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1. INTRODUCTION 

The theory of micropolar fluid has been a field of very 

active research for the last few decades. This theory, first 

introduced and formulated by Eringen [4] (1966),  is capable 

to explain the complex fluids behaviour such as liquid 

crystals, polymeric suspensions, animal blood etc. by taking 

into account the effect arising from local structure and micro-

motions of the fluid elements. In the theory of micropolar 
fluid, each particle has a finite size and constitutes a micro 

structure, which can rotate. This local rotation of the particles 

is in addition to the usual rigid body motion of the entire 

volume element. The effect of magneto hydrodynamics on 

micropolar flow has become important due to several 

engineering applications such as in MHD generators, 

designing cooling system for nuclear reactor, flow meters 

etc., where the micro concentration provides an important 

parameter  for deciding the rate of heat flow. Several 

investigators have made theoretical and experimental studies 

of micropolar flow in the presence of a transverse magnetic 
field during the last decades. Assuming fluid viscosity as a 

linear function of temperature the effect of variable viscosity 

on MHD natural convection in micropolar fluids was studied 

by Abd El-Hakiem et al. [1]. Ahmed and Kalita [2] studied 

MHD oscillatory free convective flow past a vertical plate in 

slip- flow regime with variable suction and periodic plate 

temperature. MHD free and forced convection and mass 

transfer flow past a porous vertical plate was investigated by 

Ahmed and Hazarika [3]. Gorla et al. [5] investigated the 

magneto hydrodynamic free convection boundary layer flow 

of a thermomicropolar fluid over a vertical plate. 

Muthucumaraswami et al. [8] investigated the unsteady flow 

past an accelerated infinite vertical plate with variable 

temperature and uniform mass diffusion. Rajesh [9] 

investigated the MHD free convection flow past an 

accelerated vertical porous plate with variable temperature 

through a porous medium. Using similarity substitutions and 

applying shooting method Sarma and Hazarika [10] 

investigated effects of variable viscosity and thermal 
conductivity on the flow of Newtonian fluid past an 

accelerated vertical insulated plate.        

 

2. OBJECTIVE 

The main objective of the present work is to extend the 

work of Sarma and Hazarika [10] for the study of the effects 

of variable viscosity and thermal conductivity on the MHD 

flow of micropolar fluid past an accelerated infinite vertical 

insulated plate. Viscosity and thermal conductivity are 

assumed to be inverse linear functions of temperature. The 

governing partial differential equations are reduced in to 
ordinary differential equations by similarity transformations. 

The problem is then solved numerically using Runge-Kutta 

shooting algorithm. 

 

3. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

The general equations of fluid motion for two dimensional 

unsteady flows in Cartesian co-ordinate are considered 
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with 𝑥 −axis along the vertical plate in the upward direction 

and the  𝑦 −axis normal to it, where the fluid properties, 

viscosity, thermal conductivity and concentration are 

assumed to vary with temperature.  At time 𝑡>0 the infinite 

plate starts moving with a velocity  𝑢 = 𝑐0𝑡  (where 𝑐0  is a 

positive constant with the dimention of acceleration). As the 

velocity of the fluid is low, so the viscous dissipative heat is 

neglected. Also a magnetic field of constant intensity is 
assumed to be applied normal to the vertical plate and the 

electrical conductivity of the fluid is assumed to be so small 

that the induced magnetic field can be neglected in 

comparison to the applied magnetic field. The applied 

magnetic field is primary in the 𝑦 − direction and is a 

function of 𝑡 only. (𝑢(𝑦, 𝑡), 0)  are the velocity components 

and 𝑁 is the component of micro-rotation perpendicular to 

the 𝑥𝑦 − plane. Under these assumptions the governing 

equations of the problem are considered as follows: 
   

3.1 Governing equations 
 

Momentum equation: 

 
𝜕𝑢

𝜕𝑡
= 𝑔0𝛽(𝑇 − 𝑇∞) + 𝑔0𝛽∗(𝐶 − 𝐶∞) +

𝜕

𝜕𝑦
(𝜈

𝜕𝑢

𝜕𝑦
) +

𝜅

ρ
(

𝜕𝑁

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2
) −

𝜎𝐵2

ρ
𝑢                                                             (1) 

