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1. INTRODUCTION 

The research of natural convection in porous medium has 

been conducted widely in recent years, which involves post-

accidental heat removal in nuclear reactors, cooling of 

radioactive waste containers, the migration of moisture 

through the air contained in fibrous insulations, the dispersion 

of chemical pollutants through water-saturated materials, heat 

exchangers, solar power collectors, grain storage, food 
processing, energy efficient drying process. 

There are many open literature related to natural 

convection in horizontal porous layer. The heat convection of 

porous media was studied from a very long time by Horton 

and Rogers [1], Duwairi [2], Duwairi and Al-Kablawi [3], 

Duwairi et al. [4], the main target and purpose was to 

understand fluid motion of convection stream line in deep 

porous layers. A linear stability analysis for the problem was 

the main concern of Horton and Roger, they found the value 
of  critical Rayleigh number for porous medium equal to 

Ra=40 which indicate the transform from conduction to 

convection heat transfer state of the fluid in porous media. It 

means that the convection heat transfer start to occur when 

Rayleigh number reaches that critical value. The stability 

problem for porous media also has been studied by Lapwood 

[5], who also found the same value for critical Rayleigh 

number and the same result for convection heat transfer. 
From that time a large amount of studies examining the 

various terms that affect the results of the convection heat 

transfer in porous media. Katto and Masuoka [6] found that 

the critical Rayleigh number is equal to 42. This result was 

obtained for a wide range for a porous media, the saturation 

fluid in their experiments was compressed nitrogen in order 

to decrease the temperature difference between the upper and  

lower surfaces required for creating large Rayleigh 

numbers .The main target of the experiments was to find 

whether parameters such as the size of the porous material, 

the porosity of the layer, and the solid-to-fluid conductivity 

ratio affect the critical Rayleigh number. Chen and Chen [7] 

Use the modified form of Darcy’s equation which included 
the Brinkman and Forchheimer terms in order to study the 

effect for viscous and inertial effects. Also they create a 

computational analysis in order to study the heat transfer. 

Computational analysis in order to study the heat transfer 

Heat and Technology Prasad [8]. Proposed new experiments 

to study the effect of Prandtl number and different solid-fluid 

conductivity ratios, Acrylic, aluminum, and glass spheres are 

used for the porous bed, silicone oils and ethylene glycol are 
used as the saturating fluids in the experiments. It was found 

that the relationship between porous layer height and Nusselt 

number remains constant with a variation in thermal 

conductivity ratio and/or the Prandtl number. Also, he found 

that by increasing the thermal conductivity of the solid matrix 

the heat transfer also is increased. Further, it was found that 

the composite fluid and porous layer have more ability to 

transport fluid compared to the pure fluid layer. Steven [9] 
studied the heat transfer characteristics of a fluid superposed 

porous layer system heated from below experimentally. Four 

different values of heat ratio to measure heat transfer rates are 

used. A cylindrical test chamber is used with 6 mm diameter 

glass beads as the porous layer and water as the saturating 

fluid. Temperature fluctuations within the system at various 

radial and vertical locations are observed. It was also found 

that for a given Rayleigh number, the overall Nusselt number 
for a pure fluid layer is lower than that for a composite fluid 

and porous layer, which indicated that the overlying layer 

enhanced the overall rate of heat transfer. However, the 
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overall Nusselt number does not change significantly with 

heat ratio for different Rayleigh numbers 

The main target of this study is to find the stability solution 

for the horizontal porous layer heated uniformly from below 

using different models start with Darcy model and 

Forchheimer’s model. Stability which means to find and 

determine the state of heat transfer when the heat transfer of 

fluid and plate will be convection or conduction in porous 
media also determine under what condition fluid motion first 

occurs. In this study a formulation of the stability problem is 
going to be done. The solution of stability analysis of this 

problem is a numerical solution since its mathematical 

formulation is a non-linear partial differential problem .An 

important variation of this problem is that of natural 

convection in a horizontal system that consists of a porous 

layer that is heated from below using Forchheimer’s model 

geophysical perspective. 

