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ABSTRACT

An analysis is presented to investigate the influences of pressure work on MHD natural convection flow along a
uniformly heated vertical wavy surface. The governing equations are transformed into dimensionless non-
similar equations by using set of suitable transformations and solved numerically by the implicit finite difference
method, known as Keller-box scheme. Numerical results for the velocity profiles, temperature profiles, skin
friction coefficient, the rate of heat transfers, the streamlines and the isotherms are shown graphically and skin
friction coefficient and rate of heat transfer have been shown in tabular form for different values of the selective

set of parameters.
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1. INTRODUCTION

The pressure work effect plays an important role in
natural convection in various devices which are subjected to
large deceleration or which operate at high rotational speeds
and also in strong gravitational field processes on large scales
(on large planets) and in geological processes. Joshi and
Gebhart [1] first investigated the effect of pressurc stress
work and viscous dissipation in some natural convection
flows. The natural convection along a vertical wavy surface
was first studied by Yao [2] and using an extended Prantdl’s
transposition theorem and a finite-difference scheme. He
proposed a simple transformation to study the natural
convection heat transfer from isothermal vertical wavy
surfaces, such as sinusoidal surface. Moulic and Yao [3] also
investigated mixed convection heat transfer along a vertical
wavy surface. Alam et al. [4] have also studied the problem
of free convection from a wavy vertical surface in presence
of a transverse magnetic field. Combined effects of thermal
and mass diffusion on the natural convection flow of a
viscous incompressible fluid along a vertical wavy surface
have been investigated by Hossain and Rees [5]. Hossain et
al. [6] have studied the problem of natural convection of fluid
with temperature dependent viscosity along a heated vertical
wavy surface. Natural and mixed convection heat and mass
transfer along a vertical wavy surface have been investigated
by Jang. [7]. Molla et al. [8] have studied natural convection
flow along a vertical wavy surface with uniform surface
temperature in presence of heat generation/absorption.
Tashtoush and Al-Odat [9] investigated magnetic field effect
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on heat and fluid flow over a wavy surface with a variable
heat flux. Recently Parveen and Alim [10-11] investigated
Joule heating effect on Magnetohydrodynamic natural
convection flow along a vertical wavy surface with viscosity
dependent on temperature and studied effect of temperature
dependent thermal conductivity on magnetohydrodynamic
natural convection flow along a vertical wavy surface. They
found that the temperature distribution within the boundary
layer rises considerably for the higher values of Joule
heating. Significant effects Joule heating have also been
found on the local skin friction rate of heat transfer whereas
these to physical quantities rise due to the values of thermal
conductivity variation parameter enhancement. Alim et al.
[12] considerd the effects of Temperature Dependent
Thermal Conductivity on Natural Convection Flow along a
Vertical Wavy Surface with Heat Generation. Miraj et al.[13]
investigated effects of Pressure Work and Radiation on
Natural Convection Flow around a Sphere with Heat
Generation. The thermal conductivity of the fluid had been
assumed to be constant in all the above studies. However, it
is known that this physical property may be change
significantly with temperature.

The present study is to incorporate the idea of the effects of
pressure work on MHD natural convection flow of viscous
incompressible fluid along a uniformly heated vertical wavy
surface. Numerical results of the velocity profiles,
temperature profiles, local skin friction coefficient, rate of
heat transfer, the streamlines and the isotherms are shown
graphically. Some selected results of skin friction coefficient
and rate of heat transfer for different values of pressure work
parameter Ge have been shown tabular form and then
discussed.



