
 

 

 

 

 

Nomenclature 

Br Brinkman number Greek symbols 

Cp specific heat at constant pressure [J kg-1 K -1] α thermal diffusivity [m2 s-1] 

FM momentum accommodation coefficient γ    specific heat ratio 

FT thermal accommodation coefficient λ    molecular mean free path  [m] 

h convective heat transfer coefficient [W m-2 K-1] μ dynamic viscosity [Pa s] 

k thermal conductivity [W m-1 K-1] ρ   density [kg m-3] 

Kn Knudsen number β jump temperature magnitude  

Nu Nusselt number  dimensionless temperature 

Pr Prandlt number Subscripts and superscripts 

p slip radius b    bulk 

T    temperature [K] m mean  

u velocity [m s-1] max maximum 

r radial coordinate [m] s fluid properties at the surface 

x axial coordinate [m] w wall 

X dimensionless axial coordinate fd fully developed 

Y dimensionless radial coordinate * temperature integral transform  

 

1. INTRODUCTION  

       Convection heat transfer in microchannels is encountered 

in many industrial processes such as biomedical diagnostic 

technique, biochemical application, microelectromechanical 

systems (MEMS), cryogenics, thermal control of electronic 

devices, chemical separation processes, aerospace 

engineering, vacuum technology, accelerometer flow sensors, 

micro nozzles, micro valves….etc. 

       Microchannels are the fundamental part of microfluidic 

systems. Nominally, microchannels may be defined as 

channels whose characteristic dimensions are from 1μm to 

1mm. Typical applications may involve characteristic 

dimensions in the range of approximately 10-200μm.   

       The researchers classified the gas flow in microchannel 

into four flow regimes: continuum flow regime (Kn<0.001), 

slip flow regime (0.001<Kn≤0.1), transition flow regime 

(0.1<Kn≤10) and free molecular flow regime (Kn>10),              

Knudsen number Kn is defined as the ratio of the molecular 

mean free path of gas to the characteristic length of the 

microchannal. In the slip flow regime, the flow and the heat 

transfer can be described by the continuum governing 

equations subjected to the slip conditions at the wall.  

       The slip flow-heat transfer of incompressible gaseous 

flowing in microtubes was reviewed by [1–7].                       

       [1] studied the convective heat transfer subjected to 

isothermal boundary condition without viscous dissipation, 

and discussed the rarefaction effect trough the recalling 

factor. The energy equation was solved by separation of 

variables method based on hypergeometric expansion 

eigenfunctions, the eigenvalues were computed by a new 

asymptotic approach, it is found that the heat transfer depends 

both on the degree of rarefaction and on the surface 

accommodation coefficients. The authors indicate that the 

rarefaction increases the heat transfer when the jump 

temperature is neglected or insignificant, and for large jump 
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temperature at wall, the rarefaction diminishes the heat 

transfer. [2] examined the microflow heat transfer for laminar 

rarefied gas flow including viscous dissipation subjected to 

constant wall temperature, constant wall heat flux and linear 

variation wall temperature boundary conditions. The energy 

equation was solved by the finite volume method. The effects 

of Brinkman and Knudsen numbers on Nusselt number were 

observed for thermal entrance and fully developed regions.           

[3] analyzed the convective heat transfer for steady state, 

laminar fully developed flow, taking into account the viscous 

dissipation, slip velocity and jump temperature. The energy 

equation was solved by integral transform technique for 

isothermal and isoflux conditions. The effects of Knudsen, 

Brinkman and Prandlt numbers on heat transfer were 

illustrated. The authors observed that the slip velocity and 

temperature jump have opposite effects on the Nusselt 

number.                   

       [4] investigated the extended Graetz problem by 

considering the rarefaction effect, viscous dissipation and 

axial heat conduction under uniform wall temperature 

boundary condition. The energy equation was solved 

numerically and the solution domain was extended to infinite. 

