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ABSTRACT

In this paper, the effect of geometrical parameters of microtube on enhancing the heat transfer has been studied numerically.
Single phase model was used to simulate the flow of sioz-ethlyen glycol nanofluids inside a microtube at different reynolds
numbers ranged from 10 to 160 at constant heat flux boundary condition. The results show that the higher tube diameter and
entrance size has the highest Nusselt number and lower pressure drop. Furthermore, no effect of inclination angles was
found.
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Continuity equation:
1. INTRODUCTION

1 0 1 0 0
In recent years, liquid suspensions containing ® 0 Petr V) R (et RY) + oz (e W) = 0
nanoparticles gained significant attention in science and
engineering. Their unique thermophysical properties, such as Momentum equation:
a drastically reduced melting temperature of the #-components
nanoparticles compared to their bulk counterpart [1, 2], allow
for novel methods in the manufacturing of nano and 10 10 E 1
microelectronic devices. Many researchers intended to R Pt W)+ 7R (et RID) 37 (g W)+ R (0 V)
investigate experimentally and numerically the effects of the 1 10 [ QUJ 0 [ﬂeﬁa(RU)] 2ueff oV
microtube and microchannel shapes, sizes, heat transfer and TTRIOU T RITO (Mefgy) T R(R R )T RE
the other parameters that can be influence on the
performance for the microelectronic devices. However, the R- Components
recent numerical and experimental researches that related to
microtube have been summarized in Tablel. 10 10 0 1 2
The purpose of this work is to provide a numerical study R Pett W) R R (et FV) + 7 (et W) = g (e 0)
on the effect of geometrical parameters (entrance size, shape _ 1l 10 (# o ]+ o [/‘eff 6(RV)J7 2ueff ou.
and inclination angle on enhancing the heat transfer at Rao " pza0\"eflag) " R R R R 90
different Reynolds number ranged from 10 to 120 for
different inclination angles ranged from 0°to #90< Z- Components
10 10 0
ﬁﬁ(ﬂeﬁuw)+ﬁﬁ(9eﬁ RVW)*ﬁ(PeffWW)
2. NUMERICAL MODEL ® 100 ) 100 o
B T R )
2.1 Geometry and the governing equations
Energy equation:
Navier—Stokes and energy equations were used to describe
the flow and heat transfer in the microtube. The following L et UO) + = (gt RVO) + - (ot WO)
assumptions are adopted: (i) The nanofluid is incompressible, R 09 el T TR AR Vel oz fet
the flow is laminar, the radiation heat transfer effects are 1 o Keit se| @ | Keft oo
negligible; (ii) The nanoparticles are assumed to be spherical TRZ0| Cplyg 00| T RR| “Cplyy R
and single phase model is used; (iii) Constant thermophysical
properties are considered for the nanofluid. The governing Where the non-dimensional variables are defined as

equations used are as follows:

79

1)

(22)

(2b)

(2¢)

®)



r z u v w o p
R=F" Z:E'U:T’V:T'W:T’ @:ﬁx P=—

© © © W o

The pq . ts » Cy and kg, are density, viscosity, heat
capacity and thermal conductivity of nanfluid, respectively.

2.2 Boundary conditions

At the tube inlet, the inlet temperature was taken as
Tin=301 K. No-slip conditions and uniform heat flux used
was 50000 W/m? to heat up the tube. Different velocities
depending on the values of Reynolds number were used. At
the tube outlet, the flow and heat transfer are assumed to be
fully developed.

2.3 Nanofluids thermophysical properties

The thermophysical properties which are density, heat
capacity, dynamic viscosity and thermal conductivity for
SiO,—EG nanofluid are given in Table 2. These properties
are calculated using the following equations:

Effective thermal conductivity [32]:

k k + kBrownian (4)

eff — Mstatic

. (knp +2k ¢ )=20(k g k) )
static — °f (k2K )+ —kpp)

Where k,, and k, are the thermal conductivity of the

solid particles and the base fluid respectively.
Thermal conductivity due to the Brownian motion
presented by [33] as:

KT
I(Brownian =5X104ﬂ¢pfcpf _f (T’¢)

2R
(6)

np

f(T.¢)=(0.0282170 + 0.003917)l +(~0.0306690 - 0.00391123)