2. FORMULATION OF THE PROBLEM

Steady two dimensional laminar free convection boundary
layer flow of a viscous incompressible and electrically
conducting fluid along a vertical wavy surface in presence of
uniform transverse magnetic field of strength By with
physical properties is considered. It is assumed that the wavy
surface is electrically insulated and is maintained at a uniform
temperature 7,,., The fluid is stationary above the wavy plate
and is kept at a temperature 7. The surface temperature 7,, is
greater than the ambient temperature 7., that is, 7,, > 7.. The
flow configuration of the wavy surface and the two-
dimensional Cartesian coordinate system are shown in
figurel
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Figure 1: Physical model and coordinate system

The boundary layer analysis outlined below allows & (X)

being arbitrary, but our detailed numerical work assumed that
the surface exhibits sinusoidal deformations. The wavy
surface may be defined by

YW:E(X)msin{"—’;ﬁj (1)

Where, « is the amplitude and L is the wave length associated
with the wavy surface.

The governing equations of such flow of magnetic field along
a vertical wavy surface under the usual Boussinesq
approximations can be written in a dimensional form as:
Continuity Equation
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where (X, Y) are the dimensional coordinates along
and normal to the tangent of the surface and (U, V) are the
velocity components parallel to (X, Y), g is the acceleration
due to carth gravity, P is the dimensional pressure of the
fluid, 7 is the temperature of the fluid in the boundary layer,
Cp is the specific heat at constant pressure, x4 is the dynamic
viscosity of the fluid in the boundary layer region depending
on the fluid temperature, p is the density, v is the kinematic
viscosity, where v = g/ p, k is the thermal conductivity of
the fluid, f is the volumetric coefficient of thermal expansion.

B, is the strength of magnetic field, o, is the electrical
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conductivity of the fluid and V*? is the Laplacian operator,
A2 ~2
‘ 2

PR
oy
The boundary conditions for the present problem are

U=0V=0T=T, atY =¥, = 5(X); -
U=0T=T,P=p,asY »>=

Where, P, is the pressure of fluid outside the boundary layer.
Using Prandtl’s transposition theorem to transform the
irregular wavy surface into a flat surface as extended by Yao
[2] and boundary layer approximation, the following
dimensionless variables are introduced for non-dimensional
governing equations
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Where, 6 is the dimensionless temperature function and (u, v)
are the dimensionless velocity components parallel to (x, ).
Here p is the dimensionless pressure of the fluid, L is the
wave length associated with the wavy surface and Gr is the
Grashof number. Introducing the above dimensionless
dependent and independent variables into equations (2)—(5),
the following dimensionless form of the governing equations
are obtained after ignoring terms of smaller orders of
magnitude in Gr .
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It is worth noting that the o, and o,, indicate the first and

second derivatives of ¢ with respect to x, therefore, o, =

dc/dX =do/dx and o, = do, / dx.

In the above equations Pr, M and Ge are respectively known

as the Prandtl number, the magnetic parameter and pressure

work parameter which are defined as
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For the present problem this pressure gradient ( ap/ ox=0)
is zero. Thus, the elimination of dp/dy from equations (9)
and (10) leads to
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The corresponding boundary conditions for the present
problem then turn into
u=v=00=1at y=0 1
u=0,0=0 as y—>x J
Now we introduce the following transformations to reduce
the governing equations to a convenient form:

3
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Where, f(x, n) is the dimensionless stream function, # is the
dimensionless similarity variable and y is the stream function
that satisfies the continuity equation (8) and is related to the
velocity components in the usual way as
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Introducing the transformations given in equation (15) and

using (16) into equations (13) and (11) are transformed into
the new co-ordinate system. Thus the resulting equations are
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The boundary conditions (14) now take the following form:
S(x,0)= f'(x,00=0, 8(x,0)=1
f(x,2)=0, O(x,2)=0
Here prime denote the differentiation with respect to #.
However, once we know the values of the functions fand ¢
and their derivatives, it is important to calculate the values of
the shearing stress 7, in terms of the local skin friction
coefficient Cy, and the rate of heat transfer in terms of local
Nusselt number Nu, from the following relations:
25 q.,X
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where, ¢, = —-k(n.VT)
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Using the transformation (15) and (21) into equation (20) the
local skin friction coefficient C, and the rate of heat transfer
in terms of the local Nusselt number Nu, take the following
forms:

Here n = is the unit normal to the surface.

