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1. INTRODUCTION 

Over the past few decades, studies relating to flow of 

combustible fluids are on the increase due to its numerous 

applications in many industrial and engineering processes 

like; nuclear reactor, bomb detonation and petro-chemical 

fluid flows in refineries to mention just a few. In fact, the 

literature is very rich on studies relating to combustible fluid 

flows (see ref. [1-5]). In the present investigation, our 

attention is focused on the effect of internal heat generation 

on the fluid flow where in the papers [1-5], analysis was 

done in the absence of internal heat generation. 

After an exhaustive survey of literature, it is observed that 

studies relating to the second law analysis of reactive internal 

heat generating hydromagnetic fluid flow through a channel 

with isothermal wall temperature have not been studied. 

However, from application point of view, recent studies have 

shown that for fluid flows involving exothermic/ 

endothermic reactions, fire and combustion; the effect of 

internal heat generation cannot be neglected [6-18]. 

Therefore, the purpose of this paper is to investigate the 

effect of this all-important flow property on the fluid flow, 

the present study is relevant in several applications in the 

metallurgical and petro-chemical engineering.  The problem 

is strongly nonlinear involving exponential nonlinearity. 

Hence, analytical solution will be obtained using the 

traditional perturbation technique. The rest of the paper is 

organised as follows; in section 2 the problem is formulated. 

In section 3, the problem is solved together with entropy 

analysis. Results are presented and discussed in section 4 

while section 5 gives some concluding remarks. 

 

 

 

2. MODEL FORMULATION 

 

Consider the steady flow of a reactive, incompressible and 

electrically conducting fluid flowing through a channel 

between two parallel plates with isothermal wall temperature 

under the influence of a transverse magnetic field strength B0 

as shown in Figure 1. The internal heat generation term Q in 

this problem is assumed to be a linear function of 

temperature [19-20]. 
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Where Q0 is dimensional heat generation coefficient, T is 

the fluid temperature and To represent wall temperature. 

Neglecting the consumption of the reactant, the continuity, 

momentum and energy equations governing the flow in 

dimensionless form may be written as: 
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Additional term in the energy equation is due to internal 

heat generation. Here, the following non-dimensional 

variables and parameters have been used  
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Where L is the channel characteristic length, a is channel 

half width, E is activation energy, G is constant axial 

pressure gradient and R is the universal gas constant. Ha 

represents Hartmann number, Be is Bejan number, Br is 

Brinkman number, Pe is Peclet Number and Re is Reynolds 

number. Co is reactant species initial concentration, A is 

reaction rate constant, ρ is fluid density, ε is channel aspect 

ratio, μ is fluid viscosity, v is normal velocity, U is mean 

velocity, u is axial velocity, Cp is specific heat at constant 

pressure and k thermal conductivity coefficient. Also, σ 

represents electrical conductivity; λ is Frank-Kamenettski 

parameter, γ is viscous heating parameter, β and β0 are heat 

generation parameters and δ is the activation energy 

parameter. 

Since the channel aspect ratio is small (0 < ε << 1), the 

lubrication approximation based on an asymptotic 

simplification of the governing equations (1)-(5) is invoked 

and we obtained 
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Together with the boundary conditions 
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3.1 Method of solution 

Solving (7) with the appropriate boundary conditions, one 

obtain 
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With (10) in (8), it will be convenient to assume a series 

solution in the form   
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Where 0 < λ << 1 

Clearly, 1

T

Te   can be Taylor’s series expanded, using (11) 

in (8) and equating the orders of λ, we get the following: 
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Such that 
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Solving (12) to (15), then (11) can be written as 
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Other physical interest includes the rate of heat transfer 

across the channel which is given by 
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Where Nu is the Nusselt number.  

