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ABSTRACT   

An investigation of unsteady MHD natural convection flow with Hall effects of an electrically conducting, viscous, 

incompressible and heat absorbing fluid past an exponentially accelerated vertical plate with ramped temperature through a 

porous medium in the presence of thermal diffusion is carried out. Exact solution for fluid velocity and fluid temperature is 

obtained in closed form by Laplace transform technique. The expressions for shear stress and rate of heat transfer at the plate are 

also derived. The numerical values of fluid velocity and fluid temperature are displayed graphically whereas those of shear stress 

and rate of heat transfer at the plate are presented in tabular form for various values of pertinent flow parameters.  

Keywords: Unsteady MHD natural convection, Hall current, Ramped temperature, Heat absorbing fluid, Exponentially 

accelerated plate.  

 

 

 

1. INTRODUCTION 

Effects of heat generation/absorption have significant 

contribution in the heat transfer characteristics of several 

physical problems of practical interest viz. convection in 

Earth’s mantle, post-accident heat removal, fire and 

combustion modeling, fluids undergoing exothermic and/or 

endothermic chemical reaction, development of metal waste 

from spent nuclear fuel, cooling of electronic components [1], 

applications in the field of nuclear energy etc. Therefore, it is 

appropriate to consider temperature dependent heat source 

and/or sink which may have strong influence on heat transfer 

characteristics of the fluid flow problems under consideration. 

Taking into consideration of this fact, Sparrow and Cess [2] 

investigated the effect of temperature-dependent heat sources 

or sinks in a stagnation point flow. Relevant studies on the 

topic are also due to Moalem [3], Kamel [4], Chamkha [5] and 

Ferdows et al. [6, 7].  

Natural convection flows are generally modeled by 

researchers under the consideration of uniform surface 

temperature or uniform heat flux. However there exist several 

problems of practical interest which may require non-uniform 

or arbitrary thermal condition at the plate. Keeping in view 

this fact, several researchers investigated natural convection 

flow from a vertical plate with ramped temperature. Mention 

may be made of the research studies of Chandran et al. [8], 

Seth and Ansari [9], Samiulhaq et al. [10], Das [11], 

Nandkeolyar et al. [12] and Kundu et al. [13]. 

It is noticed that when the density of an electrically 

conducting fluid is low and/or applied magnetic field is strong, 

Hall current plays a vital role in determining the flow-features 

of the fluid flow problems because it induces secondary flow 

in the flow-field (Sutton and Sherman [14]). Considering the 

importance of such study, Seth et al. [15] investigated the 

effects of Hall current on hydromagnetic natural convection 

flow of a heat absorbing fluid past an impulsively moving 

vertical plate with heat and mass transfer. 

Aim of the present investigation is to study unsteady 

hydromagnetic natural convection flow with Hall effects of a 

viscous, incompressible, electrically conducting and 

temperature dependent heat absorbing fluid past an 

exponentially accelerated vertical plate through fluid saturated 

porous medium when temperature of the plate has a 

temporarily ramped profile. 

 

2. FORMULATION OF THE PROBLEM  

Consider unsteady hydromagnetic natural convection flow 

of an electrically conducting, viscous, incompressible and 

temperature dependent heat absorbing fluid past an infinite 

moving vertical plate with ramped temperature embedded in a 

fluid saturated porous medium. Choose the coordinate system 

in such a way that  x  axis is along the length of the plate in 

upward direction,  y  axis normal to the plane of the plate in 

the fluid and  z axis perpendicular to   x y  plane. A 
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uniform transverse magnetic field 
0

B
 
is applied in a direction 

which is parallel to  y  axis. Initially i.e. at time 0 t , both 

the plate and fluid are at rest and are maintained at uniform 

temperature

T . At time ' 0t , plate is exponentially 

accelerated with velocity 
0

 a tU e  in  x  direction. 

Temperature of the plate is raised or lowered to 

0( ) '/ 
   wT T T t t  when 

0't t  and thereafter i.e. at
0' t t , 

plate is maintained at uniform temperature 
wT . a  and 

0U  are, 

respectively, an arbitrary constant and uniform velocity of the 

plate i.e. velocity for impulsive movement of the plate. 

Geometry of the problems is presented in Figure 1. 

 

 

 

Figure 1. Geometry of the problem 

Since plate is of infinite extent in x  and z  directions and 

is electrically non-conducting, all physical quantities except 

pressure, depend on and y t  only. It is assumed that the 

induced magnetic field produced by fluid motion is negligible 

in comparison to the applied one. So the magnetic field 

0 ,(0, 0).B B  This assumption is justified because magnetic 

Reynolds number is very small for metallic liquids and 

partially ionized fluids which are commonly used in industrial 

processes. Also no external electric field is applied so the 

effects of polarization of fluid are negligible. 