The effect of Peclet number on local Nusselt number was 

discussed. The authors showed that the fully developed 

Nusselt number and the thermal entrance length increase with 

the decreasing Peclet number. [5] studied the microscale heat 

transfer with constant wall heat flux thermal boundary 

condition. The rarefaction, the viscous dissipation and the 

axial conduction were included. The energy equation was 

solved analytically by using general eigenfunctions 

expansion. The authors have found that the local Nusselt 

number decreases with increasing Knudsen and Brinkman 

numbers. The local Nusselt number converges to the same 

fully-developed value for all values of Peclet and Brinkman 

numbers. The thermal entrance length increases with 

decreasing Peclet number. [6] analysed the hydrodynamically 

and thermally fully developed flow by including viscous 

dissipation. Isothermal and isoflux thermal boundary 

conditions have been considered. [7] examined the convective 

heat transfer in an infinite microtube subjected to mixed 

boundary conditions, taking into account the axial conduction 

and the rarefaction. The velocity was considered to be 

constant (slug flow). The energy equation has been solved by 

variables separation method. The authors observed that the 

local Nusselt number increases with increase in Peclet 

number but decreases with increase in Knudsen number. The 

fully-developed Nusselt number decreases with increase in 

Knudsen number but, for a fixed value of Knudsen number, it 

reaches to a constant value for all Peclet number values. 

Slip flow-heat transfer of incompressible gaseous in parallel 

plate microchannel was conducted by [8–10].  [8] studied the 

effect of shear work at solid boundaries in small scale 

gaseous flows where slip effects were included. The author 

illustrated the effect of shear work at the boundary on 

convective heat transfer subjected to the constant wall heat 

flux boundary condition. [9] studied the  extended Graetz  

problem including viscous dissipation and axial heat 

conduction. The energy equation for both isothermal and 

isoflux conditions was solved by using eigenfunction 

expansion. The effects of Peclet number, Knudsen number, 

Brinkman number on heat transfer were showed. The results 

indicate that The Nusselt number decreases as Knudsen 

number or Brinkman number increases and as Peclet number 

decreases. [10] analysed the problem of slip flow-heat 

transfer inside parallel plate microchannel subject to constant 

wall temperature and including viscous dissipation. The 

energy equation was solved by finite integral transform 

technique. The effects of the parameters Kn.βv, β, Br on heat 

transfer were illustrated. The results indicate that, as Kn.βv 

increases, the velocity at the wall and local Nusselt number 

increase but the friction factor diminishes. As β increases the 

local Nusselt number and the thermal entrance length 

decrease. 

       The microscale heat transfer for slip flow regime in 

rectangular microchannal was analyzed by [11–13].                    

[11] used the integral transform technique to derive the 

velocity and the temperature distributions under constant wall 

temperature boundary condition subjected to the eight 

possible thermal versions. It is found that with the perfect 

accommodation for velocity and temperature, the rarefaction 

effect decreases the heat transfer for the eight thermal 

versions. [12] numerically solved the Navier-Stokes and 

energy equations by control-volume method. The effects of 

Reynolds number, channel aspect ratio and Knudsen number 

on the simultaneously developing velocity, temperature 

fields, entrance length, friction coefficient and Nusselt 

number are examined in detail. The authors have shown that 

in the entrance region very large reductions were observed in 

the friction factor and Nusselt number due to rarefaction 

effects. [13] determined the temperature profile by using the 

mathematical similarity between the heat conduction and 

convection under constant wall heat flux boundary condition. 

Additionally the average Nusselt number was determined for 

any all eight thermal versions. The authors showed that the 

rarefaction decreases the heat transfer.    

       Slip flow heat transfer in annular space formed by two 

concentric microcylinders have been undertaken by               

[14-15]. [14] analytically studied the laminar forced 

convection in micro-annulus for both hydrodynamically and 

thermally fully developed flows including viscous 

dissipation. Two different cases of the thermal boundary 

conditions are considered: uniform heat flux at the outer wall 

and adiabatic inner wall (case A) and uniform heat flux at the 

inner wall and adiabatic outer wall (case B). The velocity, the 

temperature and the Nusselt number were obtained for 

different values of aspect ratio, Knudsen number and 

Brinkman number. [15] solved the energy equation with the 

viscous dissipation term by using an hybrid application of the 

Laplace transformation technique and the local adaptive 

differential quadrature method (La-DQM). The constant wall 

temperature boundary condition was applied. The authors 

analyzed the effects of the Brinkman number, Knudsen 

number, and the radius ratio of inner to outer cylinders on the 

temperature distribution and the Nusselt number. The results 

indicate that the effect of radius ratio is to reduce the thermal 

entrance length, the mean fluid temperature and temperature-

jump at the surface, but is to increase the fully developed 

Nusselt number. As the parameter Kn increases, the slip 

velocity at the surface increases, while the friction factor and 

the fully developed Nusselt number decrease. The Nusselt 

number in the thermal entrance region increases as Br 

increases.  