 

Angular momentum equation: 

 

 
𝜕𝑁

𝜕𝑡
=

𝛾

ρj

𝜕2𝑁

𝜕𝑦2 −
𝜅

ρj
(2𝑁 +

𝜕𝑢

𝜕𝑦
)                                               (2) 

 

Energy equation: 

 
𝜕𝑇

𝜕𝑡
=

1

ρcp

𝜕

𝜕𝑦
(𝜆

𝜕𝑇

𝜕𝑦
)                                                              (3) 

 

Species continuity equation: 
 
𝜕𝐶

𝜕𝑡
=

1

Sc

𝜕

𝜕𝑦
(𝜈

𝜕𝐶

𝜕𝑦
)                                                                (4) 

3.2 Boundary conditions 

The appropriate boundary conditions are: 

 

𝑢(0, 𝑡) = 0, 𝑇(0, 𝑡) = 𝑇𝑤  , 𝐶(0, 𝑡) = 𝐶𝑤 , 𝑁(0, 𝑡) = 0,
 

𝑢(∞, 𝑡) = 0, 𝑇(∞, 𝑡) = 0, 𝐶(∞, 𝑡) = 0, 𝑁(∞, 𝑡) = 0  
      

}  (5) 

 

The equation of continuity being identically satisfied 

by   ( 𝑢(𝑦, 𝑡), 0) . Following Gurum [6] we assume 

that   𝛾 = (𝜇∞ +
𝜅

2
) 𝑗 = 𝜇∞ (1 +

𝐾1

2
) 𝑗 , where  𝐾1 =

𝜅

𝜈∞ρ
, 

coupling constant parameter. 

Following Lai and Kulacki [7] we assume that the 

viscosity and thermal conductivity are inverse linear 

functions of temperature, i.e.   

                                                 
1

𝜇
=

1

𝜇∞

[1 + 𝛿(𝑇 − 𝑇∞)] , or 
1

𝜇
= 𝑎(𝑇 − 𝑇𝑐)  

 

where 𝑎 =
𝛿

𝜇∞

 and 𝑇𝑐 = 𝑇∞ −
1

𝛿
 

 

  
1

𝜆
=

1

𝜆∞
[1 + 𝜉(𝑇 − 𝑇∞)] , or 

1

𝜆
= 𝑏(𝑇 − 𝑇𝑟)                     

                                 

Where 𝑏 =
𝜉

𝜆∞
 and 𝑇𝑟 = 𝑇∞ −

1

𝜉
  

 

Here 𝑎, 𝑏, 𝑇𝑐  and 𝑇𝑟 are constants and their values depend 

on the reference state and thermal properties of the fluid i.e. 

 𝜈  and  𝜆 .In general  𝑎, 𝑏 > 0 for liquids and 𝑎, 𝑏 < 0  for 
gases. 

We introduce the following similarity transformations: 

 

𝜂 = 𝑦√
𝛼2𝑈0

(1 − 𝛼𝑡)𝜈∞𝑐0

,                

 

𝑢 =  𝑈0(1 − 𝛼𝑡)
1

2⁄ 𝑓(𝜂),    
 

𝑁 = √
𝑈0

3𝛼2

𝜈∞𝑐0

ℎ(𝜂),   

 

𝑗 =
𝜈∞c0 

𝑈0𝛼2
(1 − 𝛼𝑡)𝑖(𝜂), 

 

𝐵 =  √
𝛼𝑈0

c0 (1 − 𝛼𝑡)
𝐵0, 

 

𝐶 = 𝐶∞ +
𝑐0(𝐶𝑤 − 𝐶∞)

𝛼𝑈0

(1 − 𝛼𝑡)
1

2⁄ 𝑔(𝜂),      

 

𝑇 = 𝑇∞ +
𝑐0(𝑇𝑤−𝑇∞)

𝛼𝑈0
(1 − 𝛼𝑡)

1
2⁄ 𝜃(𝜂),            

            
  
𝐺𝑟

=
𝑔0𝛽(𝑇𝑤−𝑇∞)𝑐0

2(1−𝛼𝑡)

𝑈0
3𝛼3 ,  𝐺𝑐 =

𝑔0 𝛽
∗(𝐶𝑤−𝐶∞)𝑐0

2(1−𝛼𝑡)

𝑈0
3𝛼3 .   

