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1. INTRODUCTION 

High pressure research is a powerful tool to explore key 

and electronic states of nature in solids. Due to high pressure 

often produce a lot of new structure in the elements or 

compounds, so it has become a significant change in a way 

of atomic distance and coordination number. With the 

development of high pressure research unceasingly thorough, 

the temperature pressure phase diagram (T/P) caused by 

theoretical and experimental home interest. In recent years, 

the generation and measurement of simultaneous high 

pressures and high temperatures has undergone rapid 

development with the diamond anvil cell (DAC) technique 

[1-4]. We choose Si, Ge, CO2, Al2O3 and MgO to verify the 

reliability of the model, because, although the T-P phase 

diagram of this substances have been obtained through the 

experiments is established, but the measurement accuracy 

under high temperature and pressure is not high, so most of 

the phase diagram are experimental, or is the schematic, the 

existing data has not been confirmed theoretically. Therefore, 

more in-depth theoretical work is necessary. 

For Si and Ge, as everyone knows, the steady state under 

normal pressure is the diamond structure (Si-I and Ge-I). 

Through pressure, this change in the diamond structure for 

beta -Sn structure (Si-II and Ge-II), and with the increase of 

temperature, phase I and II will melt, into a liquid (L). For 

the CO2 crystal (commonly known as dry ice), it is a 

molecular solid with a structure of Pa3 at low temperature 

and low pressure (CO2-I), and can be widely used for cooling. 

As the pressure increases, several high pressure phases 

appeared, including the P42/mnm symmetric structure (CO2-

II), Cmca orthorhombic structure (CO2-III), the structure of 

Pbcn (CO2-IV) and polymerization of the quartz structure 

(CO2-V) etc. However, for this high pressure phase is still 

uncertain, especially have yet to determine precisely their 

stable field. Al2O3 and MgO have been employed to test the 

reliability of the model, because of its important role. Al2O3 

has been extensively investigated because of its widely 

ranging industrial applications. This includes applications as 

a refractory material both of high hardness and stability up to 

high temperatures, as a support matrix in catalysis, as well as 

a variety of fundamental interests [5-8]. MgO is a material of 

key importance to earth sciences and solid-state physics: it is 

one of the most abundant minerals in the Earth (especially 

its lower mantle) and a prototype material for a large group 

of ionic oxides. The classic Clapeyron equation governing all 

first-order phase transitions of pure substances may be useful 

to determine the Tm (P)-P curve theoretically in the 

following form [9], 
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where H (Tm,P) show the gram-atom melting enthalpy and 

V(Tm,P) is gram-atom volume change during the melting 

with Δ denoting the change. Eq. (1) can describe the joint 

rate of change dP/dTm along the phase equilibrium lines and 
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estimate the derived properties of H and V. To utilize Eq. 

(1) for determination of phase diagram, a Tm(P) function or 

an integration of Eq. (1) is needed. Since both H(Tm,P) and 

V(Tm,P) are functions of temperature and pressure, and the 

necessary separation of variables cannot be accomplished in 

any direct and known manner, the integration of Eq. (1) has 

been carried out through approximate methods ever since the 

equation was first established in the 19th century [9]. 

Although when P = P–P0 and T = Tm–Tm0 are small, 

H(Tm,P)  H(Tm0,P0) and V(Tm,P)  V(Tm0,P0) have 

minor error where the subscript 0 denotes the initial points 

and  denotes the difference [6], as P and T increase, 

exact functions of H(Tm,P) and V(Tm,P) must be known 

[9]. Thus, a successful application of Clapeyron equation for 

Tm(P)-P phase diagram depends on establishing accurate 

ΔH(Tm, P) and ΔV(Tm, P) functions. 

Recently, a general equation without any free parameter 

for surface stress f has been established as follows [10], 

 

f (Tm0) = (h/2)[3SvibHm0/(SVSR)]1/2                          (2) 

 

where h is atomic diameter, Svib is the vibrational part of 

the overall melting entropy Sm, Sm=Sel+Spos+Svib, Sel is 

negligibly small, and Spos=-R[xAln(xA)+ xvln(xv)], where xA= 

1/(1+ΔVm) and xv=ΔVm /(1+ΔVm) are the molar fractions of 

the host material and vacancies, respectively [11], for oxides 

Svib  Sm-Spos,   = -V/(VP) is compressibility of the 

crystal, VS is gram-atom volume of crystals, R shows the 

ideal gas constant and Hm0 is bulk melting enthalpy at Tm0. 

