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 In the present study, analytical solutions have been developed for two-dimensional solute 

transport in steady field of groundwater flow with different longitudinal and lateral 

dispersion coefficients in semi-infinite heterogeneous porous medium for a varying type 

input point source. Dispersion coefficient is considered squarely proportional to the 

groundwater velocity along both longitudinal and lateral directions while groundwater 

velocity is considered linear spatially dependent function in both directions. The flow is 

assumed to be two-dimensional in a horizontal plane and the nature of pollutant and 

porous medium are considered chemically non-reactive. The geological formation is 

initially not solute free. Varying type input condition for multiple point sources through 

arbitrary time-dependent function is considered at origin. Concentration gradient is 

considered zero at infinity. New space variables are introduced by certain transformations 

to get the analytical solutions. The solutions in the real time domain are obtained by using 

Laplace Integral Transform Technique. The obtained analytical solutions are illustrated 

graphically to study the effect of various parameters on the solute transport in various time 

domains for spatially dependent velocity.  
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1. INTRODUCTION 

 

A wide variety of analytical models describing 

groundwater flow and solute transport in porous media have 

been developed in the last two-three decades. Analytical 

solutions for aquifers have been developed for several types 

of boundary conditions for a finite and semi-infinite domain. 

The majority of analytical solutions developed on transport 

issue from several stand points or hypothesis in one, two and 

three-dimensional groundwater flow in aquifers with 

common assumptions, constant porosity, steady and unsteady 

pore-water velocity with or without retardation factor. 

Retardation factor is one of the major processes affecting the 

contaminants dissolved in groundwater. In real scenario, 

most of the geological formations are heterogeneous in 

nature which originates from the variability of the hydraulic 

conductivity. Groundwater velocity and hydrodynamic 

dispersion coefficient are key parameters for description of 

any solute transport phenomena in porous media. Solute 

transport in soil, reservoir and aquifer is generally governed 

by advection-dispersion equation which is a parabolic partial 

differential equation of second order. In subsurface, 

groundwater velocity and flow direction are functions of the 

hydraulic gradient, which may vary with time and space. In 

general, spreading of pollutant causes due to gradient 

magnitude variability and gradient direction variability [1]. 

Magnitudes of contaminant dispersivity have direct 

relation with distance from the contaminant source [2]. 

Cirpka and Kitanidis [3] demonstrated that transport distance 

and vertical discharge rate are closely related with 

dispersivities. Watson and Jones [4] obtained analytical 

solution with velocity dependent dispersion. Variation in 

hydraulic gradient in terms of direction is more important 

than magnitude variation in hydraulic gradient was discussed 

by Goode and Konikow [5]. Watson et al. [6] observed that 

the hydrodynamic dispersion coefficient and seepage velocity 

are related with non-linearly to each other. Qiu et al. [7] 

obtained an analytical solution for solute transport model 

with spatially dependent flow velocity and solute dispersion 

using generalized integral transform technique. Guerrero et al. 

[8] derived an analytical solution of advection dispersion 

equation using Integral transform technique with first order 

decay term for multi-layered media. You and Zhan [9] 

developed semi-analytical solutions for one-dimensional 

solute transport in a finite domain with time-dependent 

sources and distance dependent dispersivities.  

Singh et al. [10] obtained analytical solutions for one-

dimensional solute dispersion with uniform and time varying 

dispersion in a semi-infinite aquifer using the Laplace 

transform technique. Falta and Wang [11] presented a semi-

analytical solution of one-dimensional advection-dispersion 

equation with matrix diffusion process by assuming the low 

permeability in semi-infinite domain. Yadav and Kumar [12] 

established a mathematical model for two-dimensional solute 

transport in a semi-infinite heterogeneous porous medium 

with spatially and temporally dependent coefficients for pulse 

type input concentration of varying nature. Das et al. [13] 

presented analytical and numerical solutions for conservative 

solute transport modeling in homogeneous semi-infinite 

porous medium. Yadav and Kumar [14] established an 

analytical solution for two-dimensional advection dispersion 

equation for conservative solute transport in a semi-infinite 

heterogeneous porous medium with pulse type input point 

source of uniform nature. In real situations, two-dimensional 

contaminant transport models are more advantageous in 

comparison to one-dimensional models because they can be 
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responsible for concentration gradients and contaminant 

transport in directions perpendicular to the groundwater flow. 