 

Introducing the above transformations in equations (1)—

(4), we have the following non dimensional ordinary 

differential equations 

 

(1 + 𝐾1
𝜃𝑐−𝜃

𝜃𝑐
) 𝑓′′ = [𝐺𝑟𝜃 +  𝐺𝑐𝑔 + 𝐾1ℎ′ − 𝑀𝑓 −

1

2
𝐾2𝑅𝑒(𝑓 − 𝜂𝑓′)]

𝜃−𝜃𝑐

𝜃𝑐
+

𝜃′𝑓′

𝜃−𝜃𝑐
                                               (6) 

 
(2 + 𝐾1)𝑖 ℎ′′ = 𝐾2𝑅𝑒(𝜂ℎ′)𝑖 + 𝐾1 (4ℎ + 2𝑓′)                    (7) 

 

 
 
𝜃

′′
=

1

2
𝐾2𝑃𝑒ℎ

(𝜃 − 𝜂𝜃′)
𝜃−𝜃𝑟

𝜃𝑟
+

𝜃′2

𝜃−𝜃𝑟
                                 (8) 

 

𝑔′′ =
1

2
𝐾2𝑃𝑒𝑚

(𝑔 − 𝜂𝑔′)
𝜃−𝜃𝑐

𝜃𝑐
+

𝑔′𝜃′

𝜃−𝜃𝑐
                                 (9) 

     
    The  boundary conditions (5)become   

 
As 𝜂 = 0:   𝑓 = 0,   𝑔 = 1,   𝜃 = 1,   ℎ = 0  

 
As 𝜂 → ∞:   𝑓 = 0,   𝑔 = 0,   𝜃 = 0, ℎ = 0

}                 (10)   

    

The physical quantities of interest in this problem are the 

skin–friction coefficient  𝑐𝑓 ,Nusselt number 𝑁𝑢  and 

Sherwood number  𝑆ℎ  which indicate physically wall shear 

stress, rate of heat transfer and rate of mass transfer 
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respectively.For micropolar boundary layer flow, the wall 

shear stress  𝜏𝑤 is given by 

 

 𝜏𝑤 = [(𝜇 + 𝑘)
𝜕𝑢

𝜕𝑦
+ 𝑘𝑁]

𝑦=0

 

= ρ𝜈∞ (
𝜃𝑐

𝜃𝑐 − 1
+ 𝐾1) √

𝑈0
3𝛼2

𝜈∞𝑐0

𝑓′(0) 

 

The skin –friction coefficient 𝑐𝑓 can be defined as 

 

 𝑐𝑓 =
2 𝜏𝑤

ρ𝑈𝑜
𝟐 = 2(

𝜃𝑐

𝜃𝑐−1
+ 𝐾1)𝑅𝑒−

1

2𝑓′(0)       

   

The heat transfer from the plate is given by 

 

 𝑞𝑤 = −𝜆 [
𝜕𝑇

𝜕𝑦
]

𝑦=0
= 𝜆∞

𝜃𝑟

1−𝜃𝑟
√

𝑈0𝑐0

𝜈∞𝛼2 
(𝑇𝑤−𝑇∞)𝛼

𝑈0
𝜃′(0)    

              

The Nusselt number is given by    

 

𝑁𝑢 =
 𝑞𝑤𝑈0

𝜆∞(𝑇𝑤−𝑇∞)𝛼
=

𝜃𝑟

1−𝜃𝑟
𝑅𝑒

1

2𝜃′(0)       

    

The mass flux at the wall is given by  

 

 𝑀𝑤 = −𝐷 [
𝜕𝐶

𝜕𝑦
]

𝑦=0
= −

𝜈

 𝑆𝑐
√

𝑈0𝑐0

𝜈∞𝛼2 
(𝐶𝑤−𝐶∞)𝛼

𝑈0
𝑔′(0)  

 

 𝑆ℎ =
 𝑆𝑐 𝑀𝑤𝑈0

𝜈∞(𝐶𝑤−𝐶∞)𝛼
=

𝜃𝑐

1−𝜃𝑐
𝑅𝑒

1

2𝑔′(0)    

  

4. RESULTS AND DISCUSSION 

4.1 Discussion 

The equations (6)-(9) together with the boundary 

conditions (10) are solved for various combinations of the 

parameters involved in the equations using an algorithm 

based on the shooting method and results are displayed in the 

form graph for the dimensionless velocity distribution, 

dimensionless micro-rotation distribution, dimensionless 
species concentration distribution, dimensionless temperature 

distribution with the variation of different parameters. 