 The predicted f values of various materials in terms of Eq. 

(2) are in agreement with the known experimental and 

theoretical results obtained from the first principle and the 

classic mechanics calculations [10]. Since the measured 

thermodynamic amounts in Eq. (2) has reflected usually 

unknown surface states of materials [10], Eq. (2) supplies an 

easy way to establish a relationship between the surface 

stress induced internal pressure Pi for small particles and Tm, 

which brings out a possibility to determine V (Tm, P) 

function.  

Hm(Tm) function can be determined by Helmholtz 

function, Hm(Tm) = Gm(Tm)-TmdGm(Tm)/dTm, where 

Gm(Tm) denotes the temperature dependent solid-liquid 

Gibbs free energy difference. For oxides, Gm(Tm) = 

Hm0Tm(Tm0-Tm)/Tm0
2 where Hm0 is the melting enthalpy at 

the melting temperature Tm0 [12]. This function was modeled 

by treating Hm(Tm) to be a linear function where the heat 

capacity difference ΔCp between crystal and liquid to be a 

constant. Using a mathematic approximation that the 

quantity ln (Tm0/Tm) is approximately equal to 2(Tm0-

Tm)/(Tm0+Tm) with neglecting of higher order terms. Thus,  

 

Hm(Tm) = Hm(Tm/Tm0)2.                                               (3) 

 

In this contribution, through assuming that V(Tm,P) and 

H(Tm,P) functions may be determined by Eqs. (2) and (3), 

Tm(P) curves are obtained with an integration of Clapeyron 

equation when suitable original points for each integration 

are selected. It is found that the model prediction of the 

Tm(P)-P phase diagram of corundum is consistent with the 

experimental results and other theoretical predictions [16-18]. 

 

 

2. MODEL 

 

To find a solution of Clapeyron equation, as a first order 

approximation, Hm(Tm,P)  Hm(T) and Vm(Tm,P)  

Vm(P) are assumed [9], which lead to a simplification of Eq. 

(1), 
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Vm(P) = (VL-VS)+(VL-VS) where the subscripts S and L 

denote solid and liquid, respectively. VS = -VSPSS and VL 

= -VLPLL where VL and VS are known data. To find a 

solution of the equation, a relationship between PL and PS 

must be found. To do that, a spherical particle with a 

diameter D is considered. In light of the Laplace-Young 

equation, PS = 4f/D and PL = 4/D where  is the surface 

energy of the liquid [10]. Thus, VL = -VLPS(/f)L because 

PS/PL = f/. Substituting this relationship into Vm(P) 

function, 

 

Vm(P) = VL-VS +[VSS -VL(/f)L]P                              (5) 

 

where PS has been simplified as P. when the initial point of 

(P0, T0) is selected as (0,Tm0) where Tm0 is the melting 

temperature under ambient pressure, integrating Eq. (5) with 

Hm(Tm) and ΔVm(P) functions in terms of Eqs. (3) and (5), 
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Although the above discussion on P is related with the 

surface stress induced internal pressure Pi for a spherical 

particle, they may be extended to a general case for the 

pressure effect on Tm, which is illustrated as follows: Let P 

denote the sum of Pi and the external pressure Pe, namely 

[16], 

 

P=Pi+Pe.                                                                        (7) 

 

When Pe  0, P = Pi. This is the case of the size-

dependent melting. When Pi  0 with D, P = Pe, which 

is the usual situation of the pressure-dependent melting for 

bulk materials. Since any pressure source should have the 

same effect on materials properties, Pi can be substituted by 

Pe. Thus, although P denotes Pi in above Tm(P) equation, it 

has been considered as Pe and is simplified as P. 

