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1. INTRODUCTION 

A micropolar fluid is the fluid with internal structures in 

which coupling between the spin of each particle and the 

macroscopic velocity field is taken into account. The 

classical theories of continuum mechanics are inadequate to 

explain the microscopic manifestations of such complex 

hydrodynamic behavior. The dynamics of micropolar fluids, 

originated from the theory of Eringen [1, 2] has been a 

popular area of research due to their applications in a 

number of processes that occurs in industry. Such 

applications include the flow of exotic lubricants, colloidal 

suspensions, solidification of liquid crystals, extrusion of 

polymer fluids, cooling of metallic plate in bath, animal 

bloods, body fluids and many other situations. An excellent 

review of micropolar fluids and their applications was given 

by Ariman et al. [3]. Wang [4] studied the coupling 

condition with mixed convection of micropolar fluid past a 

vertical plate.  Kim [5] and Kim and Kim[6] have considered 

the steady boundary layer flow of a micropolar fluid along a 

wedge with constant surface temperature and constant 

surface heat flux, respectively. Ishak et al. [7] studied the 

steady laminar MHD boundary layer flow along a wedge 

immersed in an incompressible micropolar fluid in the 

presence of a variable magnetic field.  Rahman and his 

coworkers have studied and reported results on micropolar  

 

 

fluids for various flow and thermal conditions in different 

geometries [8-16]. Elbashbeshy et al. [17] studied the effect 

of magnetic field on boundary layer flow over an unsteady 

stretching surface in a micropolar fluid. Eldabe et al. [18] 

studied effect of thermal radiation on heat transfer over an 

unsteady stretching surface in a micropolar fluid with 

variable heat flux. Recently Alam and Chapal [19] 

introduced a new similarity approach for an unsteady two 

dimensional forced convective flow of a micropolar fluid 

along a wedge. Unlike the works of Alam and Chapal [19], 

the objective of the present paper is to obtain a local 

similarity solution of an unsteady two dimensional 

hydromagnetic forced convective heat transfer flow of a 

viscous incompressible micropolar fluid along a porous 

wedge with convective surface boundary condition. 

 

2. FORMULATION OF THE PROBLEM 

2.1 Flow analysis 

We consider an unsteady laminar boundary layer flow past 

a porous wedge in an electrically conducting micropolar 

fluid in the presence of a magnetic field B. The magnetic 

Reynolds number of the flow is taken to be small enough so 

that the induced magnetic field is assumed to be negligible in 

comparison with applied magnetic field so that B = (0, B0, 0), 

 

 

UNSTEADY HYDROMAGNETIC FORCED CONVECTIVE HEAT TRANSFER 

FLOW OF A MICROPOLAR FLUID ALONG A POROUS WEDGE WITH 

CONVECTIVE SURFACE BOUNDARY CONDITION 
 

M. S. Alam1, 2, Tarikul Islam1 and M. M. Rahman2,* 

1Dept of Math, Jagannath University, Dhaka-1100, Bangladesh;  

2Dept  of Math and Stat, College  of Sci, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat, Sultanate of 

Oman;  

*Corresponding author: mansurdu@yahoo.com 

 
 

ABSTRACT 
In this paper we analyze unsteady two dimensional hydromagnetic forced convective heat transfer flow of a viscous 
incompressible micropolar fluid along a permeable wedge with convective surface boundary condition. The potential flow 

velocity has been taken as a function of the distance x and time t. The governing time dependent non-linear partial differential 
equations have been reduced to a set of non-linear ordinary differential equations by introducing a new class of similarity 
transformations. Comparisons with previously published work are performed, and the results are found to be in excellent 
agreement. The resulting local similarity equations for unsteady flow have been solved numerically by applying Nachtsheim-
Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme.Numerical results in the form of non-
dimensional velocity, microrotation and temperature profiles are presented graphically and discussed for different material 
parameters entering into the analysis. The effects of the pertinent parameters on the local skin- friction coefficient, plate couple-
stress and the rate of heat transfer are also displayed in tabulated form and discussed them from the physical point of view.  The 
obtained numerical results show that the rate of heat transfer increases with the increase of the unsteadiness parameter and 
decreases with the increase of the surface convection parameter. 