0

Where K is the Boltzman constant, T is the fluid
temperature; To is the reference temperature, the s values

for SiO; particle expressed in as follow [33]:

1.9526(100¢) 14594 for 1% < <10% at 298K < T < 363K

()

The effective dynamic viscosity is given as [34]:

. (®)
ug 1-3487(d,/d ) O3t
1/3
Where oM } 9
anxpfo

While , and u, are the viscosity of nanofluid and base

fluid respectively, d is the nanoparticle diameter, d, is the

p

base fluid equivalent diameter and is the nanoparticle
volume fraction. M is the molecular weight of the base fluid
and N is the Avogadro number. p, is the mass density of

the base fluid calculated at temperature T,=293 K.
The effective density is given as [34]:

Pt = -D)pg +Dpg (10)

Where p, and p, are the nanofluid and base fluid
densities respectively, and p, is the density of nanoparticle.

The effective specific heat is given as [34]:

(A—2)(,C,), +D(#C,), (11)

c —
(CP)ers A—) oy + Do,

Where cp, is the heat capacity of the solid particles and
cp, IS the heat capacity of the base fluid.

Table 2. Thermophysical properties of nanofluids.

Base fluids Nanoparticle
Properties EG SiO2
p (kg/md) 1114.4 2200
pn (Nmys) 0.0157 -
k (W/mK) 0.252 1.2
Cp (kJ/kgK) 2415 703

2.4 Numerical implementation

The Finite volume approach is used to solve the continuity,
momentum and energy equations along with the
corresponding boundary conditions. SIMPLE algorithm is
used to solve the flow field inside the MT. The diffusion term
in the momentum and energy equations is approximated by
second-order central difference which gives a stable solution.
The second-order upwind differencing scheme is considered
for the convective terms. Five different sets of the grid sizes
were imposed to the geometry and simulated by calculating
the Nusselt number along the MT. The five grids sizes
(8x6x200 ; 10x8x400 ; 12x10x600 ; 14x12x800 and
16x14x1000) show no much difference in the values of
Nusselt number. The grid size of 14 = 12 = 800 is selected
in this study as it is found to provide a more stable solution.
About the code validation part is documented in the Ref. [31].

3. RESULTS AND DISCUSSION

The simulations are performed for Reynolds number in the
range of 10 < Re < 160 and SiO; nanoparticle with pure EG
as a base fluid. The nanoparticles volume fraction used was
0.04 with nanoparticles diameter 25nm. The MT used has a
100 mm length with different diameters ranged from 0.5 to
0.9 mm and different entrance sizes ranged from 0.371 to 2.5
mm. The heat flux that used to heat up the microtube was
50000 W/m?. The inclination angles from the horizontal
position were 0< £45< +90 are used in this investigation.

Table 1. Summary of numerical and experimental studies for MT
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3.1 Effect of tube diameter

The effect of tube geometry on, the axial and wall
temperatures, axial velocity along the tube radius, Nusselt
number and the pressure drop are presented in this section.

In Figure 1a and 1b temperature profile at z/L=1 along the
tube radius and tube axis shows that the tube with 0.9 mm
diameter has the highest temperature along the tube radius
and tube wall followed by 0.7 mm, 0.5 mm respectively. This
is because the velocity proportional inversely with the tube
diameter. Smaller diameter increases the velocity which leads
to decrease the temperature and vice versa.
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Figure 1. Profiles of temperature at z/L=1for
different tube diameters: (a) Temperature along the tube
radius; (b) Temperature along tube axis

In Figure 2 the axial velocity along tube radius profile
shows that the tube with 0.5 mm diameter has the highest

axial velocity along the tube radius at z/L=0.2 for Reynolds
number Re=80 followed by 0.7 mm, then 0.9 mm. This is
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because the smaller tube diameter is proportional directly to
the velocity.

