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1. INTRODUCTION 

In recent years, as the wide application of non-Newtonian 

fluids in engineering, such as in oil recovery, heat 

exchangers, material techniques and so on [1-3], more and 

more researches on the energy transport and mass transfer 

behavior of non-Newtonian fluids in porous media have been 

carried out. Non-Newtonian fluids are used to improve fluid 

rheological properties and produce damping devices firstly. 

The polymer fluids [4-5] are non-Newtonian fluids and 

Mowla and Naderi [6] found that polyisobutylene can make 

the level of reducing damp in oil recovery to 40%. Then they 

are also used in individual protection equipments and 

mechanical processing. Based on the reducing damp 

property, they can make energy saving obviously in the 

heating system. As non-Newtonian fluids perform better on 

heat transfer than Newtonian fluids, so they are used in air 

conditioner, heating and cooling devices. Non-Newtonian 

fluids are also common in our daily life, like blood, cell fluid, 

toothpaste and so on. Unlike Newtonian fluid, the 

constitutive equation of non-Newtonian fluids does not obey 

the linear relationship between stress and the rate of strain. 

The flow and heat transfer of these fluids have been solved 

by a number of diverse means when their constitutive 

equations vary greatly in complexity [7-9]. 

In 1960, Schowalter [8] and Acrivos et al. [9] successfully 

applied the boundary layer assumptions to the power-law 

fluids. The boundary layer equations were formulated, and 

the conditions for the existence of similarity solutions were 

established. Following the pioneering works of [8, 9], lots of 

work based on the boundary layer assumption have been 

done to investigate the flow and heat transfer of non-

Newtonian fluid with different physical condition. Abel [10], 

Datti and Mahesha studied the flow and heat transfer in a 

power law fluid over a linear stretching sheet with variable 

thermal conductivity and non-uniform heat source. Chen [11] 

studied the effects of magnetic field and suction/injection on 

convection heat transfer of non-Newtonian power-law fluids 

past a power-law stretched sheet. Zheng et al. [12] proposed 

a new model by taking the effects of power-law viscosity on 

temperature field into account, they assumed that the 

temperature field is similar to the velocity field and the 

thermal diffusivity varies as a function of temperature 

gradient. Chen [13] studied magneto-hydrodynamic mixed 

convection of a power-law fluid on a stretching surface 

considering thermal radiation. Prasad et al. [14] studied 

MHD power-law fluid flow and heat transfer over a semi-

infinite non-isothermal stretching sheet with internal heat 

generation or absorption. Pop and Na [15] performed an 

analysis for the MHD flow past a stretching permeable 

surface. Prasad et al. [16] did a research about 

hydromagnetic flow and heat transfer of anon-Newtonian 

power law fluid over a vertical stretching sheet and got the 

numerical solutions. Nanofluids which composed of 

nanoparticles and common fluids, is also a kind of non-

Newtonian fluids. Nanofluids have been successfully applied 

in many practical problems. For example, nanofluids 

containing surfactant micelles can remedy the soil, remove 

oily soil and enhance oil recovery [17]. Also nanofluids has 

implication for cooling equipment and inkjet [18]. And they 

are widely applied in engineering with enhancement of heat 

transfer of common fluids. Niu et al. [19] presented a 
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theoretical study on slip-flow and heat transfer of nanofluids 

choosing power law fluids as based fluids in a microtube. A 

numerical study on the problem of a steady boundary layer 

shear flow over a stretching/shrinking sheet in a nanofluid is 

presented by Yacob et al. [20]. 

And also some researchers pay attention to the study 

combining non-Newtonian fluids with convection. A 

numerical investigation on the convective heat transfer 

performance of nanofluids over a permeable stretching 

surface with the consideration of partial slip is presented by 

Das [21]. Huang et al. [22] presented a numerical study on 

the periodic unsteady natural convection flow and heat 

transfer in a square enclosure containing a concentric 

circular cylinder. Bhowmick et al. [23] investigated mixed 

convection based on boundary-layer flow of pseudo-plastic 

fluids from a horizontal circular cylinder with uniform 

surface heat flux. And in [25-29], Cheng did a lot of work 

about natural convection of non-Newtonian fluids. Later, Tai 

and Char [24] numerically studied the combined laminar 

free convection flow of non-Newtonian power-law fluids 

along a vertical plate within a porous medium in presence of 

radiation. 

Most of the work mentioned before do not consider the 

effect of power law fluids on the thermal diffusivity and the 

mass diffusivity which means the thermal and mass 

diffusivity vary as a constant. In this paper the laminar 

boundary layer problem of natural convection from a vertical 

surface is considered by assuming that both the thermal and 

mass diffusivity vary as a power law function. The governing 

equations are solved by similarity transformation and 

shooting method. 

 

2. FORMULATION OF THE PROBLEM 

Consider the problem of natural convection along a 

vertical plate in a porous medium based on non-Newtonian 

power-law fluids [29]. The flow is laminar and steady-state. 