       Convective heat transfer with second order slip model 

was investigated by [16-17]. [16] incorporated the spatial 

rescaling factor (or slip radius) in velocity and temperature 

fields, and the energy equation was solved by separation of 

variables method, the eigenfunctions have been represented 

by polynomial expression. The effects of degree of 
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rarefaction and jump temperature on heat transfer were 

discussed. [17] determined the analytical solutions for 

Nusselt and Poiseuille numbers in terms of the degree of 

rarefaction,  slip flow model parameters, creep flow and 

Brinkman number. The results from [17] indicate that the 

second order term and creep velocity effects are significant 

within the slip flow regime.        

       [18-19] studied the thermal microflow with using 

Langumuir slip model which is based on the theory of the 

gases adsorption into solids. [18] solved the energy equation 

by finite integral transform technique including axial heat 

conduction term and discussed the effects of Knudsen and 

Peclet numbers on heat transfer. [19] used the Lattice-

Boltzmann method (LB) to capture the slip velocity and 

temperature jump in microfluidics. The authors [19] 

examined the particular problem of flat microchannel with 

different temperature at the walls, and concluded that the 

Nusselt number decreases with increasing rarefaction. The 

decrease of Nusselt number with higher Eckert number is 

much than that with low Eckert number. The Reynolds 

analogy is really preserved in the Lattice-Boltzmann scheme.     

       Recently, [20] reviewed the problem of forced 

convective heat transfer in microtube and parallel plate  

microchannel for slip flow regime in presence of the viscous 

dissipation under isothermal boundary condition. The authors 

concluded that the heat transfer depends on both degree of 

rarefaction, measured by Kn.βv (or slip radius p), and jump 

temperature magnitude measured by β parameter. The slip 

velocity and the jump temperature have opposite effects on 

heat transfer.      

       In the present paper, the integral transform technique is 

employed to study the forced convection problem for 

incompressible rarefied gaseous flowing inside microtube 

subject to constant wall temperature boundary thermal 

condition under slip flow regime. The viscous dissipation and 

the axial heat conduction within the fluid are taking into 

account. The flow is assumed to be steady, laminar and fully 

developed. The numerical results are performed by using 

‘Mathematica Softwere’. The present paper could be 

considered as an extension of the work undertaking by Mecili 

and Mezaache [20]. The rescaling factor p, (called slip radius) 

is incorporated in velocity and energy equations. The slip 

radius characterizes the rarefaction effect and gives for a 

microconduits energy equation form similar to that of 

macroconduits. The convenient analysis needs the 

incorporation of the product (Kn.βv) parameter which 

characterizes the degree of rarefaction, and the β parameter 

(β=βt/βv) which characterizes the relative importance of slip 

velocity and jump temperature. 

 

2.  SLIP VELOCITY AND TEMPERATURE JUMP    

 In microscale analysis, the Knudsen number Kn is the 

most important parameter. In slip flow regime 10
-3 

<Kn<10
-1

, 

where: Kn=λ/L, λ is the molecular mean free path, L is 

characteristic length of micro-conduit.  

 The fluid particle has a tangential velocity at the wall 

denoted slip velocity, given by the kinetic theory of gases:   
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       With: FM is the momentum tangential accommodation 

coefficient, which is the fraction of tangential momentum lost 

by a molecule upon collision, and varies from 0 for specular 

reflections (no accommodation), to 1 for diffuse reflections 

(full accommodation). FM =1 for heavy atoms and FM
 1 for 

light atoms [2].     

 The fluid particle have a finite temperature difference at 

the solid surface called the temperature jump, it can be 

expressed as:        
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 Where: Ts is the temperature of the gas at the wall, Tw the 

wall temperature, γ the specific heat ratio, FT is the thermal 

accommodation coefficient, it is a measure of incomplete 

energy exchange between gas molecules and system 

boundaries, and varies from 0 to unity. Pr is the Prandlt 

number. 