%(Gr/.x)y"Cfx :,flm;?- f7(x,0) (22)
Gr_%x_%Nux =—J1+526'(x,0) (23)

For the computational purpose the period of oscillations in
the waviness of this surface has been considered to be .

3. METHOD OF SOLUTION

The governing partial differential equations are reduced to
dimensionless local non-similar equations by adopting
appropriate transformations. The transformed boundary layer
equations are solved numerically using Keller box method
described by Keller [14], Cebeci and Bradshaw [15] and used
by many other authors.

4. RESULTS AND DISCUSSION

The effect of pressure work on MHD natural convection flow
of viscous incompressible fluid along a uniformly heated
vertical wavy surface has been investigated. Although there
are four parameters of interest in the present problem, the
effects of pressure work parameter Ge, the magnetic
parameter M, Prandtl number Pr and the amplitude of the
wavy surface o on the surface shear stress, the rate of heat
transfer, the velocity and temperature, the streamlines and the
isotherms are focused. Numerical values of local shearing
stress and the rate of heat transfer are calculated from
equations (22) and (23) in terms of the skin-friction
coefficients Cfx and Nusselt number Nux respectively for a
wide range of the axial distance variable x starting from the
leading edge for different values of the parameters Pr, M, Ge
and «.

The velocity and temperature of the flow field is found to
change more or less with the variation of the flow parameters.
The effect of the flow parameters on the velocity and
temperature fields, the skin friction coefficients, the rate of
heat transfer are analyzed with the help of graphs.

The effects of the different values of Prandtl number Pr on
velocity and temperature have been shown in figures 2(a) and
2(b). For the higher values of Prandtl number Pr both the
velocity and the temperature decreases such that there exists a
local maximum of the velocity within the boundary layer.
Figure 2(a) shows that the velocity fall down slowly.The
maximum values of velocities are recorded as 0.46694,
0.42603, 0.37733, 0.34447 and 0.25209 for Prandtl number
Pr=10.72, 1.0, 1.5, 2.0 and 5.0 at the position of 7= 1.73814,
1.65930, 1.58311, 1.50946 and 1.36929 respectively and the
maximum velocity decreases by 46.01 %. The values of
temperature are recorded as 0.67087, 0.63111, 0.57801,
0.53793 and 0.40023 for Prandtl number Pr = 0.72, 1.0, 1.5,
2.0 and 5.0 at the position of 7 = 1.23788 and the
temperature decreases by 40.34 %. Figure 2(b) displays the
results that the change of temperature profiles in the 7-
direction reveals the typical temperature profiles for natural



convection boundary layer flow, i.e., the temperature is zero
at the boundary wall. It is observed that the velocity as well
as the boundary layer thickness decreases and the
temperaturc as well as the thermal boundary layer thickness
decreases for the increasing values of Prandtl number.

The effects for different values of magnetic parameter M on
the velocity and temperature profiles have been presented
graphically in figures 3(a) and 3(b). It is seen from the figure
3(a) that for the values of magnetic parameter M the velocity
decreasing up to the position of 7 = 5.5 from the wall. At the
position of 1= 5.5 velocity becomes constant that is velocity
profiles meet at a point and then cross the side and increasing
with magnetic parameter M. This is cause of the velocity
profiles having lower peak values for higher values of
magnetic parameter M tend to decreases comparatively
slower along 7-direction. The maximum values of velocities
are recorded as 0.47070, 0.45227, 0.41811, 0.38739 and
0.34726 for magnetic parameter M = 0.0, 0.5, 1.5, 2.5 and 4.0
respectively which occur at the same position 77 = 1.73814.
Here, it is observed that at n = 1.73814, the maximum
velocity decreases by 26.23 % as the magnetic parameter M
change from 0.0 to 4.0. The values of temperature are
recorded as 0.66954, 0.67611, 0.68875, 0.70068 and 0.71717
for magnetic parameter M = 0.0, 0.5, 1.5, 2.5 and 4.0 at the
same position of 1 = 1.23788 and the temperature increases
by 7.11 %. The change of temperature profiles in the 7-
direction also shows the typical temperature profiles for
natural convection boundary layer flow that is the value of
temperature profiles is 1.0 (one) at the boundary wall then the
temperature profiles decreases gradually along 7-direction to
the asymptotic value.