 

Keywords: Heat transfer, Unsteady wedge flow, Micropolar fluid, Convective surface. 

115

mailto:mansurdu@yahoo.com


  

where B0 is the uniform magnetic field acting normal to the 

wedge surface. The angle of the wedge is given by  . 

The flow is assumed to be in the x-direction which is taken 

along a direction of the wedge and the y-axis normal to it. 

Fluid suction/injection is imposed at the wedge surface and 

considering the suction hole size constant.It is also assumed 

that the lower surface of the wedge is heated by convection 

from a hot fluid of temperature fT  which provides a heat 

transfer coefficient fh . The flow configurations and 

coordinate system are shown in Figure 1.  

Under the above assumptions and usual boundary layer 

approximation, the governing equations for this problem can 

be written as (see also Alam and Chapal [19]): 

 

 

 

Figure 1. Flow configurations and coordinate system 
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where vu, are the velocity components along yx,  co-

ordinates respectively, t  is the time, 





S
a


  is the 

apparent kinematic viscosity, j
S

s )
2

(    is the 

microrotation viscosity (or spin-gradient viscosity),    is 

the coefficient of dynamic viscosity, S  is the microrotation 

coupling coefficient (also known as the coefficient of gyro-

viscosity or as the vortex viscosity),   is the density of the 

fluid, N  is the microrotation component normal to the xy -

plane, j  is the micro-inertia density, T  is the temperature 

of the fluid within the boundary layer,  T  is the free stream 

temperature, pc  is the specific heat of the fluid at constant 

pressure and   is the thermal conductivity. 

 

2.2 Boundary conditions 

The boundary conditions for the above problem are 

(i) On the surface of the wedge  0y  : 
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(ii) Matching with the free stream ( y ): 
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where wv (x, t) represents the suction/ injection velocity at 

the  porous surface where its sign indicates suction (<0) or 

injection (>0) and  t,xU  is the potential velocity generated 

by the pressure gradient. 

The subscripts f  refer to the surface condition and the 

exponent m  is known as Hartee pressure gradient parameter 

which is a function of the wedge angle parameter  . 

The value of microrotation parameter 0n  results  

0N  which represents no-spin condition i.e. the 

microelement in concentrated particle flow-close to the wall 

are not able to rotate as stated by Jena and Mathur [20]. The 

case 
2

1
n   physically represents the vanishing of the anti-

symmetric part of the stress tensor and represents weak 

concentrations of the micro-elements of the micropolar fluid 

at the solid surface. For this case Ahmadi [21] suggested that 

in a fine particle suspension the particle spin is equal to the 

fluid velocity at the wall. The case corresponding to   1n   

represents the turbulent boundary layer flows (see Peddison 

and McNit [22]). 

The potential flow velocity ),( txU for the wedge flow 

has been taken as follows (see also Sattar[23], Rahman et al. 

[24-26])  
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where   is a time dependent length scale as  

 

 t 
                                                                        (7) 
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The exponent m is a function of the wedge angle 

parameter   such as 0
2








m .  

The wedge angle parameter    is a measure of pressure 

gradient, and so a positive value of     indicates a negative 

(or favorable) pressure gradient. It is to be mentioned that 

   may be negative in which case the flow is considered to 

be decelerated. In the present work we considered only the 

accelerated flows i.e. 0 . 

 

2.3 Nondimensionalization 

 

In order to obtain similarity solution of the above system 

of equations (1)-(4) under the boundary conditions (5) we 

introduce the following non-dimensional variables (see also 

Alam and Chapal [19]): 
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where η is the similarity variable and ψ is the stream 

function  that satisfies the continuity equation (1) such that 

u
y





 and v

x


 


. 