 

3. ANALYSIS AND GOVERNING EQUATIONS 

 The fully developed velocity profile for gaseous flowing 

in microtube is given by [1]  
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       Where: R is radius of microtube, Kn is the Knudsen 

number, βv is dimensionless coefficient, which depends on FM 

coefficient. Kn and βv can be expressed as    
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       The energy balance equation including viscous 

dissipation and axial heat conduction can be expressed as  
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 Boundary conditions:  
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Where: T0 is the inlet temperature.    

       By introducing the non-dimensional parameters Kn and 

βt in equation (2), we can write 
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       Introducing a dimensionless parameter noted β: 
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       Where: β characterizes the effect of gas-surface 

interaction, and is a relative measure of temperature jump 

effects. 

       Thus: the equation (9) becomes  
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By introducing the non-dimensional quantities as follows 
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       Where: the parameter p is the dimensionless rescaling 

factor (called the slip radius), it depends on Knβv parameter 

and characterizes the rarefaction effect, Pe is the Peclet 

number,  Re, Pr, Br are the Reynolds, the Prandlt and the 

Brinkman numbers, defined as 
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       The dimensionless energy equation and dimensionless 

boundary conditions can be given by  

 

2

2

2

2

2 4
11

1 BrY
XPe

Y
Y

YYX
)Y(

*






























         (16)    

                                                                                           

  pYY,X  0:10                                                    (17)                               

                                                                

0
0














YY


                                                                     (18)   

                                                                                          

00
2

1 2

















X:
Yp

)p(
)pY,X(

pY


          (19)                                                                             

 

  

4.  ANALYTICAL SOLUTION 

 

       To solve the energy equation Eq.(16) with the boundary 

conditions Eqs.(17-19), we use the integral transform 

technique based on eigenfunctions and eigenvalues. The 

eigenfunctions-eigenvalues problem takes the following form 
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       Where: Ωi(Y) are the eigenfunctions, and ai are the 

eigenvalues. The eigenfunctions are subject to the following 

boundary conditions 
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       The solution of the ordinary differential equation (20), 

gives the eigenfunctions expression. The eigenfunctions may 

be expressed in term of confluent hypergeometric function 

1F1 
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       The application of boundary condition (Eq. 21), gives the 

following transcendental equation 
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       Now, we introduce the integral transform of temperature 

as follows 
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       The inverse transform is written as 
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       The factor Ni is obtained by application of the 

normalization condition 
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       Multiplying the both sides of the energy equation Eq.(16) 

by (ΩY), and integrated over the domain 0≤Y≤p, the energy 

equation becomes  
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       By retaining only one term in the series (i=n), the 

equation (29) takes the form 
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       With the boundary condition 
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       The solution of the second order ODE problem Eq.(31) 

subject to the boundary condition  Eq.(32) is   
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 The substitution of Eq.(33) in Eq.(26), gives the temperature 

field 
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5.1. Evaluation of dimensionless bulk temperature and 

local Nusselt number  
































p

p

p

b

dY)Y,X()Y(Y
pp

dY)Y(Y

dY)Y,X()Y(Y

)X(

0

2

42

0

2

0

2

1
2

4

1

1






                                (37)    

         

b

pYY
p

k

)R(h
)X(Nu



















 2
2

          (38)  

                                                                                                

       In the limiting case p=1 (Knβv=0), we recover the 

macrochannel case (continuum flow). 

 

 5.2. Determination of fully developed temperature, bulk 

temperature and Nusselt number 

 

        For X→ ∞, the energy equation takes the following form  
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       By integrating the above equation and using the 

boundary conditions (Eqs. 18, 19), we obtain the fully 

developed temperature profile 
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       Then: For Br≠0, the fully developed bulk temperature 

and Nusselt number are expressed as  
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6.  RESULTS AND DISCUSSION  

       The slip flow-forced convective heat transfer in 

microtube is analytically investigated by the finite integral 

transform technique via Mathematica software. The 

combined effects of rarefaction, jump temperature, viscous 

dissipation and axial conduction on heat transfer are 

discussed trough the dimensionless parameters Knβv, β, Br, 

Pe. In the calculations, we take Pe=10
6
 which corresponds to 

infinite (or neglected) axial conduction, Br=0 corresponds to 

no viscous dissipation case. Knβv includes the rarefaction 

effect and it is varied between 0 (continuum regime) and 0.1 

(limiting slip regime). The parameter β includes the           

gas-surface interaction and measured the magnitude of jump 

temperature, it is varied between 0 and 10, β=0 is a fictitious 

value, to see the effect of slip velocity without jump 

temperature, β=10 corresponds to the large temperature jump 

at the surface.                   

