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ABSTRACT

The flow of an MHD elastico-viscous fluid past an infinite vertical porous plate with constant heat flux and chemical
reaction in presence of heat source has been studied with the consideration of induced magnetic field. The mechanism of heal
and mass transfer has been considered. The elastico-viscous fluid flow is characterized by Walters liquid (Model B).
Analytical solutions to the coupled non-linear equations governing the flow are obtained by using regular perturbation
technique. The expressions for velocity field, temperature field, concentration field, induced magnetic field, shearing stress at
the plate are derived analytically. The rate of heat transfer and rate of mass transfer of the fluid flow in terms of Nusselt
number and Sherwood number at the plate are also obtained in non-dimensional forms. The results are discussed graphically
for the various values of elastic-viscous parameter. The importance of this problem is noticed in the field of chemical

engineering and geophysical applications.
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1. INTRODUCTION

Many natural phenomena and technological problems are
susceptible to MHD visco-clastic fluid flow analysis. Such
flows play important roles in chemical engineering, turbo-
machinery, aerospace technology, polymer industries, paper
industries etc.

The convection problem in porous medium has
important applications in geothermal energy recovery. oil
extraction, thermal energy storage and flow through filtering
devices. The phenomena of mass transfer are also significant
in theory of stellar structure and observable effects are
detectable at least on the solar surface. The thermal physics of
hydromagnetic problems with mass transfer is of interest in
power engineering and metallurgy. The basis for these models
was the early experimental work of Raptis and Kafousias [1]
on Magnetohydrodynamics free convective flow and mass
transfer through a porous medium bounded by an infinite
vertical porous plate with constant heat flux. Bejan and Khair
[2] have reported a pioneering work on heat and mass transfer
in a porous medium. Acharya et al. [3] have investigated the
magnetic field effects on the free convection and mass
transfer flow through porous medium with constant suction
and constant heat flux. MHD effects on heat and mass transfer
in flow of a viscous fluid with induced magnetic field have
discussed by Singh and Singh [4]. Postelincus [5] was
analyzed influence of a magntic field on heat and mass
transfer by a natural convection from vertical surfaces in
porous media considering Soret and Dufour effects. Singh et
al. [6] have noticed MHD free convection mass transfer flow
past a flat plate. In light of these facts, a number of problems
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have been studied by Choudhury and Dey [7, 8], Choudhury
and Das [9, 10], Choudhury et al. [I1, 12, 13] etc by
considering visco-elastic fluid flow phenomenon. Visco-
elastic fluid exhibits both the viscous and elastic
characteristics. The analysis of heat and mass transfer in
MHD visco-elastic fluid flows now forms an integral part of
the research activities in inter disciplinary fields.

The objective of the study is to investigate the MHD
mixed convective flow with heat source and chemical
reaction of a visco-elastic fluid characterized by Walters
liquid (Model B) over a vertical porous plate in presence of
induced magnetic field. The velocity field and the shearing
stress at the plate are obtained and illustrated graphically to
observe the visco-elastic effects in combination with other
flow parameters.

The constitutive equation for Walters liquid (Model B') is
—PYik + Oic 2kge't (1.1)

where o'¥ is the stress tensor, p is isotropic pressure, g is the
metric tensor of a fixed co-ordinate system x', vjis the
velocity vector, the contravarient form of e'k is given by

T = o' = 2nyelk -

p delk
e’k = —

- + vmelﬁ“ — v’fm e.!m s emk

D (1.2)

It is the convected derivative of the deformation rate tensor
e'® defined by
(1.3)

Heren, is the limiting viscosity at the small rate of shear
which is given by

itk —
2e't = 17,:_',‘ + vk,i



Mo = J;.‘mN(T)dT and k, = fw TN(1)dt

0

(1.4)

N(1) being the relaxation spectrum as introduced by Walters
[14, 15] . This idealized model is a valid approximation of
Walters liquid (Model B’) taking very short memories into
account so that terms involving

fmt“N(t) dr,n =2 (1.5)
0

have been neglected.