 

And the Skin friction (Cf ) at the upper wall of the channel 

is given by 
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3.2 Entropy generation analysis 

Inherent irreversibility in a channel flow arises due to 

exchange of energy and momentum within the fluid and the 

solid boundaries. The entropy production is due to heat 

transfer and the combined effects of fluid friction and Joules 

dissipation. Following [21], the general equation for the 

entropy generation per unit volume in the presence of a 

magnetic field is given by: 
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The first term in (19) is the irreversibility due to heat 

transfer, the second term is the entropy generation due to 

viscous dissipation and the third term is the local entropy 

generation due to the effect of the magnetic field. 

We express the entropy generation number in 

dimensionless form using the existing non-dimensional 

variables and parameter as: 
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 referred to as N2 is the entropy 

generation due to the combined effects of viscous dissipation 

and magnetic field where 0RT

E
   is  the wall temperature 

parameter. 

We defined   
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as the irreversibility distribution ratio.  Relation (21) shows 

that heat transfer dominates when 0 1  and fluid friction 

dominates when ϕ > 1. This is used to determine the 

contribution of heat transfer in many engineering designs.  

As an alternative to irreversibility parameter, the Bejan 

number (Be) is defined as  
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4. DISCUSSION OF RESULTS 

In this section, the effect of internal heat generation 

together with other important flow parameter on the reactive 

hydro magnetic fluid flow through a channel with isothermal 

wall temperature are presented and discussed. 
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Table 1. Computation of the entropy generation analysis for various values of internal heat generation parameter 

 
y 

1N

 

2N

 

Be  

 β = 0 β =0.5 β = 1  β=0 β=0.5 β = 1 

-1 0.0068 0.0070 0.0072 0.2320 0.0283 0.0292 0.0301 

-0.75 0.0029 0.0030 0.0032 0.1240 0.0228 0.0237 0.0248 

-0.5 0.0010 0.0010 0.0011 0.0746 0.0129 0.0136 0.0143 

-0.25 0.0002 0.0002 0.0002 0.0547 0.0036 0.0038 0.0041 

0 0 0 0 0.0496 0 0 0 

0.25 0.0002 0.0002 0.0002 0.0547 0.0036 0.0038 0.0041 

0.5 0.0010 0.0010 0.0011 0.0746 0.0129 0.0136 0.0143 

0.75 0.0029 0.0030 0.0032 0.1240 0.0228 0.0237 0.0248 

1 0.0068 0.0070 0.0072 0.2320 0.0283 0.0292 0.0301 

 

The table 1 shows the effect of internal heat generation in 

the fluid flow, as the internal heat generation parameter (β) 

increases, it is also observed that the fluid friction dominates 

as β lies between 0 and 1. 

 

 
 

Figure 2. Velocity Profile for several values of Ha 

    

Figure 2 shows the plot of velocity profile for variation in 

Hartmann number (Ha). As observed, maximum velocity 

occurs at the minimum value of the parameter. Further 

increase in Ha decreases the flow velocity maximum; this is 

due to the presence of Lorentz forces which has retarding 

effects on fluid flow when placed across the flow channel. 

 

 
 

Figure 3. Temperature Profile for several values of β 

 
 

 

 
 

Figure 4. Temperature Profile for several values of δ 

 

Figure 3 depicts the temperature profile for variations in 

internal heat generation parameter (β). From the plot, it is 

observed that an increase in the internal heat absorption 

increases the fluid temperature within the channel. It is 

important to note that internal heat generation which shows 

an increase in fluid temperature is due to reduction in the 

thermal conductivity of the fluid. 

Figure 4 shows the effect of activation energy (δ) on the 

temperature distribution within the channel. The result 

shows that an increase in δ decreases the fluid temperature 

due to rise in fluid viscosity. This is physically true due to 

the fact that higher activation energy means slower chemical 

reaction due to the energy difference between the reactants 

and the energy needed for the reaction to occur. 

 

 
 

Figure 5. Temperature Profile for various values of γ 
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Figure 5 presents the temperature profile for various 

values of the viscous heating parameter (γ). From the result, 

an increase in viscous heating increases the temperature 

distribution within the channel. This is due to rise in kinetic 

energy of the fluid. 

