons 

changes occur predominantly hydrological changes [44]. 

Another time-dependent factor is the application of fertilizers, 

pesticides and herbicides [45], which is also dependent on 

specific cultures and plagues. During the winter period (for the 

demonstrated metrics) more correlations have statistical 

significance, a total of 94, while in summer 80. This might be 

due to the fact that during the winter the resulting runoff from 

precipitation is much higher than in summer [46], transporting 

sediments, nutrients and pesticides [47] from agricultural land 

uses, and contaminants from artificial land use to surface 
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waters. With the presence of contaminants in surface waters, 

benthic macroinvertebrates communities are harmed, what is 

reflected in a decrease of quantity and biodiversity, and 

consequently, the index value (IPtIN) deceases. Is important to 

note that during summer periods the rivers are recharged 

dominantly by underground waters flow. For such reason, 

contaminants that are retained in aquifers are more vulnerable 

to be unleashed during summer periods. Another crucial aspect 

is that for particular agricultural cultures, fertilization/ 

pesticides/herbicides periods are in summer, and even soil 

erosion or summer rainfalls might be enough to transport them 

to surface waters. Metrics that only demonstrated a significant 

effect only during winter are “el (Ag) with (F)”, “el a class 

(Art)” and “npc (Art)”; metrics that only demonstrated a 

significant effect during summer are “ci pa (Ag)”, “ci np (Art)” 

and “lpi (Global)”, but other metrics have an effect in both 

seasons. Edge density “Ed”  is the only metric that has an equal 

number of spatial extents with significance for summer and 

winter. The accessed scale reflects spatial effects, some 

metrics revealed that the effect in a short or long distance can 

be different. When the effects are strong only at long scales 

indicates that there is a propagation of contamination in long 

distances, with an inefficient auto-depuration. In cases that are 

only found a metric effect in short scale, it is probable that the 

resulting contamination effect is local and the contaminants 

are not transported in long distances, possibly can be locally 

retained, or are dispersed in transportation achieving harmless 

concentrations. In general, it is concluded that most of the 

relevant/stronger effects are found in the long scale. Only “ci 

pa (Ag)” revealed as the only metric that revealed a clear effect 

in short scale during the summer period. This metric consists 

on the area occupied by agriculture independently on the shape 

of agricultural land uses patches. The reason that this metric 

only has effect in short distance during summer might rely on 

agricultural substances that are applied in agricultural field 

have a strong effect in short distance. 

 

 
 

Figure 2. Spearman rank correlation coefficient between Shanon’s Diversity index and IPtIN for different spatial extents; (A) 

Scatterplot for IPtIN in winter and SHDI at a 100 meters scale; (B) Scatterplot for IPtIN in winter and SHDI at a 56 km scale; (C) 

Scatterplot for IPtIN in summer and SHDI at a 100 meters scale; (D) Scatterplot for IPtIN in summer and SHDI at a 56 km scale; 

(E) Spearman’s correlation coefficient variation along scale and season, between SHDI and IPtIN 

68



 

 
 

Figure 3. Spearman correlation ranks, between landscape metrics measured in various spatial extents and  measured IPtIN  during 

summer and winter 

 

Among all metrics, the contrast metric “cce” of agricultural 

fields with artificial land use “cce (Art) with (Ag)” and 

forestry land uses “cce (F) with (Ag)” have an effect that is 

statistically significant in many spatial scales, predominantly 

in longer spatial extents. This metric is the percentage of 

agricultural land use patches edges that are shared with other 

land uses. This metric demonstrated that the combined effect 

of agricultural land uses with artificial surfaces leads to a 

significant loss of water quality, not only by the fact that both 

of this land uses are the greatest sources of contamination but 

also because in artificial surfaces the runoff velocity and flow 

are much higher because the infiltration is close to zero. For 

such reasons, the combination of agricultural areas with 

artificial surfaces is a great threat to water quality. On the other 

hand, it was found that the combination of agricultural fields 

with forested areas improves water quality. This result is quite 

peculiar and unpredicted since maximum correlations were 

achieved in this metric, with high statistical significance for 

winter and summer since these values are higher than 0.776 

(α≤ 0.5%). It was expected that the highest correlations would 

be found in metrics that were calculated only for forestry land 

uses [48], but the dataset revealed the opposite. First, is 

reminded that in this study, water quality was accessed 

through an ecological indicator, based on the quantity and 

diversity of benthic macroinvertebrates. This possibly happens 

because agricultural fields contain nutrients from fertilizers 

application, which end up transported to freshwaters through 

runoff and soil erosion. If agricultural fields are attached to 

forested areas, these result as moderators of nutrients transport 

[21], part of them is retained in forested fields, as a 

consequence the nutrients from agricultural fields that pass 

through forested areas are induced in freshwaters, resulting in 
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optimal concentrations for the development of 

macroinvertebrates.  