Figures 4(a) and 4(b) demonstrates the velocity and
temperature distribution for different values of the pressure
work parameter Ge. It has been seen from figure 4(a) that as
the pressure work parameter Ge increases, the velocities
rising up to the position of 77 = 1.8822 for the pressure work
parameter Ge and from that position of 7 velocities fall down
slowly and finally approaches to zero. It is also observed
from figure 4(b) that the temperature profiles increases with
the pressure work parameter Ge. The maximum values of
velocities are recorded as 0.48723, 0.48570, 0.48418,
0.48265 and 0.48113 for the pressure work parameter Ge =
0.0, 0.02, 0.04, 0.06, 0.08 respectively which occur at the
same position 7 = 1.73814 and the maximum velocity
decreases by 1.25 %. Temperatures are recorded as 0.71063,
0.70769, 0.70476, 0.70184 and 0.69893 for the pressure work
parameter Ge = 0.0, 0.02, 0.04, 0.06, 0.08 respectively at the
same position of 7 = 1.23788 and the temperature profiles
decreases by 1.65 %. Both the velocity and temperature
profiles accumulate nearly in the following points where 77 =
2.27434 for the pressure work parameter Ge = 0.0 to 0.08.

In figures 5(a) and 5 (b) the skin friction coefficient Cy and
local rate of heat transfer Nu, for different values of Prandtl
number Pr have been displayed. It is observed from the
figure 5(a) that for higher values of Prandtl number the skin
friction decreasing upto the axial position of x = 1.4 and then
skin friction becomes constant for all values of Prandtl
number Pr that is, skin friction coefficient meet together at
the position of x = 1.4 and cross the sides that means after the
axial position of x = 1.4 skin friction is increasing with
Prandt] number but frictional force at the wall always rising
towards downstream. It is seen from the figure 5(b) that for
higher values of Prandtl number the rate of heat transfer
decreases that is heat transfer slows down for higher Prandtl
number.
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In figures 6(a) and 6(b) effects of magnetic parameter A on
skin friction and the rate of heat transfer have been presented.
From figure 6(a) it is found that skin friction decreases
significantly for greater magnetic field strength. This is
physically realizable as the magnetic field retards the velocity
field and consequently reduces the frictional force at the wall.
However rate of heat transfer opposite pattern due to the
higher values of magnetic parameter M which are presented
in figure 6(b).

The effect of different values of the pressure work parameter
Ge on the skin friction coefficients and the rate of heat
transfer are shown graphically in figures 7(a) and 7 (b)
respectively. In this case the values of local skin friction
coefficient Cy, are recorded to be 1.13690, 1.08073. 1.02523,
0.97061 and 0.91713 for Ge = 0.0, 0.02, 0.04, 0.06, 0.08
which occur at same point x =1.0. From the figure 7(a), it is
observed that at x = 1.0, the skin friction coefficient decreases
by 19.33 % due to the higher value of the pressure work
parameter Ge, However, the values of rate of heat transfer are
found to be -2.49159, -2.15027, -1.82783, -1.52539 and -
1.24406 for Ge = 0.0, 0.02, 0.04, 0.06, 0.08 which occur at
same point x = 1.0. The rate of heat transfer coefficient
increases by 50.06 % due to the increased value of the
pressure work parameter Ge. It is seen from the figure 7(b)
that for higher values of the pressure work parameter Ge the
rate of heat transfer increases that is heat transfer rising up for
the higher pressure work parameter Ge.