3. RESULTS AND DISCUSSION 

Figs.1 and Figs.2 describes the melting curve on the Si T-

P phase diagram and Si nano crystals and T-P phase diagram 

of Ge according to equation (6) compared model predicted 

results and experimental results and other theoretical results, 

parameters used are listed in Table. 1. Figure. 1 present a 
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comparison for T-P phase diagram of bulk Si and the 

melting curve of Si nanocrystal among the model predictions 

and experimental and other theoretical results. The solid 

lines denote model predictions in terms of Eqs. (6) Where 

necessary parameters used are listed in Table .1. The 

symbols ○, □, ∆ show experimental results. The dash and dot 

lines denote other theoretical results. Other symbols denote I-

II transition pressure at room temperature where n denotes 

the theoretical result, + denotes the experimental results 

under non-hydrostatic pressure, ♦, ◊ and ∇ denote the 

experimental results under hydrostatic pressure. For the 

melting of Si nanocrystal, the two dash lines show the 

predicted results where the corresponding TmI (D) values 

denoted as × (1478 K) and ▲ (1371 K) are obtained from 

other theoretical result and Eq. (6), respectively. For 

comparison, the dot line gives the theoretical result for 

melting of Si nanocrystal. Figs.1 and Figs.2 in the P-T 

relationship is through the small particles produced by 

internal pressure considered and applied in bulk crystals of 

external pressure equivalent to the idea of the establishment 

of the. However, equation (6) limit the size of nano crystal 

used in Pi must be taken into account; it is equal to 6h. For 

the I-L transformation, the corresponding 6hI = 1.4112 nm, 

according to PI = 4 f more I/D, we obtain the limit pressure 

for the Pl = 10.5 GPa. while at Pl < P < Pt this pressure 

range, the error of P-T curve and the experimental results of 

our model predicted only small, but this will still give the 

triple point (Pt determination of Tt), bring some inaccuracy. 

In order to improve the accuracy and the experimental 

results more in line with that, we take the approach in 

determining P > Pl curve is: the curve tangent direction line 

extend along at P = 10.5 GPa place, this is because the 

experimental results confirm the pressure is large enough 

melting curve is approximately a straight line. Similarly, for 

the transformation of the Ge I-L, when 6hI = 1.47 nm, Pl = 

6.12 GPa. We have taken and the Si class Like the way to 

deal with Pl < P < Pt the range of pressure curve. For the T-P 

phase diagram of Si and Ge, I-II phase boundary shift is very 

fuzzy, change the pressure distribution in the reported a wide 

range, especially at low temperatures, and change due to the 

very slow lag. As shown in the figure, although we chose 

different experimental results at room temperature with a 

mean value of PI-II to determine the transition curve of I-II, 

but the results of model predictions and the experimental 

results are in good agreement, this shows that the average 

results of the phase boundary of this transition and 

experiment is very close to the. In fact, our model predicted 

results and experimental results or have a certain error, this 

may be caused because we neglected the effect of 

compression of the pressure coefficient. 

 

 
Figure 1. A comparison for T-P phase diagram of bulk Si 

and the melting curve of Si  nanocrystalamong the model 

predictions and experimental and other the oretical results 

 

 
Figure 2. A comparison for T-P phase diagram of bulk 

Ge among the model predictions and experimental and 

other theoretical results 

 

The solid lines denote model predictions in terms of 

Eqs. (6) where necessary parameters used are listed in 

Table 1. The ymbols Δ , + and Ο show experimental 

results. The dash lines denote other theoretical results.

Table 1. Necessary parameters for calculating T-P phase diagram of Si and Ge and the melting curve of Si nanocrystals in 

terms of Eqs. (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 I-L transition I-II transition II-L transition 

 Si Ge  Si Ge  Si Ge 

TmI 1693 1210.4 TI-II
d 273 273 Tt

f 960 714 

   PI-II
d 12 10 Pt

f 11.6 9.915 

VI
a 12.06 13.64 VI

a 11.00 11.93 VII
a 8.53 9.66 

VL
a 10.93 12.94 VII

a 8.53 9.66 VL
a 10.93 12.94 

κI
b 1.02 1.33    κII

b 0.885 1.19 

κL 10.00 10.00    κL 10.00 10.00 

f Ic 3.707 2.252    f IIc 2.797 1.589 

γ 0.765 0.581    γ 0.765 0.581 

ΔHI-L 50.55 36.94 ΔHI-II
e 0.78 0.2 ΔHII-L

e 53.67 37.74 
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Fig.3 A comparison for TI-L(P) curve of bulk CO2-I 

between the model prediction and experimental results. 

