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ABSTRACT  

 
Thermal instability of couple-stress fluid in the presence of uniform vertical rotation is considered. Following the linearized 
stability theory and normal mode analysis, the paper established the regime for all oscillatory and non-decaying slow motions 
starting from rest, in a couple-stress fluid of infinite horizontal extension and finite vertical depth in the presence of uniform 
vertical rotation and the necessary condition for the existence of “overstability” and the sufficient condition for the validity of 

the ‘exchange principle’ is derived, when the bounding surfaces of infinite horizontal extension, at the top and bottom of the 
fluid are rigid. Further, the stationary convection at marginal state with free horizontal boundaries is analyzed numerically 
and graphically, showing that the couple-stress parameter and rotation has stabilizing effect on the system. However, for the 
constant magnitude of couple-stress parameter and rotation, the wave number has a destabilizing effect for a value less than a 
critical value, which varies with the magnitude of the couple-stress parameter and rotation; and for higher value than the 
critical value of the wave number; it has a stabilizing effect on the system. 
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1. INTRODUCTION 

Right from the conceptualizations of turbulence, instability 

of fluid flows is being regarded at its root. The thermal 

instability of a fluid layer with maintained adverse temperature 

gradient by heating the underside plays an important role in 

Geophysics, interiors of the Earth, Oceanography and 

Atmospheric Physics etc. A detailed account of the theoretical 
and experimental study of the onset of Bénard Convection in 

Newtonian fluids, under varying assumptions of 

hydrodynamics and hydromagnetics, has been given by 

Chandrasekhar [1]. The use of Boussinesq approximation has 

been made throughout, which states that the density changes 

are disregarded in all other terms in the equation of motion 

except the external force term. Sharma et al [2] has considered 

the effect of suspended particles on the onset of Bénard 

convection in hydromagnetics. The fluid has been considered 

here are all Newtonian in all above studies. With the growing 

importance of non-Newtonian fluids in modern technology and 

industries, the investigations on such fluids are desirable. 
Stoke [3] proposed and postulated the theory of couple-stress 

fluid. One of the applications of couple-stress fluid is its use to 

the study of the mechanism of lubrication of synovial joints, 

which has become the object of scientific research. According 

to the theory of Stokes [4], couple-stresses are found to appear 

in noticeable magnitude in fluids having very large molecules. 

Since the long chain hylauronic acid molecules are found as 

additives in synovial fluid, Walicki and Walicka [5] modeled 

synovial fluid as couple-stress fluid in human joints.  

     

 

Sharma and Thakur [6] have studied the thermal convection 

in couple-stress fluid in porous medium in hydromagnetics. 

Sharma and Sharma [7] and Kumar and Kumar [8] have 

studied couple stress fluid under various conditions. 

However, in all above studies the case of two free 

boundaries which is a little bit artificial except the stellar 

atmospheric case is considered. Banerjee et al [9] gave a new 
scheme for combining the governing equations of 

thermohaline convection, which is shown to lead to the bounds 

for the complex growth rate of the arbitrary oscillatory 

perturbations, neutral or unstable for all combinations of 

dynamically rigid or free boundaries and, Banerjee and 

Banerjee [10] established a criterion on characterization of 

non-oscillatory motions in hydrodynamics which was further 

extended by Gupta et al [11]. However no such result existed 

for non-Newtonian fluid configurations in general and in 

particular, for Couple-stress viscoelastic fluid configurations. 

Rana and Patial [12] and Das [13] had investigated the 

problem with different non-Newtonian fluids.  Banyal [14] 
have characterized the oscillatory motions in couple-stress 

fluid. 

Keeping in mind the importance of non-Newtonian fluids, 

the present paper is an attempt to characterize the onset of 

instability analytically, in a layer of incompressible couple-

stress fluid heated from below in the presence of uniform 

vertical rotation opposite to force field of gravity, when the 

bounding surfaces of infinite horizontal extension, at the top 

and bottom of the fluid are rigid. It is shown that for the 
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configuration under consideration, if

 
2

2 4
1AT

F 



, then an 

arbitrary neutral or unstable modes of the system are definitely 

non-oscillatory and, in particular the PES is valid, where
AT  is 

the Taylor number and F is the couple-stress parameter. 