The values of different parameters have been taken as 

𝑅𝑒 = 0.10, 𝐺𝑟 = 0.10,  𝐺𝑐 = 0.10, 𝑀 = 1, Pr = 0.70, Sc =
1, 𝐾1  = 0.10, 𝐾2 = 0.10 with the viscosity parameter 𝜃𝑐 

ranging from -10 to -1 at certain value of 𝜃𝑟 = −10 unless 

otherwise stated. Similarly solutions have been found with 

the thermal conductivity parameter 𝜃𝑟 ranging from -15.00 to 

-1.00 at certain value of 𝜃𝑐 = −10.00  keeping the other 

values remaining same. Solutions have also been found for 

different values of magnetic parameter (M), Prandtl 

number( 𝑃𝑟) , Reynolds number ( 𝑅𝑒) ,  coupling constant 

parameter (𝐾1) and Schmidt number(Sc). The variations in 

velocity distribution, micro-rotation distribution, species 

concentration distribution and temperature distribution are 

illustrated in figures (1)—(14) with the variation of different 

parameters.  
The figures (1)—(6) represent the variations in 

dimensionless velocity distribution with the variation of 

dimensionless reference temperature corresponding to 

viscosity parameter 𝜃𝑐, dimensionless reference temperature 

corresponding to thermal conductivity parameter 𝜃𝑟 , 
Reynolds number 𝑅𝑒  ,  the coupling constant parameter 𝐾1, 
magnetic parameter M and Schmidt number  Sc. From figure 

(1) it is clear that velocity increases with the increasing 

values  𝜃𝑐.  This is due to the fact that when the temperature 

increases viscosity decreases and therefore velocity increases. 

From figure (2) it is observed that velocity decreases with the 

increasing values of 𝜃𝑟 .   It is due to the reason that  
temperature decreases with the increasing values of thermal 

conductivity and as a result viscosity increases and velocity 

decreases. Figure (3) represents the distribution of velocity 

with the variation of Reynolds number 𝑅𝑒. For small values 

of 𝑅𝑒  viscous force is predominant to inertia force and for 

increasing values of 𝑅𝑒 viscous force will be decreasing and 

as a result velocity increases. From figure (4) it is found that 

velocity decreases with increasing value of coupling constant 

parameter 𝐾1. For increasing values of this parameter vortex 
viscosity increases and therefore velocity decreases. From 

figure (5) we have observed that velocity decreases with the 

increasing value of magnetic parameter M. It is due to the 

fact that the application of transverse magnetic field will 

result a resistive force (Lorentz force) similar to drag force, 

which tends to resist the fluid flow and thus reducing its 

velocity. It is also observed that the velocity is maximum 

near the plate and decreases away from the plate and finally 

takes asymptotic value. As the viscosity increases with the 

increasing values of Schmidt number, from figure (6) we 

have observed that velocity decreases with the increasing 
values of Schmidt number. 

Figures (7)—(10) display the distributions  representing 

micro-rotation within the boundary layer with the variation 

of 𝜃𝑟 , 𝜃𝑐, 𝐾1 and 𝑀. From these figures we have observed 

that the micro-rotation near the surface increases for 

increasing values of the different parameters and then 

decreases gradually . It is to be observed that at certain point 

the parameters have no effect on the micro-rotation 

distribution. The effect of the Hartmann number 𝑀 on micro-
rotation is shown in the figure (10). The values of micro-

rotation are negative in the first half whereas in the second 

half these are positive, thus showing a reverse rotation nears 

the boundary. An increase in magnetic field leads to a 

decrease in micro-rotation. 

Figures (11) and (12) display the variations of 

dimensionless temperature profile 𝜃(𝜂) with the variation of 

dimensionless reference temperature corresponding to 

thermal conductivity parameter 𝜃𝑟  and Prandtl number  𝑃𝑟 .  