Walters [16] reported that the mixture of polymethyl
metha crylate and pyridine at 25° C containing 30.5 gm of
polymer per litre and having density 0.98 gm/ml fits very
nearly to this model. Polymers are used in the manufacture of
space crafts, acroplanes, tyres, belt conveyers, ropes,
cushions, seats, foams, plastic, engineering equipments,
contact lens etc. Walters liquid (Model B') forms the basis for
the manufacture of many such important and useful products.

2. MATHEMATICAL FORMULATION

Consider the steady flow of a visco-elastic electrically
conducting fluid past a vertical porous plate with constant
heat flux and chemical reaction in presence of a heat source.
A uniform magnetic field is assumed to be applied
transversely to the direction of the free stream taking into
account the induced magnetic field and mass transfer.

X

Figurel: The physical model of the problem

Our investigation is restricted to the following assumptions:

e All fluid properties except the density in the
buoyancy force term are constant.

e The plate is subjected to constant suction.
e The plate is electrically non conducting.

We introduce a coordinate system (%,¥,Z) with X-axis
vertical upwards along the plate, ¥-axis perpendicular to it
and directed into the fluid region and Z-axis along the width
of the plate. Let § = (&, 7,0) be the fluid velocity and
(s Ey, 0) be the components of magnetic induction vector at
a point (%, ¥, Z) in the fluid.
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With  the foregoing  assumption,  Boussinesq
approximation and under usual boundary layer
approximations, the governing equations are:

Equation of Continuity:
L 0 21

which is satisfied with v = —wv,, a constant.

Momentum equation:

du d*u k, d°u o P
—vua"j"; = Vd—}_,z+FVOE‘j_E +gp(T-T,) +g[3(C -C,)
B, db.
I e (2.2)
p dy
Energy equation:
dT & dz?_"+l(d_ﬁ)2 kovo dit d*@
Yody ~ pC,dy? | C,\dy) " pC, dy dy?
i = _
on®(db T.—T
+—"—(—_") +2=-D @3)
pCy \ dy pC,
Magnetic induction equation:

d*b, du db,

—+By—+vy,—=0 2.4
n d?z + Ddy 170 d)—’ ( )
Species continuity equation:

&L T 25
w5 =D 25)

where k, is the visco-clastic parameter , o is the electrical
conductivity, k is the thermal conductivity, C, is the specific
heat at constant pressure, 1 is the magnetic diffusivity, p is
the density of the fluid, Q is the heat source parameter, C is
the species concentration , D is the coefficient of chemical
molecular diffusivity and the other symbols have their usual
meanings.

The relevant boundary conditions are

s5=0:5=0%=-_2p —0C=C
y_O.u—O,dj— K,bx—D,C—C,
jyowi=0T->T,b,=HC-C, (2.6)

We introduce the following non-dimensional quantities:

)71.70 u KUo(T_T,)
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¥ Vo q
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C. v

where Ec is the Eckert number, Gr is the Grashof number for
heat transfer, S is the heat source parameter, Gm is the
Grashof number for mass transfer, Sc is the Schmidt number,



M is the Hartmann number, Pr is the Prandtl number and Pm
is the magnetic Prandtl number.

The non-dimensional governing equations are

kl-@-+d2—u+d—u=—ﬁrﬂ—6m®—ﬁ% 2.7
dy®  dy? dy P, dy
d?6 do
0 + Pr E - 50
= —EcPr (d_u)z —k EcPrd—u@
dy/ U dydy?
MEcPr (db,\’
o (dy) @8
d?b, db, du
ot Pm == -Pmo (2.9)
2
ég—ﬁ+ %—MD:O (2.10)
subject to boundary conditions:
y=0u=0Z=-1,0=1b=0
y—2ou=U,60=00=0b.=H ] (2.11)

METHOD OF SOLUTIONS

The solution of the equation (2.10) subject to the
boundary conditions (2.11) is

@ =e Y (3.1)

Now, in order to solve the equations (2.7)-(2.9) under the
boundary conditions given by (2.11), it is assumed that the
solutions of the equations to be of the form

u=uy+ Ecuy, +Ec?u, + - (3.2)
0 = 0, + Ec, + Ec?uf, + - (3.3)
by = @y + Echy, + Ec?b,, + - (3.4)

where Ec <« 1.