Figure 8(a) and 8(b) show that streamlines and isotherms for
selected values of the pressure work parameter Ge = 0.0 and
0.09 with amplitude of waviness of the surface o = 0.2,
Prandtl number Pr = 0.72 and magnetic parameter M = 0.1
respectively. In Figure 8 (a) have been shown the value of
stream function w is 0.0 near the wall and then y increases
gradually in the downstream within the boundary layer and
away from the wall. In this case the maximum values of
stream function ., are found as 4.8 and 3.3 for the values
of the pressure work parameter Ge equal to 0.0 and 0.09
respectively. The isolines of temperature (isotherms)
distribution show that temperature decreases significantly as
the values of the pressure work parameter Ge increases which
have been presented in figure 8(b). The value of isotherm is
1.0 at the wall and isotherms decreases slowly along the y-
direction and finally approach to zero. The maximum values
of isotherms are recorded as 3.2 and 1.7 for the values of the
pressure work parameter (Ge equal to 0.0 and 0.09
respectively.

Some numerical values of skin friction coefficient (s and
rate of heat transfer Nu, are calculated from equations (22)
and (23) for the wavy surface from lower stagnation point at
x =0.0 to x =2.0 presented in tabular form in the Table 1.
Table 1: Skin friction coefficient and rate of heat transfer
against x for different values of the pressure work parameter
Ge with other controlling parameters Pr=0.72, « = 0.2, M =
0.1 and Ec = 10.0.



Ge=10.0 Ge=0.05
X
Cﬁ Nllx Cﬁ; Nll,
0.00000 0.74379 0.32836 0.74379 0.32836
0.10500 0.76926 0.21752 0.76002 0.23920
0.20500 0.83203 0.06873 0.81239 0.11983
0.30500 0.92525 -0.17575 0.89223 -0.07829
0.40500 1.02919 -0.54708 0.97926 -0.37571
0.50500 1.10382 -0.96659 1.03533 -0.69553
0.60500 1.11319 -1.24284 1.02890 -0.87541
0.70500 1.06473 -1.29673 0.97017 | -0.86429
0.80500 | 0.99911 -1.24022 0.89811 -0.76772
0.90500 | 0.95159 | -1.20868 0.84436 | -0.69606
1.00500 | 0.94034 | -1.28619 0.82379 | -0.70861
1.10500 | 0.97383 -1.54252 0.84207 | -0.84783
1.20500 1.05693 -2.07866 0.90115 -1.17371
1.30500 1.18834 -3.02902 0.99715 -1.76117
1.40500 1.34659 -4.42222 1.10937 -2.60161
1.50500 1.47550 -5.85268 1.19151 -3.40197
1.60500 1.51353 -6.56203 1.19853 -3.69180
1.70500 1.46037 -6.35288 1.13631 -3.40983
1.80500 1.37292 | -5.76369 1.05205 | -2.93078
1.90500 1.30541 -5.32574 0.98665 | -2.57213
2.00000 1.28639 | -5.29208 0.96020 | -2.46405

Velocity profiles

Temperature profiles

Figure 2: (a) Velocity and (b) Temperature
profiles against 7 or different values of Pr with o =
0.2, M =0.1 and Ge = 0.01.
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Velocity profiles

Temperature profiles

Figure 3: (a) Velocity and (b) Temperature
profiles against 7 for different values of M with o
=0.2, Pr=0.72 and Ge = 0.01.
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Temperature profiles

Figure.4: (a) Velocity and (b) Temperature
profiles against 7 for different values of Ge with a

=02, Pr=072and M=0.1.
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Figure 6: (a) Skin friction coefficient and (b) Rate

of heat transfer against x for different values of M
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Figure 5: (a) Skin friction coefficient and (b) Rate
of heat transfer against x for different values of Pr
with o = 0.2, M = 0.1 and Ge = 0.01.
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Rate of heat transfer

Figure 7: (a) Skin friction coefficient and (b) Rate
of heat transfer against x for different values of Ge
with « = 0.2, Pr=10.72 and M= 0.1.