Further, the stationary convection at marginal state with free 
horizontal boundaries is analyzed numerically and graphically, 

showing that the couple-stress parameter and rotation has 

stabilizing effect on the system. However, for the constant 

magnitude of couple-stress parameter and rotation, the wave 

number has a destabilizing effect for a value less than a critical 

value, which varies with the magnitude of the couple-stress 

parameter and rotation; and for higher value than the critical 

value of the wave number; it has a stabilizing effect on the 

system. 

 

2. FORMULATION OF THE PROBLEM AND 

PERTURBATION EQUATIONS 

Considered an infinite, horizontal, incompressible couple-

stress fluid layer, of thickness d, heated from below so that, the 

temperature and density at the bottom surface z = 0 are
0T ,

0  

respectively and at the upper surface z = d are 
dT ,

d  and that 

a uniform adverse temperature gradient
dT

dz

 
 
 

 is 

maintained. The fluid is acted upon by a uniform vertical 

rotation  0,0,


  . Let  , p, T and  , ,q u v w


 denote 

respectively the density, pressure, temperature and velocity of 

the fluid. Then the momentum balance, mass balance 

equations of the couple-stress fluid (Stokes [3]; Chandrasekhar 

[1] and Sharma and Sharma [6]) are  
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 (2.1)       
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  ,                                                                           (2.2) 

 

    Where
2 2 2

2

2 2 2x y z

  
   

  
 and 

v u

x y


 
 
 

 denote the 

z-component of vorticity. 

 

3. NORMAL MODE ANALYSIS 

Analyzing the disturbances into normal modes, we assume 

that the Perturbation quantities are of the form 

 

       , , , ,w W z z Z z      Exp  x yik x ik y nt  ,   (3.1)  

 

Where ,x yk k  are the wave numbers along the x and y-

directions respectively  
1

2 2 2
x yk k k  , is the resultant wave 

number and n is the growth rate which is, in general, a 

complex constant. 
    Using (3.1), equations (2.9), (2.10) and (2.11), on using 

(2.8), in non-dimensional form, become 

     
2

2 2 2 2 2 2D a F D a D a W     
  

2 2

A

g d a
T dDZ






    ,                                                 (3.2)  

 

   2 2 2 21
AT

F D a D a Z DW
d

      
 

,        (3.3)   
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2 2

1

d
D a p W





     ,                                       (3.4) 

     

    Where

2 '

1 2

0

, , ,
nd

a kd p F
d

 


   
   

, 

d
D

dz


and
D dD 

 and dropping 
 

 for convenience. 

Here
1 ,p






is the thermal prandtl number, F is the couple-

stress parameter and AT
 is the Taylor number.  

Substituting W W , 
2d


   and 

AT
Z Z

d
  in 

equations (3.2), (3.3) and (3.4) and dropping    for 

convenience, in non-dimensional form becomes, 

 

     
2

2 2 2 2 2 2D a F D a D a W     
  

                              

2

ARa T DZ   ,                                                              (3.5)  

 

   2 2 2 21 F D a D a Z DW      
 

,                 (3.6)  

 

 2 2

1D a p W     ,                                                (3.7)    

                                                                              

Where
4g d

R



 , is the thermal Rayleigh number. 

Since both the boundaries rigid and are maintained at 

constant temperature, the perturbations in the temperature are 

zero at the boundaries. The appropriate boundary conditions 

with respect to which equations (3.5), (3.6) and (3.7) must be 
solved are 

 

W = DW = 0, 0   and Z = 0 at z = 0 and z = 1,          (3.8)   

                                                         

Equations (3.5)-(3.7), along with boundary conditions (3.8), 

pose an eigenvalue problem for   and we wish to characterize 

i  when 0r  . 