The majority of the available analytical solutions of 

conservative solutes are derived by solving only single point 

source.  

The objective of the present study is to develop an 

analytical solution for advection-dispersion equation in a 

two-dimensional heterogeneous semi-infinite porous medium 

using the Laplace Integral Transformation Technique (LITT). 

The heterogeneity of the medium is expressed by spatially 

dependent flow which causes due to variation in velocity of 

the flow through it. Solute transport phenomenon takes place 

in the direction of flow. Three main assumptions behind the 

proposed model are (i) multiple point source (ii) groundwater 

velocity linear spatially dependent function (iii) dispersion 

coefficient is squarely proportional to groundwater velocity. 

The medium is supposed to have a uniform solute 

concentration before an injection of pollutant in domain. 

Concentration gradients are considered zero at infinity along 

both longitudinal and lateral boundaries. The graphical 

illustrations along with its physical interpretations are also 

discussed. 

 

 

2. MATHEMATICAL FORMULATION 

 

The geological formation is assumed heterogeneous and 

semi-infinite along both x  and y  directions. In developing 

the analytical solution, it assumed that solute is conservative 

and transport through porous medium in two-dimension 

which is described by second order partial differential 

equation of parabolic type, generally known as advection-

dispersion equation [2, 15]. 
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where, ][ML 3−C represents the solute concentration of the 

pollutant transporting along the flow field through the 

medium at a position    ( )LyLx ,
 
and time  Tt . 

]T[L 12 −
xD and ]T[L 12 −

yD are the longitudinal and lateral 

dispersion coefficients, respectively.
 

][LT 1−u
 
and ][LT 1−v

are the unsteady uniform groundwater velocity along 

longitudinal and lateral directions, respectively. First term on 

the left hand side of the Eq. (1) is represent change in 

concentration with time in liquid phase. First and third terms 

on the right-hand side of the Eq.(1) describe the influence of 

the dispersion on the concentration distribution in 

longitudinal and lateral directions, respectively while second 

and fourth terms on the right-hand side of the Eq.(1) describe 

the change of the concentration due to advective transport in 

longitudinal and lateral directions, respectively. The effect of 

molecular diffusion is not taken into account due to 

dominance of the mechanical dispersion on the 

hydrodynamic dispersion during solute transport. The 

medium is supposed to have a uniform solute concentration

iC before an injection of pollutant in the domain. The input 

condition is considered of varying type. The right boundary 

is assumed that of flux type homogeneous condition at far 

ends of the domain along both the longitudinal and lateral 

directions. Van Genuchten and Alves [16] prompted that the 

Cauchy’s boundary is more realistic than the Dirichlet’s 

boundary. This type phenomenon may be formulate 

mathematically as: 
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where, 0C  is the reference concentration, qp,
 
and r  are 

parameters of the quadratic function of time in pulse type 

boundary conditions at 0,0 == yx . 1t  and 2t  are the 

beginning and end times of the source activation, respectively. 

( )ittu −  being the Heaviside function defined to be 0  for 

itt 
 
and 1   for itt  . Pollutants fabrications on the surface 

reach at a point uniformly and are filtered down the stream. 

As soon as the pollutant reach due to infiltration from a point 

source occurring on the surface. It may treat that as source; 

hence the input concentration increases in interval of time 

and once it is eliminated, the input starts decreasing instead 

of becomes zero at once. This situation may be defined by a 

mixed type input condition which is given by Eq. (3a, b). Eq. 

(3) is depicted in following Figure 1 given below. 