These results are quite similar to a particular study where 

the effect of agriculture combined with forested land uses 

effects explain water quality variations, enhanced than when 

these variables are used alone [49]. Such results prove that 

sustainable agriculture can not harm, but even, improve water 

quality when combined with forested land uses, as barriers of 

contamination from runoff or soil erosion. In studies of similar 

scope, it was used PLS-PM (Partial Leas Squares Path - 

Modelling) to establish cause-effect interactions between 

pressures with ecological status[50-52], in Ave River Basin. 

The authors concluded that livestock and effluent discharges 

were major threats to water quality, but in such analysis, the 

only studied landscape metric was only the area percentage for 

different land-use types “pz”. When more detailed landscape 

metrics were paired with point source emissions, it was 

concluded that the effect of landscape metrics can be stronger 

than effluent discharges [31].  

Such approaches that resort to multivariate statistical 

methods are quite useful to interpret which variables have a 

stronger effect. However, the disadvantage is that such 

statistical methods are vulnerable to collinearity and for this 

reason, the number of variables used in the models has to be 

reduced due to the variance inflation factor [53], and even 

significant variables must be discarded from such models [51].  

In a previous study, the application of different statistical 

models was tested to evaluate which could be the most suitable 

form for prediction purposes [54], concluding that point source 

emissions and livestock production were the threats to water 

quality. In that study [54], landscape metrics were not included 

in the statistical models, and since such variables were not 

explored, it surged the necessity to study them. Resorting to a 

simpler method, by using Spearman Rank’s Coefficient, it was 

possible to trace the effect of many variables. Still, in different 

approaches is possible to trace different conclusions, even with 

a similar dataset. In a study where the effect of SHDI was 

studied [31], the impact of SHDI was higher on a short scale 

rather than in a long scale, through PLS-PM. But when this 

effect is analysed in simple statistics, it is seen that the impact 

is also negative but increases from the short scale to the longest.  

This type of studies is quite useful to understand the role of 

pressures in surface waters, in this case, landscape metrics. It 

is quite important to tackle this issue since this study proved 

that the interactions with water quality are statistically 

significant. The utility of such approaches also to provides 

information about which can be the better locations for water 

caption [55], or in terms of land use planning, how should be 

implemented. Although it was assumed that the long scale 

effects are dominant, this study design also proved that is 

extremely important to explore different spatial extents since 

in a single spatial the strongest impact might now be accessed. 

 

 

4. CONCLUSIONS 

 

The measurements of the IPtIN index during the winter and 

summer of 2017 revealed that Ave River Basin water quality 

is vulnerable to seasonal changes since in 5 of the 12 

measurement sites the ecological status changed.  The present 

study design proved to be effective to demonstrate the spatial 

and seasonal effects of landscape metrics in water quality, by 

pairing landscape metrics with IPtIN for different spatial 

extents. Besides the most tackled threat in Ave River basin is 

effluent discharges, the present study shown that landscape is 

also a crucial aspect for this river basin’s water quality. 

Although in this approach, the authors resorted to the 

calculation of Spearman’s Rank Correlation Coefficient as a 

measure of effect, it was possible to analyse the effect of many 

variables on water quality. The results showed that the major 

threat but also a major benefit for water quality is agriculture, 

depending on the combined land use, urban or forestry. The 

correlations that led to this conclusion were the contrast of 

agricultural areas with artificial surfaces, where the Spearman 

correlation rank for long distances was higher than -0.7. While 

positive effects were found in the contrast between agricultural 

fields with forested areas, since the correlations with IPtIN, 

were close to 0.8, in a long-scale. The results provided relevant 

information since the strategic placement and configuration of 

agricultural fields is key to improve Ave River Basin water 

quality, which is the proposed challenge to municipal and 

regional water planners that are responsible for the safeguard 

and management of hydric resources. 
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