Now using equations (6)-(8) into equations (2)-(4) we 

obtain the following nonlinear ordinary differential equations: 
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where primes denote differentiations with respect to the 

variable  only.  

The dimensionless parameters which appear in the above 

equations are as follows:
S


   is the vortex viscosity 

parameter,
1

m
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local micro-inertia density parameter and Pr
pc
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  is the 

Prandtl number. 

Further, we suppose that  
1m

c
K

x 
  , where c is a constant 

so that  
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Integrating (12) we obtain  
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Now taking 2c   and 1m   in equation (13) we obtain  

 

2 t               (14) 

 

The value 1m   represents the condition for a flat plate 

through which the flow is termed as stagnation point flow. It 

appears from equation (14) that the length scale 2 t   

for the ordinate is similar to Stokes’ [27] for an unsteady 

parallel flow but the form of  t  was initially developed by 

Sattar and Hossain [28] for an unsteady one-dimensional 

boundary layer problem. The characteristic length scale 

 t  defined particularly in (14) physically related to the 

boundary layer thickness that can be found in the book by 

Schlichting [29]. 

The transformed boundary conditions are given by 
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number or, the surface convection parameter and Re
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the local Reynolds number. 

 

2.4 Important physical parameters 

 

The parameters of engineering interest for the present 

problem are the local skin friction coefficient (rate of shear 

stress), local plate couple stress and local Nusselt number 

(rate of heat transfer) which are given in the following 

expressions: 

 

   
1

2
1 1

Re 1 1 0
2 2

f x

m
C n f


                             (16) 

 

 
2

, 0, , 1 0
1

wf f f g n f Bi at
m

          


117



  

   

 

1 0

1
wx

b m g
M

B




 
                                                 (17) 

 
1

2Re (1 (0))xNu Bi 


  .           (18) 

 

3. NUMERICAL SOLUTIONS 

The set of ordinary differential equations (9)-(11) is highly 

nonlinear and coupled and therefore the system cannot be 

solved analytically. The  nonlinear ordinary differential 

equations (9)-(11) along with the corresponding boundary 

conditions (15) have been solved numerically by applying 

sixth order Runge-Kutta integration scheme together with 

Nachtsheim-Swigert [30] shooting iteration technique (for 

detailed discussion of the method see also Alam et al.[31]). 

The solutions are affected by magnetic field parameter M , 

suction/injection parameter wf , wedge angle parameter (or, 

Hartee pressure gradient parameter) m , unsteadiness 

parameter K , microrotation parameter n , vortex viscosity 

parameter  , spin-gradient viscosity parameter b , micro-

inertia density parameter B , Prandtl number Pr  and Biot 

number Bi . A step size of 0.001   was selected to be 

satisfactory for a convergence criterion of 106 in all cases. 

The value of   was found to each iteration loop by the 

statement     . The maximum value of   to each 

group of parameters  , m , K , n , b , B , Pr , M , wf , 

Bi  determined when the value of the unknown boundary 

conditions at 0   does not change to successful loop with 

an error less than 106.  

 

3.1 Testing of code 

To assess the accuracy of the present code, we calculated 

the values of  f   and  f   for the Falkner-Skan 

boundary layer equation when 0m K M     for 

different values of  . FromTable 1 we observe that the data 

produced by the present code and that of White [32] are in 

excellent agreement. This gives us confidence to use the 

present numerical method.   

 

Table 1. Comparison of the present numerical results with 

White [32]for Falkner-Skan boundary layer flow when 

0m K M     . 