The solid line denotes the model prediction in terms of 

Eqs. (6) where necessary parameters used are: TmI = 

215.55 K, VL = M/ρL = 12.43 cm3⋅ g-atom-1 with M 

=14.67 g⋅ g-atom-1 and ρL = 1.18 g⋅ cm-3, VI = 10.65 

cm3⋅ g-atom-1, κI = 1/BI =8.06×10-11 Pa-1 with BI = 12.4 

GPa, κL ≈ 100×10-11 Pa-1 as a first order approximation is 

equal to the κL value of CS2 since CS2 as a linear 

molecule has a similar behavior of CO2,ΔHI-L = 2.649 

KJ⋅ g-atom-1, γ = 0.00913 J⋅ m-2, and fI = 0.5613 J⋅ m-2 

is calculated by Eq.(6) with hI = (21/2/2)aI = 0.3575 nm 

where aI = 0.5056 nm for Pa3 structure and ΔSvibI-L 

=8.856 J⋅ g-atom-1⋅ K-1. The dot lines show the 

experimental phase diagram. 

 

 
 

Figure 3. A comparison for TI-L(P) curve of bulk 

CO2-I between the model prediction and experimental 

results 

 

Figure.4 presents comparison between the model 

predictions of Eq. (6) and experimental result of pressure 

dependent melting of Al2O3. As shown in the figure, Tm 

increases as P increases. This is evidently induced by 

positive volume change V during the melting. Thus, 

However, the low size limit of nanocrystals for the 

application of Pi in Eq. (6) must be considered, a crystal is 

characterized by its long-range order and the smallest 

nanocrystal should have at least a half of the atoms 

located within the particle [17]. Hence, the smallest Dmin 

is 2D0. For Al2O3, Dmin =1.146 nm in term of D0=3h for 

nanocrystals [7]. The curvature-induced pressure P 

approximately equals to 20.10 GPa by Laplace-Young 

equation Pi=4f/D associated with Eq. (2). The value of 

Tm on the melting curve Tm(P) must be determined. As 

shown in the figure, Clapeyron equation, without any 

adjustable parameter, is consistent with the experimental 

result and other theoretical prediction [13-15]. The 

Tm(P)-P relationship in Figs. 1 is made by a 

generalization where the internal pressure of small 

particles is considered to be equivalent to that of the bulk 

one. 
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Figure 4. Presents comparison between the model 

predictions of Eq. (6) and experimental result of pressure 

dependent melting of Al2O3 

 

Figs.5 presents comparison between the model 

predictions of Eq. (6) and experimental result of pressure 

dependent melting of MgO. As shown in the figure, Tm 

increases as P increases. This is evidently induced by 

positive volume change V during the melting.Thus, 

However, the low size limit of nanocrystals for the 

application of Pi in Eq. (6) must be considered, a crystal is 

characterized by its long-range order and the smallest 

nanocrystal should have at least a half of the atoms 

located within the particle [17]. Hence, the smallest Dmin 

is 2D0. For MgO, Dmin =1.284nm in term of D0=3h for 

nanocrystals . The curvature-induced pressure P 

approximately equals to 25.39  GPa by Laplace-Young 

equation Pi=4f/D associated with Eq. (2). The value of 

Tm on the melting curve Tm(P) must be determined. As 

shown in the figure, Clapeyron equation, without any 

adjustable parameter, is consistent with the experimental 

result and other theoretical prediction. The Tm(P)-P 

relationship in Figs.2 is made by a generalization where 

the internal pressure of small particles is considered to be 

equivalent to that of the bulk one. 
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Figure 5. Presents comparison between the model 

predictions of Eq. (6) and experimental result of pressure 

dependent melting of MgO 
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Since Clapeyron equation may govern all first-order 

phase transitions, the above consideration may be 

generalized for different phase transitions. Moreover, the 

success of Eq. (6) implies that the both assumptions of 

essentially ΔHm being a function of temperature and ΔVm 

being a function of pressure are reasonable. 

4. CAPTIONS 

Fig.1 A comparison for T-P phase diagram of bulk Si 

and the melting curve of Si nanocrystal among the model 

predictions and experimental and other theoretical results. 