Figure 3 shows the average Nusselt number for different
Reynolds numbers. It can be obtained from this Figure that
0.9 mm has the highest Nusselt number comparing to other
tubes. The larger tube diameter has highest Nusselt humber.
This is because for Nusselt number is proportional directly
with the tube diameter; higher tube diameter leads to higher
Nusselt number and vice versa. Figure 4 the pressure drop
along the tube axis show that the tube with 0.5 mm diameter
has the highest pressure drop followed by 0.7 mm and 0.9
mm. This is because the static pressure for the fluid is
proportional directly with the velocity. Thus, 0.5 mm tube has
the highest velocity which leads to increases the pressure
drop.
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Figure 2. Profiles of axial velocity for different tube
diameters at z =0.1 and Re= Re= 80
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Figure 3. Average Nusselt number versus Reynolds
number for different tube diameters
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3.2 Effect of entrance size

Three different entrance sizes were investigated in this
section. The configuration for different entrance is illustrated
in Figure 5. According to the entrance sizes three different
diameters which is 0.371 mm, 0.9 mm and 2.5 mm were
investigated. The results as shown in Figure 6 show that
though the entrance region is just 40% from the tube length
but it affects the heat transfer rate through the tube. It is
evident that 2.5 mm entrance diameter has the highest Nusselt
number followed by 0.9 mm, 0.371 mm respectively. This is
because the Nusselt number is proportional directly with the
entrance size.

| ———

(b)

/

-—
(©

Figure 5. The configuration for different entrance sizes:
(@) D= 0.9 mm; (b) D=2.5 mm; (¢) D=0.371 mm
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Figure 6. Average Nusselt number versus Reynolds
number for different entrance sizes

3.3 Effect of inclination angles

Different inclination angles were investigated in this
section. The configuration for different inclination angles is
shown in Figure 7. The results for different inclination angles
show no changes in the Nusselt number values and the
pressure drop at different Reynolds numbers as shown in
Table 3. This is because no effect of the gravity, the
Richardson number which is a function of Grashof number
divided on the Reynolds number is less than Ri < 0.1, so the
natural convection is neglected and the forced convection is
dominated.

Figure 7. Configuration of microtube at different
inclination angles

Table 3. The effects of inclination angle on Nusselt
number average and pressure drop at different
Reynolds number

(a) At Reynolds number 10

Angle NUave Pressure
0< 7.362852 79515.71
+45° 7.362852 79515.71
+90° 7.362852 79515.71
(b) At Reynolds number 40
Angle NUave Pressure
0° 10.11316 317295.8
+45° 10.11316 317295.8
+90° 10.11316 317295.8
(c) At Reynolds number 80
Angle NUave Pressure
0° 11.75585 638552.4
+45° 11.75585 638552.4
+90° 11.75585 638552.4




(d) At Reynolds number 120

Angle NUave Pressure

0< 12.86489 960093.9
+45° 12.86489 960093.9
+90° 12.86489 960093.9

4. CONCLUSIONS

The effect of geometrical parameters of microtube on the

heat transfer enhancement was investigated numerically. It is
concluded from the results that the heat transfer rate strongly
depends on the geometry and the entrance size of the
microtube. Higher tube diameter and entrance size have the
highest Nusselt number and vice versa. No effects of
inclination angle on heat transfer rate were found.
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NOMENCLATURE

Al>Os Aluminum oxide

Co Specific heat of the fluid, [/ kgK
Cuo Copper oxide

ds Diameter of base fluid molecule
dy Nanoparticle diameter, m

g Gravitational acceleration, m/s*
k Thermal conductivity, W /mK
Kerf Effective thermal conductivity
L Length of the tube, m

M Molecular weight of base fluid

Avogadro No,

N = 6.022x10*mol *

Nu Nusselt number,

P Pressure of fluid, Pa

Pr Prandtl number, Pr = Cp up/k
Ox Heat flux, W /m?

Re Reynolds number, e = g 15D fuy
Rip Nanoparticle radius, m

Ri Richardson number, Ri = &r/ Re
SiO; Silicon oxide

T Temperature of fluid, K

T Bulk temperature, K

To Reference temperature

Velocities in X7, y“and z " directions, m/s
Dimensionless velocities in x, y and z directions
Average jet velocity at the entrance, m/'s

\Y

Axial velocity, m/=

Zinc oxide

Greek symbols

Weff Effective viscosity

a Thermal diffusivity, m* /s

p Dynamic viscosity of fluid, kg /m =
v Kinematic viscosity of fluid, m? s
0 Inclination of tilted wall

p Fluid density, kg /m?

p1 Nanofluid density kg /m®

0 Volume fraction of nanoparticles
Subscript

by base-fluid

Nt nanofluids

Np nanoparticle

eff effective