 

 ( )f   ( )f   ( )f   ( )f   

 Present work White [32] Present work White [32] 

0.0 0.0000000 0.000000 0.46962969 0.46960 

1.0 0.4606599 0.46063 0.43440208 0.43438 

2.0 0.8173262 0.81669 0.25567169 0.25567 

3.0 0.9690878 0.96905 0.06770646 0.06771 

4.0 0.9978003 0.99777 0.00687331 0.00687 

5.0 0.9999657 0.99994 0.00025775 0.0002 

 

4. RESULTS AND DISCUSSION 

Numerical calculations have been carried out for different 

values of the physical parameters such as magnetic field 

parameter M , pressure gradient parameter m , unsteadiness 

parameter K , spin-gradient viscosity parameter b , micro-

inertia density parameter B  and Biot number Bi keeping 

Prandtl number Pr  as fixed. Here we have considered 

human blood as the micropolar fluid. At 

KT 310 (human body temperature); the value of 
33 /1005.1 mkg , mskg /102.3 3 ,

KkgJc p /65.14 and 
32.2 10 /J ms K   . Thus, 

the value of the Prandtl number becomes Pr
pc


 = 21 

(see also Chato[33] and Valvano et al. [34]). Since the 

experimental data of the other physical parameters are 

almost not available therefore in the numerical simulations 

the choice of the values of the parameters was dictated by the 

values chosen by the previous investigators. In the 

simulations the default values of the parameters are 

considered to be 0.2 , 5.0K , 2.0m , 5.0B , 

0.2b , 5.0n , 0.1M , 0.5wf   and 5.0Bi  

unless otherwise specified. 

The effects of the magnetic field parameter M  on the 

dimensionless velocity, microrotation and temperature 

profiles across the boundary layer are displayed in Figures 

2(a)-(c) respectively.  It can be seen from Figure 2(a) that the 

fluid velocity profiles increase monotonically with the 

increase of magnetic field parameter M . On the other hand, 

the results also show that the velocity boundary layer 

thickness decreases with the increase of  the magnetic field 

parameter M  which in turn increases the velocity gradient 

at the surface ( 0 ), and hence produce an increase in 

skin friction coefficient. This is expected, since the 

application of a magnetic field moving with the free stream 

has the tendency to induce a motive force, which increases 

the motion of the fluid and hence increase the surface 

friction force. From Figure 2(b) we see that the 

dimensionless microrotation profiles remain negative. From 

this figure we observe that the microrotation profiles are 

found to decrease with the increase of the magnetic field 

parameter M  within some domain critical   and 

increase within the domain critical  . It is also found 

that at the surface of the wedge the maximum microrotation 

(angular velocity) of the microconstituents is found to be  -

0.409331, -0.597651, -0.732561, and -0.842062 for M = 

0.0, 1, 2.0, 3.0 respectively. Thus, the microrotation of the 

microconstituentsat the surface of the wedge decreases 

46.01% when M  increase from 0.0 to 1.0 whereas the 

corresponding decrease is 14.95%, when M  increase from 

2.0 to 3.0.  From Figure 2(c) we also see that the temperature 

profile slightly decrease with the increase of magnetic field 

parameter M . Therefore, an applied magnetic field can be 

used to control the flow, rotation of micro-constituents and 

heat transfer characteristics. 

Figures 3(a)-(c), respectively, show the velocity, 

microrotation and temperature profiles for different values of 
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the pressure gradient parameter m . The value 0m  

corresponds to wedge angle of zero degree i.e. flat plate and 

1m  corresponds to the wedge angle of 180 degrees i.e. 

stagnation point flow. From Figure 3(a) it is clear that the 

fluid velocity within the boundary layer increases 

monotonically with the increasing values of the pressure 

gradient parameter m .The results also show that the 

velocity profiles become steeper for large values of the 

pressure gradient parameter m .   From Figure 3(b) we 

observe that the microrotation profiles decrease with the 

increase of the values of the pressure gradient parameter m  

when critical   . For critical   a reversed effect is 

observed in the upper portion of the boundary layer. It is also 

found that at the surface of the wedge the maximum 

microrotation (angular velocity) of the microconstituents is 

found tobe -0.450692, -0.512274, -0.568747, and -0.629646 

for m = 0.0, 0.33, 1.0, 4.0  respectively. Thus the 

microrotation profiles decrease by13.66% when m  increase 

from 0.0 to 0.33 whereas the corresponding decrease is 

10.71%, when m  increases from 1.0 to 4.0. Figure 3(c) 