From figure (11) we have observed that temperature 

decreases when 𝜃𝑟  increases. It is due to the fact that the 

kinematic viscosity of the fluid increases with the increase 

of 𝜃𝑟  and as a result temperature decreases. It is observed 

from the figure (12) that temperature increases with the 

increasing values of 𝑃𝑟 .It is due to the reason that with the 

increasing values of the Prandtl number the  thermal 

diffusivity of the fluid decreases and as a result thermal 

conductivity decreases. Therefore, the volumetric heat 

capacity of the fluid becomes larger.   
Figures (13) and (14) display the distributions representing 

concentration profile within the boundary layer with the 

variation of  𝑆𝑐  and 𝑅𝑒 . It is observed that concentration 

increases with the increasing values of 𝑆𝑐   and  𝑅𝑒  . With the 

increasing value of Sc mass diffusivity decreases and as a 

result concentration increases.  
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4.2 Figures 

 
 

Figure 1. Velocity distribution with the variation of  𝜃𝑐 
 

 
 

Figure 2. Velocity distribution with the variation of  𝜃𝑟 

 

 
 

Figure 3. Velocity distribution with the variation of 𝑅𝑒 

                                                                                   

 
 

Figure 4. Velocity distribution with the variation of 𝐾1 

 

 
 

Figure 5. Velocity distribution with the variation of 𝑀 

 

 

 
 

Figure 6.Velocity distributions with the variation of 𝑆𝑐  

 

 
 

Figure 7. Micro-rotation distribution with the variation of  𝜃𝑟 

 

 
 

Figure 8. Micro-rotation distributions with the variation of  c  
 

 
 

Figure 9. Micro-rotation distribution with the variation of 1 K    

 

 
 

Figure 10. Micro-rotation distribution with  variation of 𝑀 
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Figure 11. Temperature distribution with the variation of  𝜃𝑟 

 

 
 

Figure 12. Temperature distribution with the variation of  𝑃𝑟 

 

 
 

Figure 13. Concentration distribution with the variation of 

𝑆𝑐 
 

 
 

Figure 14. Concentration distribution with the variation of 

Re 

4.3 Numerical values and tables 

Finally effects of the above mentioned parameters on the 

values of 𝑓′(0), 𝑔′(0), ℎ′(0), 𝜃'(0), 𝑐𝑓, 𝑁𝑢 and 𝑆ℎ are shown 

in the tables (1)—(4). The behaviours of these parameters are 
self evident from the tables and hence any further discussions 

about them are seemed to be redundant. 
 

Table 1. Variations with respect to M and  𝜃𝑐 

 

M 
  
 𝜃𝑐

  𝑓′(0) 𝑔′(0) ℎ′(0)  𝑐𝑓 𝑆ℎ 

0.1 -10 0.38813 -0.0655 -0.0289 2.47707 0.01882 

2.1 -5 0.13229 -0.0854 -0.0046 0.78094 0.02251 

4.1 -3 0.10135 -0.1119 -0.0025 0.54484 0.02654 

6.1 -1 0.09927 -0.2177 -0.0017 0.37671 0.03442 

 

Table 2. Variations with respect to M and  𝜃𝑟 

 Table 2 : Variations with respect to M and   𝜃𝑟 

M 𝜃𝑟 𝑓′(0) 𝑔′(0) 𝜃 '(0) 𝑐𝑓 𝑁𝑢 𝑆ℎ 

0.1 -10 0.3881 -0.0655 -0.1273 2.477 0.0365 0.0188 

2.1 -5 0.1273 -0.0657 -0.1322 0.812 0.0348 0.0189 

4.1 -3 0.0931 -0.0660 -0.1383 0.594 0.0328 0.0190 

6.1 -1 0.0768 -0.0673 -0.1623 0.490 0.0256 0.0193 

 

Table 3. Variations with respect to M and 𝑃𝑟 

 
Pr M 𝑓′(0) 𝑔′(0) 𝜃 '(0) 𝑐𝑓 𝑁𝑢 𝑆ℎ 

0.7 0.1 0.3881 -0.0655 -0.127 2.4770 0.036596 0.018829 

3.7 0.3 0.2973 -0.06206 -0.059 1.897 0.01705 0.017841 

7.2 0.5 0.2579 -0.05646 0.036 1.6464 -0.01058 0.016231 

 