 

4. MATHEMATICAL ANALYSIS 

We prove the following theorems: 

Theorem 1: If  R  0 , F  0, AT  0, 0r   and 0i   then 

the necessary condition for the existence of non-trivial 

solution   , ,W Z  of equations (3.5), (3.6) and (3.7) 

together with boundary conditions (3.8) is that 
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 
2

2 4
1AT

F 



. 

 

Proof: Multiplying equation (3.5) by  W   (the complex 

conjugate of W) throughout and integrating the resulting 

equation over the vertical range of z, we get 

 

   
1

3
2 2 2 2

0 0

W D a Wdz F W D a Wdz     

 
1

2
2 2

0

W D a Wdz   

1 1

2

0 0

ARa W dz T W DZdz      ,                                     (4.1) 

 
Taking complex conjugate on both sides of equation (3.7), 

we get 

 

 2 2

1D a p W        ,                                            (4.2) 

 

Therefore, using (4.2), we get  

 

 
1 1

2 2

1

0 0

W dz D a p dz          ,                          (4.3)                                                                                             

 

Also taking complex conjugate on both sides of equation 

(3.6), we get 

 

   2 2 2 21 F D a D a Z DW         
 

,             (4.4)                                                                                 

 

Therefore, using (4.4), we get  

 

    
1 1 1

2
2 2 2 2

0 0 0

W DZdz DW Zdz Z D a F D a Z dz            (4.5)     

                  

Substituting (4.3) and (4.5) in the right hand side of 

equation (4.1). Integrating the terms on both sides of the 

resulting equation for an appropriate number of times by 

making use of the appropriate boundary conditions (3.8), 
along with (3.6) and equating imaginary parts on both sides 

and cancelling ( 0)i   throughout from imaginary part, we 

get 

 

 
1 1 1

2 2 2 22 2

1

0 0 0

ADW a W dz Ra p dz T Z dz      ,     (4.6)                                                                         

 

We first note that since W  and Z  satisfy  

(0) 0 (1)W W   and (0) 0 (1)Z Z   in addition to 

satisfying to governing equations and hence we have from the 

Rayleigh-Ritz inequality  14  

 
1 1

2 22

0 0

DW dz W dz  ,                                                 (4.7)       

                                                                                                           

And

1 1
2 22

0 0

DZ dz Z dz  ,                                            (4.8)                                                                                                                                                                                                                                                           

Further, for (0) 0 (1)W W  and (0) 0 (1)Z Z  , Banerjee 

et al  15  have shown that 

 
1 1

2 22 2

0 0

D W dz DW dz   

 

And
1 1

2 22 2

0 0

D Z dz DZ dz  ,                                       (4.9)       

 

Further, multiplying equation (3.6) by Z   (the complex 

conjugate of Z ), integrating by parts each term of the 

resulting equation on the right hand side for an appropriate 
number of times and making use of boundary condition on Z  

namely (0) 0 (1)Z Z   along with (3.6), it follows that 

 

   
1 1 1

22 2 2 2 22 2 2 4

0 0 0

2 rDZ a Z dz F D Z a DZ a Z dz Z dz       

Real part of

1

0

Z DWdz
  
 
  
  

1

0

Z DWdz     
1

0

Z DW dz 
1

0

Z DW dz  , 

1 1
1 12 2

2 2

0 0

Z dz DW dz
      

    
      
  ,                                           (4.10)                                                        

 

    (Utilizing Cauchy-Schwartz-inequality), 

 
This gives that   

 

1 1
2 2

0 0

DZ dz F D Z dz 

1 1
1 12 2

2 2

0 0

Z dz DW dz
      

    
      
  ,    (4.11)  

 

Hence inequality (4.11) on utilizing (4.8) and (4.9), gives  

 

 

1 1
2 2

2
2 4

0 0

1
Z dz DW dz

F 



  ,                                (4.12) 

 

Now R   0 and AT   0, utilizing the inequalities (4.12), the 

equation (4.6) gives,  

 

 

1 1 1
2 2 22 2

12
2 4

0 0 0

1 AT
DW dz a W dz Ra p dz

F 

 
    
 
 

   0,      (4.13)                        

 
Therefore, we must have 

 

 
2

2 4
1AT

F 



.                                                              (4.14) 