shows that the non-dimensional temperature profiles within 

the boundary layer for different values of the pressure 

gradient parameter m . From this figure we see that the 

temperature profiles decrease with the increasing values of 

the pressure gradient parameter m . It is also found that at 

the surface of the wedge the maximum temperature of the 

fluid is found to be 0.062285, 0.052663, 0.043319, and 

0.027814 for 0.4,0.1,33.0,0.0m  respectively. Thus, 

the temperature of the fluid at the surface of the wedge 

decreases by15.45% when m  increases from 0.0 to 0.33 

whereas the corresponding decrease is 35.79 %, when m  

increases from 1.0 to 4.0.    

 

                         
(a)                                                                                                          (a) 

                           
(b)                                                                                                          (b) 

                         
(c)                                                                                                         (c) 

Figure 2. Variation of dimensionless (a) velocity,                              Figure 3. Variation of dimensionless (a) velocity,                         

(b) microrotation and (c) temperature profiles                                 (b) microrotation and (c) temperature profiles for 

for different values of M.                                                                        different values of m . 
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The effects of the unsteadiness parameter K on the 

velocity, microrotation and temperature profiles are shown in 

Figure 4(a)-(c) respectively. From Figure 4(a) we observe 

that the velocity profiles decrease with the increasing values 

of the unsteadiness parameter K  for 
critical  . But 

for critical  , a reverse trend is observed. This figure 

also shows that a backflow phenomenon occurs for 

0 criticalK K   (not precisely determined).  From Figure 4(b), 

we observe that microrotation of the blood corpuscles 

increases with theincrease of the unsteadiness parameter K in 

the vicinity of the surface of the wedge. But far away from 

the surface of the wedge where kinematic viscosity 

dominates the flow microrotation profiles overlap and 

decrease with the increase of unsteadiness parameter K . 

This is consistent with the work of Rahman and Sattar [36]. 

From this figure, we also found that at the surface of the 

wedge the maximum microrotation of the microconstituents 

is -0.588525,                -0.416873, -0.214564 and -0.004872 

for 0.3,0.2,0.1,5.0K  respectively. Thus, the 

microrotation of the blood corpuscles at the surface of the 

wedge increases 29.17% when K  increases from 0.5 to 1.0 

whereas the corresponding increase is 97.72%, when K  

increases from 2.0 to 3.0. Figure 4(c) shows that the non-

dimensional temperature profiles within the boundary layer 

for different values of the unsteadiness parameter K . From 

this figure we see that the temperature profiles decrease with 

the increasing values of the unsteadiness parameter K . It is 

also found that at the surface of the wedge the maximum 

temperature of the fluid is 0.055184, 0.048692, 0.044612, 

and 0.041635 for 0.3,0.2,0.1,5.0K  respectively. The 

temperature of the micropolar fluid at the surface of the 

wedge decreased by 11.76% when K was increased from 0.5 

to 1.0 whereas the corresponding decrease was 6.67%, when 

K  increased from 2.0 to 3.0.  Therefore the unsteadiness 

parameter K controls the flow, rotation of the micro-

constituents and heat transfer characteristics.  

 

                               
(a)                                                                                                             (a) 

                                   
(b)                                                                                                             (b) 

                                 
(c)                                                                                                              (c) 

Figure 4: Variation of dimensionless (a) velocity,                                   Figure 5: Variation of dimensionless microrotation 

(b) microrotation and (c) temperature profiles                                     profiles for different values of (a) b, (b) B and (c) 

for different values of K.                                                           temperature profiles for different values of Bi. 
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The effects of the spin gradient viscosity parameter b and 

the micro-inertia density parameter B  on the dimensionless 

microrotation profiles have been displayed in Figure 5(a)-(b) 

respectively.  

From Figures 5(a)-(b) we observe that the microrotation 

profiles are found to decrease with the increasing values of 

b whereas it increases with the increasing value of B .  