Table 4. Variations with respect to  𝑃𝑟 and 𝜃𝑟 

 
Pr 𝜃𝑟 𝑓′(0) 𝑔′(0) 𝜃 '(0) 𝑐𝑓 𝑁𝑢 𝑆ℎ 

0.7 -10 0.2363 -0.065 -0.1273 1.5086 0.0365 0.018829 

6.2 -5 0.2547 -0.058 0.0159 1.6257 -0.004 0.016714 

6.7 -3 0.2587 -0.056 0.0481 1.6513 -0.011 0.016323 

7.2 -1 0.2811 -0.049 0.2056 1.7943 -0.032 0.014155 

 

5. CONCLUSION 

    In this study, the effects of variable viscosity and thermal 

conductivity on the flow with heat and mass transfer of an 

incompressible micropolar fluid past an accelerated infinite 

vertical insulated plate are examined. The results 

demonstrate clearly that the viscosity and thermal 

conductivity parameters along with the other parameters such 

as  𝐾1, 𝑆𝑐, 𝑅𝑒, 𝑀 and 𝑃𝑟 have significant effects on velocity, 
temperature, concentration and micro-rotation distributions 

within the boundary layer. Thus presence of 

microconstituents may cause a significant change in flow 

problem.                                                            
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NOMENCLATURES 

 
   = Measure of unsteadiness with dimension 

reciprocal to time 

   = Volumetric coefficient of thermal expansion 

(K−1) 
*   = Volumetric co-efficient of expansion with 

concentration 
   = Spin-gradient or micro rotation viscosity 
   = Dimensionless co-ordinates 

   = Thermal conductivity (m⋅kg⋅s−3⋅K−1) 

   = Thermal conductivity of the ambient fluid  

   = Dynamic viscosity (Newton-sec/𝑚2) 

   = Dynamic viscosity of the ambient fluid 

   = Kinematic viscosity (Metre2/sec) 

   = Kinematic Viscosity of the ambient fluid 

   = Vortex viscosity 
   = Electrical conductivity 
   = Density (kg. /m3)  

   = Dimensionless temperature 

c   = Dimensionless reference temperature 

corresponding to viscosity parameter 

r   = Dimensionless reference temperature 

corresponding to thermal conductivity 

parameter 

0g   = Gravitational acceleration (m/s2) 

pc   = Specific heat (J/kg. 0C) 

u   = Velocity in the x - direction(m/s) 

f   = Dimensionless velocity 

h   = Dimensionless microrotation 
g   = Dimensionless species concentration 

T   = Temperature (Kelvin) 

C   = Species concentration (kg. /m3) 

T
  = Ambient temperature (Kelvin) 

wT   = Wall temperature (Kelvin) 

wC   = Species concentration at the wall (kg. /m3) 

C
  = Species concentration far from the wall (kg. 

/m3) 

0U   = Quantity with the dimension of speed (m/s) 

j   = Micro-inertia density (metre2) 

D   = Mass diffusivity (m2/s)  

0B   = Strength of the magnetic field (Web/m2) 

t   = Time (Second) 

rG   = Grashoff number for heat transfer 

cG   = Grashoff number for mass transfer 

cS   = 
,

v

D
Schmidt number 

rP   = 
pρc

,
v






Prandtl number 

eR   = 
o o

2

c
,

U

v 

Reynolds number 

heP   = . ,r eP R Peclet number for diffusion of heat 

meP   = . ,c eS R Peclet number for diffusion of mass 

 fc   = Skin –friction coefficient 

 uN   = Nusselt number 

 hS   = Sherwood number 

1K   = 
,

ρ





 Coupling constant parameter 

2K   = 

2

0

,
U

  Viscosity Parameter 

M   = 2

0 ,
ρ

B


Magnetic parameter (Hartmann number) 

 

Subscripts 

 

 
w,   the condition at the wall 

,   the condition at a large distance from the surface 

 

Superscripts 

 

,
 Differentiation with respect to η 
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