With these assumptions, the governing equations for 

unsteady hydromagnetic natural convection flow of an 

electrically conducting, viscous, incompressible and 

temperature dependent heat absorbing fluid in a uniform 

porous medium, under Boussinesq approximation, taking Hall 

effects into account, in non-dimensional form (Seth et al. 

[15]), are given by 
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Where F=u+iw. 

The non-dimensional variables and parameters used, are 

defined as 
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Where 
1, , , , and ,r rm M K P G  are respectively, Hall current 

parameter, Magnetic parameter, permeability parameter, 

Prandtl number, heat absorption parameter and Grashof 

number. 

Initial and boundary conditions, in non-dimensional form, 

are given by 

 

0, 0 F T               for 0 and 0, y t                        (3a) 

 


at

F e                        at 0 for 0, y t                           (3b)  

 

T t                           at 0 for 0 1,  y t                     (3c)  

 

1T                            at 0 for 1, y t                        (3d)  

 

0, 0 .as for 0   F T y t                    (3e)  

 

It is obvious from equations (1) and (2) that energy equation 

(2) is uncoupled from the momentum equation (1). Therefore, 

we have to obtain first the solution for fluid temperature 

( , )T y t  by solving equation (2) and then the solution for fluid 

velocity ( , )F y t  has to be obtained with the use of solution for 

( , )T y t in equation (1). 

Using Laplace transform technique, exact solution for fluid 

temperature ( , )T y t  and fluid velocity ( , )F y t  is obtained and 

is presented in the following form after simplification:  

 

(i) For 1rP  

 

( , ) ( , ) ( 1) ( , 1),   T y t P y t H t P y t                                  (4)  
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(ii) For 1rP  

 

1 1( , ) ( , ) ( 1) ( , 1),   T y t P y t H t P y t                            (6) 

 

  1 1( , ) ( ,1, , , ( ,) )  
at

F y t e f y a t G y t 1( 1) ( , 1) ,  H t G y t
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r

P y t f y t P  
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Expressions for
1 2 3, andf f f are defined in Appendix-I. 

 
2.1 Shear stress and rate of heat transfer at the plate 

 

Expressions for the primary shear stress , x
 secondary 

shear stress  z
 and rate of heat transfer at the plate 

uN
 
are 

obtained and are presented in the following form  
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Expressions for 
4 5andf f are defined in Appendix-I.                                                                 

 

3. RESULTS AND DISCUSSIONS 

To study the nature of flow-field, the numerical values of 

primary velocity u  and secondary velocity w  in the boundary 

layer region, computed  from the analytical solution (5) are 

displayed graphically versus boundary layer coordinate y  for 

various values of plate acceleration parameter ,a  Hall current 

parameter m , heat absorption parameter    and time t  in 

Figures 2 to 5 taking magnetic parameter 10,M  

permeability parameter 1 0.4K and Prandtl number 

0.71rP
 
(ionized air). 

It is revealed from Figures 2 to 5 that, secondary fluid 

velocity w  attains a distinctive maximum value in the region 

near the plate and then decreases properly on increasing 

boundary layer coordinate y  to approach free stream value. It 

is noticed from Figure 2 that, u and w  increase on increasing

a . This implies that plate acceleration parameter tends to 

accelerate fluid flow in both the primary and secondary flow 

directions. It is revealed from Figure 3 that u  and w  increase 

on increasing m . This implies that Hall current tends to 

accelerate fluid flow in both the primary and secondary flow 

directions. This is due to the reason that Hall current induces 

secondary flow in the flow field. It is noticed from Figure 4 

that u  and w  decrease on increasing . This implies that heat 

absorption tends to retard fluid flow in both the primary and 

secondary flow directions. It is evident from Figure 5 that u  

and w  increase on increasing .t This implies that primary and 

secondary fluid velocities are getting accelerated with the 

progress of time.  

The numerical values of fluid temperature ,T  computed 

from analytical solution (4), are displayed graphically versus 

boundary layer coordinate y  in Figures 6 and 7 for various 

values of heat absorption parameter    and time .t  It is 

noticed from Figures 6 and 7 that T decreases on increasing   

whereas it increases on increasing t . This implies that heat 

absorption tends to reduce fluid temperature. As time 

progresses, there is an enhancement in fluid temperature. It is 

observed from Figures 6 and 7 that fluid temperature T  

attains its maximum value at the surface of the plate and it 

decreases properly on increasing boundary layer co-ordinate 

y  to approach free stream value.  