       The numerical evaluation of bulk temperature and local 

Nusselt number requires the computation of eigenvalues ai, 

eigenfunctions Ωi(Y) and eigenquantities (Ni,Gi,Zi,Aii,Bii). The 

eigenvalues can be computed from transcendental equation 

(24) by using the built-in function FindRoot. The 

eigenfunctions can be determined from the equation (23) by 

using the confluent hypergeometric function 1F1(., ., .) 

available in Mathematica. The eigenquantities (Ni ,Gi ,Zi, Aii 
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,Bii) can be calculated from equations (28, 34, 35) by using 

the built-in function NIntegrate.  

       Table 1 presents the fully developed Nusselt number 

values computed for βv=1, Br=0, Pe=10
6
 and for different Kn 

and β values. Table 2 presents the fully developed Nusselt 

number values computed for βv=1, Br ≠ 0 and for different Kn 

and β values. Our results are compared with those obtained 

by [21], and these comparisons reveal a very good agreement.   

       The eigenvalues (ai) and other parameters (Ni,Gi,Zi,Aii ) 

computed for different values of Kn and for β=0, are 

summarized in Table 3. 

       Fig. 1 illustrates the effect of rarefaction (measured by 

Knβv) on the local Nusselt number without viscous 

dissipation and axial conduction. We consider two cases: β=0 

(negligible temperature jump, Fig. 1.a) and β=10 (large 

temperature jump at surface, Fig. 1.b).  

       In the case when temperature jump is neglected (β=0), 

the rarefaction measured by Knβv increases the slip velocity at 

the surface and leads to decreasing the difference between the 

wall temperature and the fluid bulk temperature, which tends 

to amplifies the energy exchange near the wall, consequently 

the local Nu increases, as seen in (Fig. 1. a). This trends is 

reversed when the large temperature jump is included (β=10, 

Fig. 1.b), in other words as Knβv increases the jump 

temperature increases and leads to increasing the difference 

between the wall temperature and the fluid bulk temperature, 

which tends to decreasing the energy exchange, consequently 

the local Nu  decreases. The jump temperature plays a role 

like a thermal contact resistance between the wall and the gas, 

while the slip velocity tends to decrease this thermal contact 

resistance. We can notice that the slip velocity and the jump 

temperature have opposite effects on heat transfer.  

       Fig. 2 illustrates the effects of rarefaction, viscous 

dissipation and temperature jump on local Nu for fixed Knβv 

and β parameters and for different Br values. The viscous 

dissipation affects the temperature profile by playing a role 

like an energy source; the effect of viscous dissipation 

becomes the most significant near the wall due to highest 

velocity gradient occurring there. Viscous dissipation always 

contributes to internal heating of the fluid; hence the heat 

transfer mechanism will differ according to the process taking 

place (wall heating or cooling). We note also that the 

magnitude of local Nusselt number increases with Br number 

increasing; this increase in Br number leads to decreasing in 

the length of the thermal entrance region. In the fully 

developed region, we observe that the all values of Nu 

number computed for a different non-zero values of Br 

number reaches to the same asymptotic value in case when β 

and Knβv are fixed, in other words the fully developed Nu 

number does not depends on Br number, this result is clearly 

illustrated by (eq. 42).      

       Fig. 3 demonstrates the effect of the parameter β (jump 

temperature) on local Nusselt number for fixed Knβv 

parameter (Knβv=0.1). We observe that as β increases the 

length of thermal entrance region decreases, and for higher β 

values, the profile of local Nusselt number becomes quasi-

flatter. 