 

Hence, if 0r   and 0i  , then

 
2

2 4
1AT

F 



,        (4.15)  

 

And this completes the proof of the theorem. 
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Presented otherwise from the point of view of existence of 

instability as stationary convection, the above theorem can be 

put in the form as follow:- 

Theorem 2: The sufficient condition for the validity of the 

‘exchange principle’ and the onset of instability as a non-

oscillatory motions of non-growing amplitude in a couple-

stress fluid heated from below, in the presence of uniform 

vertical rotation is that

 
2

2 4
1AT

F 



, where R is the 

thermal Rayleigh number and F is the couple-stress parameter, 

having top and bottom bounding surfaces rigid. 
Or, the onset of instability in couple-stress fluid heated 

from below, in the presence of uniform vertical rotation, 

cannot manifest itself as oscillatory motions of growing 

amplitude if the thermal Rayleigh number R and the couple-

stress parameter F satisfy the inequality

 
2

2 4
1AT

F 



, for 

rigid horizontal boundaries of infinite horizontal extension. 

Which provide a significant improvement to the earlier result 

by Banyal [16, 17]. The result is also in accordance with 

corresponding configuration of Newtonian fluid when the 

couple-stress parameter F=0, by Gupta et al [10]. 

In the context of existence of instability in ‘oscillatory 
modes’ and that of ‘overstability in the present configuration, 

we can state the above theorem as follow:- 

Theorem 3: The necessary condition for the existence of 

instability in ‘oscillatory modes’ and that of ‘overstability’ in 

a couple-stress fluid heated from below, in the presence of 

uniform vertical rotation, is that the thermal Rayleigh number 

R and the couple-stress parameter F, must satisfy the 

inequality

 
2

2 4
1AT

F 



, for rigid horizontal boundaries of 

infinite horizontal extension. 

 

5. NUMERICAL ANALYSIS AND DISCUSSION 

When both the boundaries are dynamically free and 

‘exchange principle’ is valid the neutral state is characterized 

by 0  , then we seek the solution of equation (3.5) -- (3.7) 

which satisfy the appropriate boundary condition (3.8). Using 

the appropriate boundary condition (3.8), it can be shown that 
all the even order derivatives of W must vanish for z = 0 and 

z = 1 and hence the proper solution of W characterizing the 

lowest mode is 

 

0 sinW W z ,                                                                (5.1)                                                                                  

 

Where 0W  is a constant. 

Eliminating   and Z between the equations (3.5)–(3.7) 

when 0  and substituting the proper 

solution 0 sinW W z , in the resultant equation, we obtain 

the dispersion relation 

 

 

 

23

1 1

1

1

(1 ) 1 (1 )

1 (1 )

Ax F x T
R

x F x

   


 
,                                  (5.2)                                                                      

Where 
2

2

1 1 12 2 4
, , A

A

TR a
R x T andF F

  
     are the 

modified values of non-dimensional parameters. 

Here
 

1

1 1

1

1 (1 )A

dR

dT x F x


 
, is always positive, showing the 

stabilizing effect of rotation on the system; and 

 

 
31 1

2

1 1

(1 )
(1 )

1 (1 )

AdR Tx
x

dF x F x

 
   

   

,                        (5.3) 

 

Therefore, for a rotating system, the couple-stress 

parameter have a stabilizing (or destabilizing) effect if 

 

 
23

1 1( ) (1 ) 1 (1 )AT or x F x     
 

,                                 (5.4)                                                  

 

However in the absence of rotation, the couple-stress 

parameter has the stabilizing effect on the system only. 

The dispersion relation (5.2) is also analyzed numerically 

for the various values of  
1F  and

1AT .  

 

 
 

Figure 1. Variation of thermal Rayleigh number R1 with 

wave number x when F1= 10 and TA1 = 200, 400 and 600. 

 

In figure 1: 1R  is plotted against modified wave number x 

when 1 10F   and 1 200AT  , 400 and 600 respectively. It is 

clear that the rotation postpone the onset of convection in a 

couple-stress fluid heated from below as the Rayleigh number 

increases with the increase in the magnitude of rotation. 