The numerical values of shear stress  x
 and  z

 at the plate 

due to primary and secondary flows respectively, computed 

from analytical expression (8), are presented in the tabular 

form in the Tables 1 and 2 for various values of a, , andm t

taking 10,M 1 0.4K  and 0.71rP  whereas those of rate 

of heat transfer 
uN  at the plate, calculated from the analytical 

expression (9), are provided in Table 3 for different values of 

and t  taking 0.71.rP  It is evident from Table 1 that 

primary shear stress  x  at the plate decreases on increasing m  

whereas it increases on increasing a . Secondary shear stress 

 z
 at the plate increases on increasing either m  or a . This 

implies that plate acceleration parameter tends to enhance 

primary as well as secondary shear stress at the plate. Hall 

current tends to reduce primary shear stress at the plate 

whereas it has a reverse effect on the secondary shear stress at 

the plate. It is found from Table 2 that  x  increases on 

increasing either or t  whereas   z  decreases on increasing 

either or t . This implies that primary shear stress at the plate 

is getting enhanced whereas secondary shear stress at the plate 

is getting reduced with an increase in heat absorption and with 

the progress of time. It is evident from Table 3 that rate of heat 

transfer 
uN  at the plate increases on increasing either   or t . 

This implies that heat absorption tends to enhance rate of heat 
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transfer at the plate. As time progresses, rate of heat transfer at 

the plate is getting enhanced. 

 

4. CONCLUSION 

    Noteworthy results are summarized below. Plate 

acceleration parameter and Hall current tend to accelerate fluid 

flow in both the primary and secondary flow directions. Heat 

absorption tends to decelerate fluid flow in both the primary 

and secondary flow directions. Primary and secondary fluid 

velocities are getting accelerated with the progress of time. 

Heat absorption tends to reduce the fluid temperature. Fluid 

temperature is enhanced with the progress of time. Plate 

acceleration parameter tends to enhance primary and 

secondary shear stress at the plate. Hall current tends to reduce 

the primary shear stress at the plate whereas these agencies 

have reverse effect on the secondary shear stress at the plate. 

Heat absorption tends to enhance primary shear stress at the 

plate whereas it has a reverse effect on the secondary shear 

stress at the plate. Primary shear stress at the plate is getting 

enhanced whereas secondary shear stress at the plate is getting 

reduced with the progress of time. Heat absorption tends to 

enhance rate of heat transfer at the plate. Rate of heat transfer 

at the plate is getting enhanced with progress of time. 
 

 
Figure 2. Velocity profiles when 0.5,m

                                  
3 0.510, and  r tG

 

 
Figure 3. Velocity profiles when 0.2,a  

3 and 0.510,  r tG  

   
Figure 4. Velocity profiles when 0.2,a  

10, and 0.50.5,   rG tm
 

 

 
Figure 5. Velocity profiles when 0.2,a

10 and 30.5,   rGm  

 

 
Figure 6. Temperature profiles when 0.5t  

 

 
Figure 7. Temperature profiles when 3   
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Table 1. Shear stress at the plate when 3   and 0.5t  

 
  m a

 

0.2 0.8 1.4 

  0.5 6.3152 9.1449 13.0477 

 x
 1.0 5.3550 7.8819 11.3826 

 1.5 4.5521 6.8443 10.0359 

 0.5 1.4990 1.91875 2.4735 

 z
 1.0 2.2295 2.81451 3.5849 

 1.5 2.5084 3.10022 3.8763 

 

Table 2. Shear stress at the plate when a=0.2 and m=0.5 
 

   t  0.3 0.5 0.7 

 1 6.1317 6.2304 6.6870 

 x
 3 6.2948 6.3152 6.7591 

 5 6.3977 6.4526 6.8082 

 1 1.5962 1.5716 1.5598 

 z
 3 1.5469 1.5390 1.5158 

 5 1.5119 1.5028 1.4817 

 

Table 3. Rate of heat transfer at the plate when P 0.71r
 

 

  t
 

1 3 5 

 0.3 0.0960 0.2821 0.4185 

 uN
 

0.5 0.2258 0.5527 0.7688 

 0.7 0.3754 0.8312 1.1198 
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NOMENCLATURE 

 

a  Plate acceleration parameter 

0B  Uniform magnetic field 

pc  Specific heat at constant pressure 

g  Acceleration due to gravity 

rG  Thermal Grashof number 

K  Permeability of porous medium 

1K  Permeability parameter 
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m  Hall current parameter 
M  Magnetic parameter 

rP  Prandtl number 

0Q  Heat absorption coefficient 

T  Fluid temperature 

0t  Characteristic time 

u  Fluid velocity in x  direction 

w  Fluid velocity in z  direction 
  

Greek letters 

  Thermal diffusivity 

   Coefficient of thermal expansion 

  Electrical conductivity 

  Fluid density 

  Kinematic coefficient of viscosity 

e
 Cyclotron frequency 

 e
 Electron collision time 

  Heat absorption parameter 
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