 

 
 

Figure 1. Depiction of the input boundary condition 

 

Dispersion coefficient is considered proportional to square 

of the space variable and groundwater flow is supposed to 

vary linearly to space variable [17]. In this study, dispersion 

coefficient along both longitudinal and lateral directions are 

considered as squarely proportional to corresponding 

groundwater velocity in that direction, respectively while 

groundwater velocity along both longitudinal and lateral 

directions are supposed to vary linearly to the corresponding 

space variable, respectively. They are mathematically defined 

as: 
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where, ][ 1−La  is the heterogeneous parameter along both 

longitudinal and lateral directions and have dimension 

inverse of space variable [18]. Heterogeneity of the porous 

medium means the transport properties like porosity or 

hydraulic conductivity is not uniform throughout the domain 

but depends upon the position. 
00 yx D,D , 0u and 0v  are 

initial dispersion coefficient and unsteady uniform pore 

groundwater velocity along longitudinal and lateral directions, 

respectively. 

 

 

3. ANALYTICAL SOLUTION 

 

Substituting the values from Eq. (5) in Eq. (1), we have 
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With the help of Eq. (5), the initial and boundary 

conditions in Eqns. (2-4) may be written as:  
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Let us introduce new independent space variables X  and 

Y  through the transformations (Kumar et al. [18]) defined as: 
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Applying transformation from Eq. (10) in Eqns. (6-9), we 

have 
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where, ( ) ( ) ( )0000201 ,,
00

vuaaDvUaDuU yx +=−=−=  . 

Let us introduce another new independent space variable 

Z  through the transformation (Carnahan and Remer [19]) 

defined as: 

 

YXZ +=  (15) 

 

Applying this transformation from Eq. (15) in Eqns. (11-

14), we have 
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where, ( ),
00000 yx DDavuU +−+= ( ),

000 yx DDD +=

,00 wa= ( )000 vuw += . 

Applying the Laplace integral transformation on the above 

Eqns. (16-19), it reduces into an ordinary differential 

equation of second order which comprises of following three 

equations: 
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where, 
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),( dtetZCC ts  and s is a Laplace parameter. 

Thus, the general solution of ordinary differential Eq. (20) 

may be written as: 
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Using boundary conditions Eq. (21) and Eq. (22) into Eq. 

(23) to eliminate arbitrary constants 1c  and 2c , we get the 

particular solution of the Eq. (20) as: 
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Now, applying Inverse Laplace integral transform on it 

using the appropriate tables [16, 20] and requisite 

transformations back, the desired analytical solution may be 

obtained in terms of 𝐶(𝑍, 𝑡) as: 
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4. RESULTS AND DISCUSSION 

 

Concentration values are evaluated from the Eq. (25), Eq. 

(26) and Eq. (27) in a finite domain ( ) 5meter0  x  and 

( ) 3meter0  y  at various values of parameters such as time, 

dispersion coefficient and heterogeneous parameter. The 

heterogeneity of the medium is considered to be same along 

both longitudinal and lateral directions. In this study, the 

input parameters values and the ranges of data taken either 

from published literature or empirical relationship. For 

example, the range of groundwater velocity, keeping in view 

the different types of soils, aquifers are lies between 

daym/2  to yearm/2  [21]. The concentration values 0/ CC  

are evaluated assuming reference concentrations as 0.10 =C  

and 1.0=iC . The medium is supposed heterogeneous. The 

units of distance and time are considered in meter and day, 

respectively. The common input  values are taken as 

(m/day)10.10 =u
 
, (m/day)110.00 =v , /day)(m18.2 2

0
=xD , 

/day)(m218.0 2

0
=yD , )(m01.0 -1=a , )(day01.0 -2=p , 

)(day02.0 -1=q , 03.0=r , day51 =t
 
and day102 =t  for all 

cases discussed below.  

Case-I: Figures (2-4) demonstrate the concentration 

distribution behaviour in the time domain ( )day50 1tt 
 

for the analytical solution obtained in Eq. (25). 
 