The solid lines denote model predictions in terms of Eqs. 

(6) where necessary parameters used are listed in Table.1. 

The dash and dot lines denote other theoretical results. 

Other symbols denote I-II transition pressure at room 

temperature where n denotes the theoretical result, + 

denotes the experimental results under non-hydrostatic 

pressure, ♦ , ◊ and ∇  denote the experimental results 

under hydrostatic pressure. For the melting of Si 

nanocrystal, the two dash lines show the predicted results 

where the corresponding TmI(D) values denoted as × 

(1478 K) 

and ▲ (1371 K) are obtained from other theoretical 

result and Eq. (6), respectively. For comparison, the dot 

line gives the theoretical result for melting of Si 

nanocrystal.  

Figure. 2 A comparison for T-P phase diagram of bulk 

Ge among the model predictions and experimental and 

other theoretical results. The solid lines denote model 

predictions in terms of Eqs. (6) where necessary 

parameters used are listed in Table.1. The symbols Δ, + 

and Ο show experimental results. The dash lines denote 

other theoretical results. 

Figure. 3 A comparison for TI-L(P) curve of bulk CO2-

I between the model prediction and experimental results. 

The solid line denotes the model prediction in terms of 

Eqs. (6) where necessary parameters used are: TmI = 

215.55 K, VL = M/ρL = 12.43 cm3⋅ g-atom-1 with M 

=14.67 g⋅ g-atom-1and ρL = 1.18 g⋅ cm-3, VI = 10.65 

cm3⋅ g-atom-1, κI = 1/BI =8.06×10-11 Pa-1 with BI = 12.4 

GPa, κL ≈ 100×10-11 Pa-1 as a first order approximation is 

equal to the κL value of CS2 since CS2 as a linear 

molecule has a similar behavior of CO2,ΔHI-L = 2.649 

KJ⋅ g-atom-1, γ = 0.00913 J⋅ m-2, and fI = 0.5613 J⋅ m-2 

is calculated by Eq.(6) with hI = (21/2/2)aI = 0.3575 nm 

where aI = 0.5056 nm for Pa3 structure and ΔSvibI-L 

=8.856 J⋅ g-atom-1⋅ K-1. The dot lines show the 

experimental phase diagram.  

Figure. 4 The pressure-temperature melting diagram of 

Al2O3, where the solid line shoes the model prediction of 

Eq. (6). The theoretical and experimental results are also 

plotted in the figure. The symbols ■ and ▲ denote the 

theoretical estimations and the experimental observations 

[13]. The necessary parameters in Eq. (6) are as follows: 

Tm = 2327 K [18], Hm = 21.76 KJ g-atom-

1[19],Sm=Hm/Tm=9.35Jg-atom-1K-1, Sm=Sel+Spos+Svib, Sel 

is negligibly small, and Spos=-R[xAln(xA)+ xVln(xV)], 

where xA= 1/(1+ΔVm) and xV=ΔVm /(1+ΔVm) are the 

molar fractions of the host material and vacancies, 

respectively [20], and ΔVm is the volume difference 

between the crystal and corresponding fluid at Tm. As 

result, Svib= Sm-Spos or Svib  Sm+ R[xAln(xA)+ xVln(xV)] 

[21]. ΔVm=(VL-VS)/VS, Svib=5.6 Jg-atom-1K-1, h = 0.191 

nm [18],  = 0.690 Jm-2 , S =3.86×10-12 Pa-1 is 

determined by  =1/B with B =289.55 GPa being the bulk 

modulus [21], VS = 5.14 cm3 g-atom [21], VL = 6.16 

cm3g-atom-1 [18], L =57.9×10-12 Pa-1 as a first-order 

approximation under higher pressure, we assume L  

15S [13]. f is calculated through Eq. (2) and f = 4.5 Jm-2. 

5. CONCLUSION 

In summary, we have demonstrated the reliability of simple 

thermodynamic model in calculating the high pressure 

melting of solid by comparisons between obtained melting 

temperature and experimental melting data for Al2O3 and 

MgO. It is found that the model predictions are consistent 

with the present experimental and theoretical results. Since 

the Clapeyron equation may govern all first-order phase 

transitions, the Clapeyron equation supplies a new way to 

determine the T-P phase diagram of materials. 
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