 

 
 

 

Figure 6. Temperature Profile for various values of λ 

 

Figure 6 shows the plot of temperature profile for various 

values of Frank-Kamenettski parameter (λ). Increasing 

values of the Frank-Kamenettski parameter (λ) leads to an 

increase in the temperature of the fluid due to the increase in 

the initial concentration of the reactant. 

Figures 7-10 show the entropy generation rate for various 

parametric values. On a general note, the entropy generation 

rate is maximum at the plate surfaces and minimum around 

the core region of the channel. The entropy generation rate 

increases with increasing values of internal heat generation 

parameter (β), Frank-Kamenettski parameter (λ) and the 

group parameter (Br Ω–1) in the thermodynamic performance 

of the flow system. While in figure 8, the entropy generation 

rate decreases with the increasing value of the Hartmann 

number (Ha). This is true because the rate of disorder is 

reduced with increase in magnetic field intensity. 

 

 

 
 

Figure 7. Entropy generation rate for various values of β 

 

 

 
 

Figure 8. Entropy generation rate for various values of Ha 

 

 

 
 

Figure 9. Entropy generation rate for various values of λ 

 

 
 

Figure 10. Entropy generation rate for various values of 

Br/Ω 
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Figure 11. Bejan number for various values of β 

 

 
 

Figure 12. Bejan number for various values of Ha 

 

 
  

Figure 13. Bejan number for various values of λ 

 

Figures 11–13 display the Bejan (Be) number for various 

parametric values in the channel width. The general 

observation is that the fluid friction irreversibility dominates 

at the channel core region while the heat transfer 

irreversibility dominates at both lower and upper wall 

surfaces. The dominant effect of heat transfer irreversibility 

of the plate increases with increasing values of internal heat 

generation parameter (β), Frank-Kamenettski parameter (λ) 

and the magnetic Hartmann number (Ha). 

 

 

 
 

Figure 14. Rate of heat transfer 

 

 

 
 

Figure 15. Skin Friction of the channel 

 

Figure 14 shows the rate of heat transfer for various values 

of internal heat generation parameter (β). It is observed that 

the rate of heat transfer increases as the internal heat 

generation parameter (β) increases in the fluid flow while 

figure 15 shows the skin friction of the fluid flow. The fluid 

skin friction increases as the Hartmann number (Ha) 

increases. 

 

5. CONCLUSION 

In this present work, we have investigated the effects of 

internal heat generation on the reactive flow of an 

electrically conducting fluid through a channel with 

isothermal wall temperature. The analytical solutions of the 

nonlinear dimensionless equations governing the fluid flow 

are obtained using traditional perturbation technique.  

Results of the computation shows the effect of internal heat 

generation on the thermal conductivity of the fluid. 
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NOMENCLATURE 

L Channel characteristic length   

E Activation energy 

G Constant axial pressure gradient  

R Universal gas constant 

Ha Hartmann number    

Bo Magnetic field strength  

Be Bejan number     

A Reaction rate constant  

Br Brinkman number     

Nu Wall heat flux (Nusselt number) 

ρ  Fluid density     

σ Electrically conductivity 

ε Channel aspect ratio    

 μ Viscosity  

λ Frank-Kamenettski parameter  

α critical exponent 

δ Activation energy parameter    

U Mean velocity (ms-1) 

γ Viscous heating parameter    

Pe Peclet Number 

ϕ Irreversibility distribution ratio  

Re Reynolds number 

β Heat generation parameter  

Ω Wall temperature parameter  
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T  Temperature (k)     

To  Wall temperature (k) 

Co Reactant species initial concentration  

v Normal velocity (ms-1) 

Qo  Dimensional heat generation coefficient  

Q  Heat generation term (W) 

Cp Specific heat at constant pressure  

a Channel half width (m) 

k Thermal conductivity coefficient (Wm-1k-1) 

u Axial velocity (ms-1)  

Cf  Skin friction 

x Horizontal coordinates system (m)  

y            Vertical coordinate system (m) 
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