 
 

Figure 2. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (25) at two different 

time for ( )day50 1tt  

 

Figure 2 illustrates the solute transport from the point 

source along the longitudinal and lateral directions of the 

medium, described by the solution in Eq. (25) at two 

different time 1=t  and (days)4  computed for the common 

parameters /day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD  and 

)(m01.0 -1=a . It attenuates with position and time but at 

particular position the concentration level is lower for higher 

time and higher for lower time. The concentration pattern 

decreases with respect to time whereas it increases with 

respect to the space and after certain distance it becomes 

constant for all time. 

Figure 3 illustrates the solute transport from the point 

source along the longitudinal and lateral directions of the 

medium, described by the solution in Eq. (25) for it two sets 

of values of dispersion coefficient are taken as: 

{ /day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD } and  

{ /day)(m78.3 2

0
=xD , /day)(m378.0 2

0
=yD }  with the 

common parameters (day)0.4=t  and )(m01.0 -1=a . 

Contaminant concentration it attenuates with position and 

time but at particular position the concentration level is lower 
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for higher dispersion coefficient and higher for lower 

dispersion coefficient. The concentration pattern decreases 

with respect to dispersion coefficient whereas it increases 

with respect to the position. 

 

 
 

Figure 3. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (25) at two sets values 

of dispersion coefficient for ( )day50 1tt   

 

 
 

Figure 4. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (25) for two values of 

heterogeneous parameter in ( )day50 1tt   

 

Figure 4 shows concentration distributions pattern 

predicted by the solution in Eq. (25) at two values of 

heterogeneous parameter 01.0=a  and )(m1.0 -1
. The 

calculations are conducted with the common values of 

parameters /day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD  and 

(day)0.4=t . As expected, the concentration distribution 

became lower for higher heterogeneous parameter and higher 

for lower heterogeneous parameter. It may also observe that 

effect of heterogeneous parameter on the concentration 

distribution is relatively small near the inlet boundary. 

Case-II: Figures (5-7) demonstrate the concentration 

distribution behaviour in the time domain

( ) ( )day10day5 21 ttt 
 
for the analytical solution obtained 

in Eq. (26). 

 
 

Figure 5. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (26) at two different 

time for ( ) ( )day10day5 21 ttt   

 

Figure 5 illustrates the dimensionless concentration 

distribution for the point source along the longitudinal and 

lateral directions of the medium described by the solution in 

Eq. (26) computed for the common parameters, 

/day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD  and 

)(m01.0 -1=a  at 6=t  and (days)9 . It may be observed that 

concentration value is decrease with position and increases 

with time. 

 
Figure 6. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (26) at two sets values 

of dispersion coefficient for ( ) ( )day10day5 21 ttt   

 

Figure 6 represents the effect of dispersion coefficient on 

dimensionless concentration distribution predicted by the 

present solution in Eq.(26) evaluated  for two sets values of  

dispersion coefficients { /day)(m18.2 2

0
=xD , 

/day)(m218.0 2

0
=yD } and { /day)(m78.3 2

0
=xD , 

/day)(m378.0 2

0
=yD } at (day)0.9=t  and )(m01.0 -1=a . It 

may be observed that distribution pattern of contaminant 
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concentrations is nearly similar as in Figure (5). At particular 

position the concentration level is lower for lower dispersion 

coefficient and higher for higher dispersion coefficient. 

 
 

Figure 7. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (26) for two values of 

heterogeneous parameter in  ( ) ( )day10day5 21 ttt   

 

Figure 7 illustrates the solute transport from the point 

source along the longitudinal and lateral directions of the 

medium, described by the solution in Eq. (26) for two values 

of heterogeneous parameter 01.0=a , )(m1.0 -1
 and other 

parameters values are taken as dispersion coefficient 

/day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD  and time

 

(day)9=t . It may be observed that the solute concentration 

decreases with position and heterogeneous parameter near 

and away from the source boundary. However, it starts 

decreasing with position until reaches a harmless level is 

achieved. 

 
Figure 8. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (27) at two different 

time for ( )day102tt   

 

Case-III: Figures (8-10) demonstrate the concentration 

distribution behaviour in the time domain ( )day102tt 
 
for 

the analytical solution obtained in Eq. (27).
  