 

 

2. PROLEM FORMULATION 
 

The considered geometry is an inclined rectangular 

enclosure, which is embedded in a fluid-saturated porous 

medium as shown in Fig. 1. One wall of the enclosure is kept 

at heat flux q1 and the opposite is kept at a heat flux q2. The 

other two walls of the enclosure are adiabatic, i.e., it is 

assumed that no heat is transferred into or out of walls. 

 

 
 

Figure 1. Schematic of the problem of natural convection in 

a horizontal porous layer heated uniformly from below. 
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The momentum equation in x and y-directions: 
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The energy equation: 

 
2 2

2 2
u v a

T T T T T

t x y x y
 
    

   
    

 
 
                (4)        

 

 

Where x and y are the horizontal and vertical coordinates, 

and the corresponding velocities are u and v respectively, the 

gravitational acceleration g is acting downward in the 

direction opposite to the y coordinate. The Darcy effect is 

introduced through the term (
µ 𝜙

𝐾
 u) in the momentum 

equation in x and y-directions. The non-Darcy effect is 

introduced through the Forchheimer term (
 ρ 𝜙 F

√𝐾
 𝑢2) in the 

momentum equation in x and y-directions. The convection 

heat transfer effect is introduced into the governing equations 

through 𝛽𝑔ρ𝑓(𝑇 − 𝑇𝑐  ) term in the momentum equation in 

y-directions. 
Where u is the fluid velocity in the x- direction v is the 

fluid velocity in the Y- direction, 𝜙 is the porosity, F is the 

Forchheimer’s inertial coefficient, K is the specific (or 

intrinsic) permeability, 𝜇 is the dynamic viscosity  
∂P

∂x
  is 

the pressure gradient in the flow direction, ρ is the density 

and g is the gravitational acceleration,  𝛼𝑎 is the effective 
thermal diffusivity. 

  The boundary conditions on the solution for flow in the 

enclosure are: 

1. Isothermal walls: 

 

u = v = 0, T = Tc . At   y = H. 

 

u = v = 0, T = TH . At   y = 0. 

 
2. Adiabatic walls:                              (5)  

 

u = v = 0, 
∂T  

∂x
   = 0. At   x = 0, L 

 

3. Initial condition: 

 

u = v = 0,   = 0. At   t = 0.          
 

  The solution will be obtained in terms of the stream 

function. The stream function is defined by 
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  Before discussing the solution to the above pair of 

equations, write them in dimensionless forms. 

For this purpose, the following dimensionless variables are 

defined as: 
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In terms of the dimensionless stream function, the 
continuity, momentum, and energy equations ca be written as 

follows: 

 
2 2

* * * *
ω=

x y x y

  


   
                            (8) 

 
*

* *

θ      

t x



 


   

*

* *

θ      

y y

 


 
 

* 2 * 2 *

* *2 *2

θ θ θ

x x y

  
 

  
      (9) 

110



*2 *

2 2

2 *

   
( ) 2Fr

x y x

    

  
 

 
*

2

2 *

 
2Fr

x y

  

 


 
*

2

2 *

*  θ 
R

x
a

y




 



    

                                             (10)  

 

ρ  *
,Fr=

  µ

*

*

T
Ra=

f a

a f

g k

H

K FH 

 



                

(11)

 
 

Where Ra is the modified Rayleigh number based on the 

height H. Fr is the Forchheimer’s number based on the height 

H.  

A finite difference numerical procedure is used to solve the 

governing equations (9)-(11) with the corresponding 

boundary conditions. An iterative procedure is used in which 

all the variables at the nodal points are first suggested. Then, 

updated values are obtained by applying the governing 

equations. And finally, the process is repeated until the 

convergence is attained. To check the accuracy of the 
predicted results, a comparison is done with those of Neild 

and Bejan [10] and Chen and Chen [7] for the case of 

Forchheimer’s number equal to zero results are shown in Fig 

2. For the relation between Nusselt number and Rayleigh 

From these results, it is clear that they are in complete 

agreement. 

 
 

Figure 2. Comparison between predicted results and those 

obtained by Neild & Bejan and Chen & Chen. 