The effect of the Biot number (surface convection 

parameter) Bi on the temperature profiles against  is 

displayed in Figure 5(c). From this figure we observe that the 

temperature profiles within the boundary layer increase with 

the increase of the Biot number Bi . The surface convection 

parameter or Biot number is a ratio of the hot fluid side 

convection resistance to the cold fluid side convection 

resistance on a surface. For fixed cold fluid properties and 

fixed free stream velocity, the surface convection parameter 

Bi at any x station is directly proportional to the heat 

transfer coefficient, fh associated with the hot fluid. The 

thermal resistance on the hot fluid side is inversely 

proportional to fh . As Bi increases, the hot fluid side 

convection resistance decreases and consequently, the surface 

temperature increases. This is consistent with the work of 

Rahman and Sattar [35]. It is also found that at the surface of 

the wedge the maximum temperature of the fluid is 0.050807, 

0.365087, 0.534893 and 0.851372 which occur for Bi = 0.5, 

5.0, 10.0 and 50.0 respectively. Therefore at the surface of 

the wedge the fluid temperature increases by 618.57% when 

Bi  increases from 0.5 to 5.0 whereas the corresponding 

increase is 59.17% when Bi increases from 10.0 to 50.0. We 

further notice that throughout the boundary layer the 

temperature profiles decrease monotonically with the 

increase of   . From this figure it is also confirmed that for 

large values of Bi  i.e. Bi , the temperature profile 

attains its maximum value 1: thus the convective boundary 

condition become the prescribed surface temperature case.  

 

Table 2. Numerical values of the local skin-friction 

coefficient, plate couple stress and the Nusselt number for 

different values of M  and Bi . 

 

M   Bi  0f     0g    0    

 
 
1.0 

0.5 
5.0 
10 
50 

1.1794999 
1.1794999 
1.1794999 
1.1794999 

0.40830937 
0.40830937 
0.40830937 
0.40830937 

0.943018148 
0.623344324 
0.452796102 
0.141995073 

0.0 
0.5 
1.0 
2.0 

 
 
0.5 

0.73219433 
0.98716544 
1.17949990 
1.47826448 

0.17487508 
0.30400641 
0.40830937 
0.57970315 

0.942712748 
0.942891598 
0.943018148 
0.944021746 

 

Finally, the combined effects of magnetic field parameter 

M  and Biot number (surface convection parameter) Bi  on 

the local skin-friction coefficient (  0f  ), local plate couple 

stress (  0g ) and the local Nusselt number(  0  ) have 

been shown in Table-2. From this table we see that the local 

skin-friction coefficient increases with an increasing value of 

the magnetic field parameter M  when the Biot number 

(surface convection parameter) Bi  is fixed. On the other 

hand from this table we see that for a fixed value of the 

magnetic field parameter M ,  the rate of heat transfer 

decreases with an increasing values of the Biot number 

(surface convection parameter) Bi . 

 

5. CONCLUSIONS 

In this paper we have studied the problem of unsteady 

hydromagnetic forced convective heat transfer flow of a 

micropolar fluid along a permeable wedge with convective 

surface boundary condition. With the help of these similarity 

transformations, the governing boundary-layer equations are 

reduced to ordinary differential equations, which are then 

solved numerically by applying Nachtsheim-Swigert 

shooting iteration method. In the numerical computations, 

we have considered human blood as the micropolar fluid 

with Pr 21 . Comparison with previously published work 

was performed and the results were found to be in excellent 

agreement. The numerical results have been presented in the 

form of graphs From the numerical computations the 

following major findings can be concluded:   

 Magnetic field and unsteadiness significantly 

control the flow, rotation of micro-constituents and 

heat transfer characteristics of a micropolar fluid. 

 The local skin-friction coefficient increases with the 

increasing values of the magnetic field parameter. 

 The plate couple stress increases with the increase 

values of the magnetic field parameter. 

 The local Nusselt number increases with the 

increasing value of the magnetic field parameter 

while it decreases with the increasing value of the 

surface convection parameter. 
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