0.5

%

Figure 8: (a) Streamlines and (b) Isotherms for Ge = 0.0
(Red solid lines), Ge = 0.09 (Black dashed lines), with «
=0.2,Pr=0.72and M=0.1.

5. COMPARISON WITH PREVIOUS WORK

A comparison of the present numerical results of the skin
friction coefficient Cg, and the heat transfer coefficient Nu,
with Parveen and Alim [11] have been shown in Table 2.
Here, the magnetic parameter M and the pressure work
parameter Ge are ignored to make the numerical data
comparable with Parveen and Alim [11] for different values
of Prandtl number Pr. It is obvious from the comparison table
that the present results agreed well with the results of Parveen
and Alim [11].

Table 2: Comparison of the values of the skin friction
coefficient Cx and the heat transfer coefficient Nu, with
Parveen and Alim [11] and present work for the variation of
Prandtl number Pr while M = 0.0 and Ge = 0.0 with « =0.2.
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Cf, N”x
Pr IParveen and| Present |Parveen and| Present
Alim [11] work | Alim[11] | work
0.73 | 0.96181 096176 | 0.35267 |0.35272
1.73 | 0.83837 | 0.83842 | 0.47511 |0.47509
424 | 0.71227 | 0.71232 | 0.63141 |0.63139
7.00 0.64567 0.64572 0.73367 |0.73373

6. CONCLUSION

The effects of the Prandtl number Pr, the magnetic parameter
M, the pressure work parameter Ge and the amplitude of
wavy surface & on MHD natural convection flow of viscous
incompressible fluid along a uniformly heated vertical wavy
surface have been studied. From the present investigations
the following conclusions may be drawn:

Improved value of the pressure work parameter Ge the
velocity profiles, the temperature profiles increases slowly
and the rate of heat transfer coefficient increases with
pressure work parameter. The local skin friction coefficient
decreases due to the increased value of the pressure work
parameter.

For the higher values of Prandtl number Pr the velocity,
temperature decreases slowly and finally approach to zero,
the rate of heat transfer decreases while the skin friction
initialy decreases, becomes constant near x = 1.4 after that
position skin friction increase with Prandtl number but
frictional force at the wall always rising towards downstream.
Magnetic field strength enhancement causes the temperature
and the rate of heat transfer rise and the velocity and skin
friction coefficient reduction within the boundary layer. At
the position of n = 5.5 the velocity becomes constant and
then cross the side and increasing with magnetic parameter.
For increasing values of pressure work parameter Ge the
stream function y leads to increase. The isolines of
temperature (isotherms) show that temperature is 1.0 at the
wall and decreases slowly away from the wall and finally
approach to zero..

7. NOMENCLATURE

By Applied magnetic field strength

Ce, Local skin friction coefficient

Cp Specific heat at constant pressure [J.kg-1.K-1]
£ Dimensionless stream function

g Acceleration due to gravity [ms?)

Gr Grashof number

k Thermal conductivity [Wm'K™']

k. Thermal conductivity of the ambient fluid [Wm™K™']
L Characteristic length associated with the wavy
surface [m]

n Unit normal to the surface

Nu, Local Nusselt number

P Pressure of the fluid [Nm™]

Pr Prandtl number

q, Heat flux at the surface [Wm™]

T Temperature of the {luid in the boundary layer [K]
T, Temperature at the surface [K]

. Temperature of the ambient fluid [K]



X ¥

Dimensionless velocity components along the (x, y)
axes [ms™']

Axis in the direction along and normal to the tangent
of the surface

Greek symbols

a Amplitude of the surface waves

g Volumetric coefficient of thermal expansion [K™']

n Dimensionless similarity variable

a Dimensionless temperature function

W Stream function [mzs‘l]

U Viscosity of the fluid [kgm™'s™]

M Viscosity of the ambient fluid

v Kinematic viscosity [m’s™]

) Density of the fluid [kgm™]

oy Electrical conductivity

T Shearing stress.
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