Figure 8 illustrates the same described by the solution in 

Eq.(27) at time  11=t  and (days)14 with other input values 

/day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD and  

)(m01.0 -1=a . It may be observed that the concentration 

level is much higher near inlet boundary and starts decreasing 

with position. The concentration pattern increases with time 

and decreases with position and after certain distance it 

becomes constant for all time. 

 

 
 

Figure 9. Dimensionless concentration distribution evaluated 

by analytical solution presented in Eq. (27) at two sets values 

of dispersion coefficient for ( )day102tt  

 
Figure 10. Dimensionless concentration distribution 

evaluated by analytical solution presented in Eq. (27) for two 

values of heterogeneous parameter for ( )day102tt   

 

Figure 9 demonstrates the effect of dispersion coefficient 

on the concentration profiles given by the solution in Eq. (27) 

for two sets values of dispersion coefficient as: 

{ /day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD } and 

{ /day)(m78.3 2

0
=xD , /day)(m378.0 2

0
=yD

 
} at 

(day)14=t
 
and )(m01.0 -1=a . The effect of dispersion 

coefficient plays a significant role on distribution of solute. 

The pollutant attenuates continuously with position and time. 

It may be observed that the concentration level is lower for 

lower dispersion coefficient and higher for higher dispersion 

coefficient. The concentration pattern decreases with position 

until steady state is reached. 

Figure (10) shows the  distributions of the dimensionless 

concentration predicted by the solution given in Eq.(27) 

computed for two values of heterogeneous parameter as: 
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01.0=a  and )(m1.0 -1
 with common  input values 

/day)(m18.2 2

0
=xD , /day)(m218.0 2

0
=yD  and 

(day)14=t . It may be observed that heterogeneity plays a 

significant role on concentration distribution. concentration 

attenuates with position and time. The concentration pattern 

decreases with heterogeneity parameter and position but after 

a certain distance it becomes constant for all time. 

 

 

5. CONCLUSION 

 

Analytical solutions are obtained for spatially dependent 

solute dispersion for varying input point source defined by 

Heaviside function in a two-dimensional semi-infinite porous 

medium with an appropriate realistic initial and boundary 

conditions. At the initial stage the aquifer domain is 

considered not solute free. Dispersion coefficient is 

considered proportional to square of groundwater velocity in 

both directions (longitudinal and lateral). The effects of 

various parameters are significantly observed on the 

concentration profiles. Laplace Integral Transformation 

Technique (LITT) is employed to get the analytical solutions. 

LITT is simpler, more viable and commonly used in 

assessing the stability of numerical solutions in more realistic 

dispersion problems. Two transformations have been used to 

obtain the analytical solutions. The effects of solute transport 

parameters on concentration profiles are evaluated in 

different time domains and demonstrated with help of graphs. 

The obtained analytical solutions may be helpful in 

predicting the concentration levels in the aquifer at any 

position and time and also useful for verifying the accuracy 

of numerical solutions. 
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NOMENCLATURE 

 

C  Solute concentration, kg m-3 

0C  Reference solute concentration, kg m-3 
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iC  Initial solute concentration, kg m-3 

u  Longitudinal groundwater velocity, ms-1 

v  Lateral groundwater velocity, ms-1 

0u  Initial longitudinal groundwater velocity, ms-1 

0v  Initial lateral groundwater velocity, ms-1 

xD  Longitudinal dispersion coefficient, m2s-1 

yD  Lateral dispersion coefficient, m2s-1 

0xD
 

Initial longitudinal dispersion coefficient, m2s-1 

0yD  Initial lateral dispersion coefficient, m2s-1 

x  Longitudinal space variable, m 
y  Lateral space variable, m 

X  New longitudinal space variable, m 

Y  New lateral space variable, m 

Z  New space variable, m 
a  Heterogeneous parameter, m -1 
t  Time variable, s 

1t  Beginning time of source activation, s 

2t  Ending time of source activation, s 

s  Laplace parameter 

21 &cc  Arbitrary constant 

rqp &,  Parameter of time function 

C
 

Laplace transform of C
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 Heaviside function 
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New substituting constant 
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