 

3. RESULTS AND DISCUSSION 

The stability of horizontal porous layer heated uniformly 

from below is analyzed using Forchheimer’s model, the 

system of governing equations and corresponding boundary 

conditions are non-linear partial differential equations 

depending on the Rayleigh number and Forchheimer’s 

number, the governing equations are written in dimensionless 

form using a suitable set of dimensionless variables, and then 

solved using a finite difference scheme. Two dimensionless 

groups are found to describe the problem; namely Rayleigh 

number which represent the buoyancy forces to viscose 
forces and the second the Forchhiemer’s number which 

represent the pore spaces. 

 

3.1 Forchhiemer number effect 

The effect of Forchheimer’s inertial coefficient can be 

studied by using different values for Forchheimer’s inertial 

coefficient used in the governing equations. Results for 

velocity and temperature profiles 𝜓  and  θ  for different 

values of Forchhiemer’s Coefficient will be presented in the 

figure 3 for the cases of  Fr equal to 0 and 0.09 for unsteady 

state case, and for all figures Ra (Rayleigh number)=10. Fig.3 

shows the transient  dimensionless streamline and 

temperature profile for Fr equal to 0 and 0.09 at t equal to 

0.02, when the Forchheimer’s number is increasing the 

dimensionless streamline value decreases; this is due to the 
fact that by increasing Forchheimer’s number the pore space 

increases which increase the viscous effect by the fluid. 

 

                                                          
a) Fr=0.0 

      

      
b) Fr=0.09 

Figure 3. Typical dimensionless unsteady streamline and 

temperature patterns for Fr = 0.0 and 0.09 and Ra = 10. 

 
The result also shows that Nu-mean decreases by 

increasing Fr due to the decreasing in the dimensionless 

streamline value in the porous media which decrease the 

convection heat transfer in the porous media that’s affect the 

value of Nusselt number. 
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Fig.4 shows the steady state dimensionless streamline and 

temperature profile for Fr equal to 0 and 0.09 at steady state 

condition, when the Forchheimer’s number is increasing the 

dimensionless streamline value decreases which decrease the 

convection heat transfer in porous media; this is due to the 

fact that by increasing Forchheimer’s number the pore space 

increases which increase the viscous effect by the fluid. 

 

 

a) Fr=0.0 

 

 

b) Fr=0.09 

Figure 4. Typical dimensionless steady streamline and 

temperature patterns for Fr = 0.0 and 0.09 and Ra = 10. 

3.2 Rayleigh number effect  

The effect of Rayleigh number can be studied by using 
different values for Rayleigh number used in the governing 

equations. The Rayleigh number (Ra) for a fluid can be 

defined as dimensionless number associated with buoyancy 

driven flow (also known as free convection or natural 

convection) which describes the relationship 

between buoyancy and viscosity within a fluid. 

 

 

a) Ra=1 

 

 

b) Ra=50 

Figure 5. Typical dimensionless unsteady streamline and 

temperature patterns for Ra = 10 and 50, and Fr = 0.001. 

 

Fig. 5 shows the unsteady dimensionless temperature and 

streamline profile for Rayleigh number equal to 1 and 50 at t 
equal to 0.02 and Forchhiemer’s number equal to 0.001, 

changing Rayleigh number has a small effect on temperature 

profile at initial time, and there is a small different in 
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dimensionless profile for different values of Rayleigh number; 

this is due to the effect of convection heat transfer which 

increase by increasing Rayleigh number. Changing Rayleigh 

number has an effect on dimensionless streamline value and 

profile at initial time; this is due to the effect of convection 

heat transfer which increases by increasing Rayleigh number 

over critical Rayleigh number. 

 

 

a) Ra=1 

 

 

b) Ra=50 

 

Figure 5. Typical dimensionless steady streamline and 

temperature patterns for Ra = 10 and 50, and Fr = 0.001. 
 