       The fully-developed Nusselt number as a function of 

Knβv and parameterized by β is presented in Fig. 4, it reveals 

that the fully-developed Nusselt number depends on Knβv and 

β parameters and independent of Br and Pe numbers, as seen 

the rarefaction effect measured by Knβv increases the fully-

developed Nusselt number when the jump temperature is 

neglected or small (β<1), and reduces it when the jump 

temperature is significant (β>1). This reduce is due to 

decreasing in temperature gradient normal to the wall causes 

by large jump temperature at the surface. Therefore, the fully 

developed Nusselt number increases, decreases or unchanged 

depending on competition between slip velocity and jump 

temperature. In addition, the fully-developed Nusselt number 

for Br≠0 is higher than that for Br=0 (see tables 1 and 2). 

       Fig. 5 illustrates the effect of jump temperature on fluid 

bulk temperature for Knβv = 0.01, and without viscous 

dissipation, the data of this figure indicate that the bulk 

temperature increases with increasing temperature jump. 

       Fig. 6 depicts the bulk temperature of the fluid for 

different values of Br number (Br=-0.1,0.1,-1.0,1.0,0). 

Positive values of Br correspond to wall heating (Tw>T0), and 

negative values correspond to wall cooling (Tw<T0). It can 

observe that, the sign of bulk temperature θb(X) changes when 

Br<0, the same result was reported by [9].         

       In fig.7 the variation of local Nusselt number is plotted 

for different Knβv and Pe values. Pe=1 corresponds to the 

finite axial heat conduction within the fluid and Pe=10
6
 

corresponds to a high magnitude of the thermal energy 

convected to the fluid relative to the thermal energy 

conducted axially within the fluid (neglected axial heat 

conduction). This figure shows that Nu∞=3.66 in the case 

when Pe=10
6
, Br=0 and Knβv=0 (classical Graetz problem) 

which is exactly value compared with the previous analytical 

works, additionally it reveals that the local Nusselt number 

values for Pe=1 are greater than those obtained for Pe=10
6
, in 

other words the axial heat conduction contributes to 

enhancement of heat transfer. We can note also that the 

thermal entrance length increases with decreasing Pe but the 

variation of the degree of rarefaction measured  by Knβv does 

not affects the thermal entrance length.   

       In fig.8 the variation of local Nusselt number is plotted 

for different Br and Pe values and for fixed Knβv and β 

(Knβv=0.01, β=1), this figure indicates that in the thermal 

fully developed region the viscous dissipation dominates heat 

transfer and all fully developed Nusselt number values 

converges to the same asymptotic value regardless of the 

values of Pe and Br numbers. The axial conduction has no 

influence on fully developed Nusselt number when viscous 

dissipation is included. It can be concluded that in the 

presence of the viscous dissipation the axial heat conduction 

is significant in the thermal entrance region and insignificant 

in the thermal fully developed region. 

 

 

Table 1: Fully developed Nusselt number values for βv=1, 

Br=0, Pe=10
6
  

 

    β=0.0 β=0.5 β=10 

Kn Present [21] present [21] present [21] 

0.0 3.656 3.6568 3.6568 3.656 3.6568 3.656 

0.02 3.855 3.8556 3.7395 3.739 2.2911 2.291 

0.04 4.020 4.0207 3.7783 3.778 1.6237 1.624 

0.06 4.160 4.1599 3.7847 3.785 1.2465 1.247 

0.08 4.279 4.2789 3.7671 3.767 1.0077 1.008 

0.10 4.382 4.3817 3.7318 3.732 0.8440 0.844 
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Table 2: Fully developed Nusselt number values for βv=1, 

Br≠0, Pe=10
6
  

      

    β=0.0 β=0.5 β=10 

Kn Present [21] present [21] present [21] 

0.0 9.6000 9.598 9.6000 9.598 9.6000 9.598 

0.02 9.8723 9.871 8.9853 8.984 3.3190 3.316 

0.04 10.0892 10.088 8.3952 8.394 2.0036 1.995 

0.06 10.2659 10.264 7.8487 7.848 1.4339 1.423 

0.08 10.4127 10.411 7.3500 7.350 1.1160 1.115 

0.10 10.5366 10.535 6.9000 6.900 0.9133 0.912 

 

 

Table 3: Eigenvalues ai and other parameters (Zi, Gi, Ni, Aii) 

for different values of Knβv and for β=0 

 