The x -coordinate is from the leading edge of the vertical 

plate, while the y -coordinate normal to the plate. T  and 

C  are the ambient temperature and the concentration far 

from the surface of the plate, respectively. And the governing 

equations: 
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and the boundary conditions are: 
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Here  , u , v , T and C  are density of the fluid, x -

components of the velocity, y -components of the velocity, 

temperature of the fluid and mass concentration of the fluid, 

respectively. The thermal diffusivity in this paper is 
1n

T y 


   [12], and with the same idea the mass 

diffusivity is
1n

D D C y


   [30]. In most classical work, 

 and D  are constants. This idea comes from the 

assumption of the constitutive equation of power-law fluid 

for boundary layer problems. The constitutive equation of 

power-law fluid is: 
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Here ( , )u vu  is a vector and  ,  T u + u ,   are 

stress, strain and relative viscosity coefficient, respectively. 

For two-dimension problem, we get that 

 

2 22
2

2

, ,

2

4 2 4

T T

T

u u u u vu v

x y x y xx x

u v v v u v v

y y x y y x y

u u v v
II

x y x y

         
                   

          
                

       
          

        

u = u = u + u

u + u

       (9)                    

That means the viscosity 
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of power-law fluid is 

a power-law function of strain not a constant any more and 

that obeys the assumption of non-Newtonian fluids that no 

linear relation between stress and strain. n  is power-law 

index of power-law fluid that Newtonian fluids with 1n  , 

dilatant’s fluids with 1n   and pseudo plastic fluids with 

0 1n  . Then thermal and mass diffusivity of power-law 

fluids is: 
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The constitutive equation of power-law fluids changes into 

the following formula for boundary layer problems: 
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So we choose the expressions of the thermal diffusivity 

and mass diffusivity of power-law fluids as the same as 

Equation (10). Parameters K , 
~

D , g , 
wq , 

wm , *k , k , 
pC , 

T , 
C , 

~

 , 
0  and 

eff  are modified permeability, relative 

mass diffusivity parameter, gravitational acceleration, wall 

heat flux, wall mass flux, mean absorption coefficient, 

thermal conductivity, specific heat, coefficient of thermal 

expansion, coefficient of concentration expansion, relative 

thermal diffusivity, threshold pressure gradient of the fluid 

and effective viscosity. 

According to the formulations and the similarity 

transformation, the stream function ),( yx , similarity 

variable  , dimensionless temperature function ( )   and 

dimensionless mass function ( )  are introduced as: 
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Substituting Equations (12)-(13) into Equations (1), (2), 

(3), (4) and (5), we get the ordinary differential equations for 

the nonlinear boundary value problems: 
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where buoyancy ratio    C w T wN km Dq  , ratio of 
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dimensionless threshold pressure gradient parameter. 

The shooting method coupled with the secant method 

and the fourth order Runge-Kutta method (RK4) is 

employed to compute the solutions of Equations (14)-(18). 

3. RESULTS AND DISCUSSION 

With the computing of shooting method, the results are 

shown in figures. Figure 1 – Figure 2 show that the effects of 

power-law index n  on the dimensionless temperature   and 

the dimensionless concentration . When n  increases, both 

  and   rises. Figure 3(a) – Figure 3(b) show that the 

effects of threshold pressure gradient parameter S  on the 

dimensionless temperature   and the dimensionless 

concentration   for pseudo-plastic non-Newtonian fluid 

( 0.6n  ). An increase in   and   happens straightly with 

the increasing S . The same phenomenon occurs with 

dilatant’s fluid in Figure 4(a) – Figure 4(b). But the speed of 

the dimensionless temperature  and concentration   in 

Figure 4 when 0.5S   converging to zero is much slower 

than 0S  . It means that threshold pressure gradient 

parameter S  has an important influence on heat and mass 

transfer for dilatant’s fluids. The effects of buoyancy ratio N  

on the dimensionless temperature   and the dimensionless 

concentration   are shown in Figure 5-6. The   and   are 

getting smaller with an increase in N .  

 
 

Figure 1. The effects of different values of n on the 

dimensionless temperature  for 2, 0, 2N S B    
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Figure 2. The effects of different values of n on the 

dimensionless concentration  for 2, 0, 2N S B    

 

 
(a) 

 
(b) 

 

Figure 3. The effects of different values of S on the 

dimensionless temperature   and   for 

0.6, 2, 2n N B    

 
(a) 

 
(b) 

 

Figure 4. The effects of different values of S on the 

dimensionless concentration   and   for 

1.4, 2, 2n N B    

 
(a) 

 

 
(b) 

 

Figure 5. The effects of different values of N on the 

dimensionless temperature   and   for 

0.6, 0.5, 2n S B    

 

 
(a) 
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(b) 

 

Figure 6. The effects of different values of N on the 

dimensionless temperature   and   for 

1.4, 0, 2n S B    

4. COCLUSION 

This paper presents a numerical study on the problem of 

the rheology of power law fluids along an infinite vertical 

plate in porous media using the similarity transformation 

and shooting method. And we also take the situation that 

thermal and mass diffusivity vary as power law function of 

the gradient of temperature and concentration into account 

which is different from classical works. The effects of 

different parameters on temperature and concentration of the 

non-Newtonian fluids have been discussed. Some of the 

important findings of the paper are: 

(1) The increasing of power-law index parameter of 

power law fluids results in the increasing of the 

temperature and concentration. 

(2) Threshold pressure gradient parameter   has a much 

more important influence on heat and mass transfer 

for dilatant’s fluids compared with other parameters. 

Data and figures obtained through our studies will be used 

to support techniques in material and chemical industries. 
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