  Figure (5.13) shows the steady dimensionless temperature 

profile for Rayleigh number equal to 1 and 50 and 

Forchhiemer’s number equal to 0.001, changing Rayleigh 

number has an effect on temperature profile at steady state, 

and there is a noticeable difference in temperature profile for 

different values of Rayleigh number ; this is due to the effect 

of convection heat transfer which appears in the Rayleigh 

number equal to 50 which is over critical Rayleigh number it 

means that by increasing the Rayleigh number over critical 

Rayleigh number value the mode of heat transfer in porous 

media would be natural convection heat transfer. Also there 
is a noticeable difference in streamline profile for different 

values of Rayleigh number; this is due to the effect of 

convection heat transfer which appears in the Rayleigh 

number equal to 50 which is over critical Rayleigh number it 

means that by increasing the Rayleigh number over critical 

Rayleigh value the mode of heat transfer in porous media 

would be natural convection heat transfer and the streamline 

value will increase.  

 

3.3 Critical Rayleigh number 

Figures (6) shows the variation of critical Rayleigh number 

with Forchheimer’s number, the figure shows that as 

Forchhiemer’s number is increased the critical Rayleigh 

number also is increased due to the increase of permeability 

which decrease the velocity of the flow and so decrease the 
convection heat transfer effect, so increase the stability of 

fluid. From the obtained data a mathematical relationship 

between Rac and Fr is obtained: 

 

Rac = -1504𝐹𝑟2 + 2055 Fr + 39.51                (12) 
 

This equation describes the change of critical Rayleigh 

number with respect to Forchheimer’s number we notice that 

when Forchhiemer’s number equal to zero which represent a 

Darcy model the critical Rayleigh number equal to 39.51 
which is almost the exact value as stated in references. 

 
 

Figure 6. Variation of critical Rayleigh number with 

Forchheimer’s number. 

 

3.4 Nusselt number 

 

Figure 7. Variation of Nusselt number with Rayleigh number 

for different Forchhiemer’s number. 
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Figure (7) shows the variation of Nusselt number with 

Rayleigh number for different values of Forchheimer’s 

Number Fr=0,0.02,0.05&0.09 the figure shows a proportional 

relationship between Rayleigh number and Nusselt number, 

when Rayleigh number increased Nusselt number also 

increased; this is due to the increase of the convection heat 

transfer value for small values of Rayleigh number Nusselt 

number equal one this result obtained when the heat transfer 
in porous media only conduction, but when Rayleigh number 

increased over critical value Nusselt number increased; 

Due to the convection heat transfer. 

4. CONCLUSIONS 

In this paper, the problem of stability of horizontal porous 

layer heated from below using Forchheimer’s model had 

been studied, parameters which directly affect the 

dimensionless velocity and temperature have been 

highlighted and discussed ending the following conclusions: 
1) The increase of the Rayleigh number over a critical 

value has found to change the heat transfer mode from 

conduction heat transfer to convection heat transfer. 

2) The increase of the Rayleigh number has found to 

increase the fluid velocity and also increase heat transfer in 

the porous layer. 

3) The Forchheimer’s number effect highly arise for 

high speeds of for high Reynolds number also its represent 

the drag on particles from inertia. 

4) The increase Forchheimer number has found to 

decrease the ability of fluid to move so the convection heat 

transfer in porous layer decreases. 
5) The Forchheimer’s inertial coefficient depends on 

the type of porous media also it has a large effect on velocity 

and a small effect on temperature. 
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NONMENCLATURE 

u The velocity in x direction. [m/s] 

v The velocity in y direction. [m/s] 

T(x) A variable surface temperature [K] 

Tm The fluid temperature [K] 

g Gravitational acceleration. [m/s2] 

K Permeability. [m2] 

CF  Forchheimer constant. 

P Pressure [Pa] 

T Temperature. [K] 

W The length in x-direction. [m] 

H The length in y-direction. [m] 

ka Thermal conductivity of the porous media and fluid. 

[W/m.K] 

cp     Specific heat at constant pressure. [kJ/kg.K] 

Fr Forchheimer number.  

Ra The Darcy-modified Rayleigh number.  

 

 

Greek symbols 

    Absolute viscosity. [kg/m.s] 

    The fluid density. [kg/ m3] 

 Electrical conductivity. [mΩ m⁄ ] 

 Coefficient of thermal expansion. [K−1] 

 Streamline function. 

    Dimensionless stream function  

       αa     Thermal diffusivity. [m2/s] 

    Dynamic viscosity. [m2/s] 
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