Knβv a1 a2 a3 a4 a5 

0.0 2.70436 6.67903 10.67338 14.67108 18.66987 

0.04 2.86309 6.9756 11.0908 15.2017 19.309 

0.08 3.0153 7.27672 11.533 15.7824 20.0273 

0.1 3.08906 7.42679 11.7573 16.0806 20.3994 

Knβv G1 G2 G3 G4 G5 

0.0 0.05811 -0.052726 0.038753 -0.030353 0.024913 

0.04 0.0441512 -0.039871 0.0283328 -0.02146 0.0170636 

0.08 0.0343168 -0.030592 0.0208623 -0.015144 0.0115335 

0.1 0.0309966 -0.027679 0.018857 -0.013747 0.0105692 

Knβv Z1 Z2 Z3 Z4 Z5 

0.0 0.138687 -0.030246 0.0138018 -0.008112 0.0054247 

0.04 0.128049 -0.029892 0.0142201 -0.008627 0.005922 

0.08 0.118325 -0.028829 0.0140116 -0.008619 0.005976 

0.1 0.11386 -0.028181 0.0137921 -0.008517 0.005921 

Knβv N1 N2 N3 N4 N5 

0.0 0.093934 0.0375198 0.0234421 0.0170471 0.0133936 

0.04 0.0853702 0.0348183 0.0219223 0.0160097 0.0126134 

0.08 0.07804 0.0322543 0.0203906 0.0149198 0.0117674 

0.1 0.0747807 0.0310577 0.0196596 0.0143928 0.0113548 

Knβv A11 A22 A33 A44 A55 

0.0 1.25123 1.45617 1.53714 1.58458 1.61708 

0.04 1.21279 1.37564 1.4327 1.46286 1.48171 

0.08 1.18442 1.31782 1.35967 1.37985 1.39147 

0.1 1.17286 1.29481 1.33124 1.34813 1.35755 
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Figure 1: Local Nusselt number parameterized by Knβv 

without viscous dissipation (Br=0) and axial conduction 

(Pe=10
6
), (Fig. 1a) without jump temperature, (Fig. 1b) in 

presence of jump temperature.  

 

 

0.0 0.2 0.4 0.6 0.8 1.0
3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Kn
v
=0.01, =1.0, Pe=10

6

0.5

Br=0.8

0.2

L
o
c
a
l 

N
u

ss
e
lt

 n
u

m
b

e
r

dimensionless axial lenght
 

 

Figure 2: Effects of combined viscous dissipation, rarefaction 

and jump temperature on local Nusselt number for neglected 

axial conduction. 
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Figure 3: Local Nusselt number parameterized by β and for 

fixed Kn.βv, without viscous dissipation and axial conduction. 
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Figure 4: Variation of fully developed Nusselt number with 

Knβv for various values of β and without viscous dissipation 

and axial conduction. 
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Figure 5: Variation of bulk temperature parameterized by β 

for Knβv=0.01. 
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Figure 6: Variation of bulk temperature parameterized by Br 

for continuum flow case. 
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Figure 7: Effects of rarefaction and axial heat conduction on 

local Nusselt number. 
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Figure 8: Effects of rarefaction, jump temperature, viscous 

dissipation and axial heat conduction on local Nusselt number 
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6. CONCLUSION 

      Slip flow-convective heat transfer inside microtube 

including viscous dissipation and axial conduction within the 

fluid subject to isothermal boundary condition was 

investigated. The energy equation was solved by finite 

integral transform technique by the help of Mathematica. The 

effects of rarefaction, jump temperature, viscous dissipation 

and axial conduction on heat transfer are discussed trough the 

dimensionless parameters, Knβv, β, Br, Pe.  

       We concluded that the heat transfer depends on both 

degree of rarefaction and surface accommodation 

coefficients. The slip velocity and the jump temperature have 

opposite effects on the heat transfer. The axial heat 

conduction within the fluid contributes to increasing of local 

Nusselt Number. The length of thermal entrance region 

diminishes with increasing Br and β but increases with 

decreasing Pe. In the thermal fully developed region the 

viscous dissipation dominates the axial conduction and all 

fully developed Nusselt number values converges to the same 

asymptotic value regardless of the values of Pe and Br 

numbers. The axial conduction has no influence on the 

thermal fully developed region when viscous dissipation is 

included, but it is significant in the thermal entrance region. 
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