Further, for the constant value of the magnitude of rotation; 
the Rayleigh number decreases when the modified wave 

number x is less than a certain critical value (which is xc= 0.6, 

0.7 and 0.8 when 1AT =200, 400 and 600 respectively) and 

increases thereafter. Therefore, for a constant value of the 

magnitude of rotation, the wave number has destabilizing 

effect for cx x , and stabilizing effect when cx x , on the 

system and this critical value of wave number vary with the 

change in the magnitude of rotation.  

 

 
 

Figure 2. Variation of thermal Rayleigh number R1 with wave 

number x when TA1 = 200 and F1 = 5, 10 and 15. 
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    In figure 2: 
1R  is plotted against wave number x when 

1 200AT   and
1 5F  , 10 and 15 respectively. It is clear that 

the couple-stress parameter postpone the onset of convection 

in a couple-stress fluid heated from below because the 

Rayleigh number increases with the increase in the magnitude 

of couple-stress parameter. Further, for the constant value of 

the magnitude of couple-stress parameter, the Rayleigh 

number decreases when the  modified wave number x is less 

than a certain critical value (which is xc= 0.6, 0.5 and 0.5 

when 
1F =5, 10 and 15 respectively) and increases thereafter. 

Therefore, for a constant value of couple-stress parameter, the 

wave number has destabilizing effect for respective values 

when 
cx x  and stabilizing when

cx x , on the system and 

this critical value of wave number vary with the change in the 

magnitude of couple-stress parameter. 

 

6. CONCLUSION 

    In this paper, the effect of wave number and uniform 

vertical rotation on a couple-stress fluid heated from below is 

investigated and the immediate conclusions of the theorems 

proved above; and numerical and graphical discussion, are as 

follows:    

    (a). The necessary condition for the onset of oscillatory 

motions and “overstability”, for configuration under 

consideration, is that the inequality (4.17) must be satisfied. 

Thus the sufficient condition for the non-existence of 
oscillatory motions and hence the validity of ‘exchange 

principle’ is that

 
2

2 4
1AT

F 



, for the configuration under 

consideration, which provides a significant improvement to 

the earlier Which provide a significant improvement to the 

earlier result by Banyal [16]. The result is also in accordance 

with corresponding configuration of Newtonian fluid when 

the couple-stress parameter F=0, by Gupta et al [10]. 

    (b). It is observed from figure1 that of the rotation has the 

stabilizing effect on the onset of instability in the present 

configuration, from figure 2, the couple stress parameter in 

the absence of rotation has the stabilizing effect on the onset 
of instability in the present configuration. However, in the 

presence of rotation couple-stress parameter may have 

stabilizing or destabilizing effect as per the conditions given 

by (5.4), the result which is in accordance with Sharma and 

Sharma [6] 

    (c). Further, the stationary convection at marginal state for 

the constant magnitude of couple-stress parameter and 

uniform vertical rotation, the wave number has a destabilizing 

effect for a value less than a critical value, which varies with 

the magnitude of couple-stress parameter and magnetic field, 

and for higher value than the critical value of the wave 
number; it has a stabilizing effect on the system when both 

the horizontal boundaries are free. 
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NOTATIONS 

 

a              Dimensionless wave number,    

F             Couple-Stress parameter,    

g              Acceleration due to gravity, 
2/m s    
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k             Wave number,  1/ m             

,x yk k       Wave numbers in x and y-directions,  1/ m  

n             Growth rate,  1/ s   

AT            Taylor number,    

R             Rayleigh number,    

 0,0,   Rotation vector having components    0,0, , 

T              Temperature,  K  

 , ,q u v w Components of velocity after perturbation,   

               Coefficient of thermal expansion,  1/ K  

                Uniform temperature gradient,  /K m  

                Perturbation in temperature,  K  

                Thermal diffusivity, 2 /m s    

                 Kinematic viscosity, 2 /m s    

'                 Kinematic viscoelasticity, 2 /m s    

, , D        Del operator, Curly operator and Derivative with 

respect to z (=d/dz). 
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