Substituting (3.2)-(3.4) in the equations (2.7)-(2.9) and
equating the coefficient of the same degree terms and
neglecting terms of O(Ec?), the following differential
equations are obtained:

Zeroth order equations:

kyuy +ug +uy = —Gré, — Gme ™Y _FMn_lb"‘ﬂ (3.5)
By + Proy — aby = 0 (3.6)
by, + Pmb’, = —Pmu, 3.7
First order equations:

e M
kg +uy +uy =—G6ro, —E;b‘xl (3.8)

8, + Pro, — 56,

-2 . .. MPr . 2
—Pru, —k,Pruouo—mb v (39)

by, +Pmb’, = —Pmuy, (3.10)
corresponding to the boundary conditions

y =0:u, =0,u; = 0,0, = —1,6, = 0,b, =0,b, =0
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Y= ooy = U'ul = 0190 = 0,61 :O,@:O,bxn =H,
b, =0 (3.11)

Using multi-parameter perturbation technique and taking
k<< 1 (as for small shear rate k, is very small), we assume

Uy = Ugg + Kilps (3.12)
Uy = g + kg (3.13)
by, = by, + kiby,, (3.14)
by, = by, +kibyy, (3.15)
0, = 019 + k04 (3.16)

Now, using equations (3.12)~(3.16) in equations (3.5), (3.7),
(3.8), (3.9) and (3.10) and equating the coefficients of like
powers of k; and neglecting the higher power of k;, we get
the following set of differential equations:

Zeroth-order equations:

iR - ~Azy ay My
Ugg + Ugy = —GTB; e — Gme _Wnb"“" (3.17)
by, + Pmb,,, = —Pmuy, (3.18)
“ ; M .
Upg + Uy = —GT0y, _P_r;ra_b"’" (3.19)
- . .2 MPr .
019 + Pré,y — 5615 = —Pruy, ~ Pmz Pxoo (3.20)
by, + Pmb, = —Pmu, (3.21)
First order equations:
Ugo + Upy +Ups = ~5—bxy, (3.22)
by, + Pmby, = —Pmug, (3.23)
Uqp + Uqq + U = —G‘rﬂ“ = mbxll (3.24’)
6y, + Préy, — S6;; o o
= —2PrugoUp; — Prigetigg
MPr . .
-2 Pmi by Pxoy (3.25)
by,, + Pmby,, = —Pmuy, (3.26)

subject to boundary conditions

y = 0:upp = 0,ug; = 0,159 = 0,1y, = 0,899 = —1,6p,

0,b

bbby =0,b

6,5 =0,8;, =0,b 0, by, = =0

Xo0 X11

y = witgg = U, ugy = 0,u30 = 0,uy; = 0,650 = 0,60,
=10;
0,,=0,0,, = 0,byo, =H, by
=0

0,b

+Tx11

(3.27)

The solutions of the equations (3.17)-(3.26) subject to the
boundary conditions (3.27) and constants are obtained but not
given here due to brevity.

3. RESULTS AND DISCUSSION
The velocity profile is given by
u = (upy + kqttgy) + Ec(uyg + kyugq)

0,b

01— x10

(41



The non-dimensional skin friction ¢ at the plate y=0 is given
by

[au
a —l

5 (4.2)

azu]
+ Kk,

ay? sl

The non-dimensional heat flux o at the plate y=0 in terms of
Nusselt number is given by

Nu = (g_i')y=ﬂ

The non-dimensional mass flux ¢ at the plate y=0 in terms of’
Sherwood number is given by
a9
Sh= (6}')
The purpose of the present study is to bring out the
effects of elastico-viscous parameter on mixed convective
MHD flow of a visco-elastic fluid past an infinite vertical
porous surface by imposing the effect of induced magnetic
field in the governing fluid flow system. The elastico-viscous
effect is exhibited through the non-dimensional parameter k;.
The non zero values of the parameter k,; characterize the
visco-clastic fluid and k,=0 represents the Newtonian fluid
flow phenomenon.

(4.3)

(44)
y=0

In order to get physical insight into the problem the
fluid velocity u is depicted against y in the figures 2-8. The
variation of skin friction o against various flow parameters
viz. Pm, Pr, Gm, S. Sc. M is illustrated in the figures 9-14.
Figure 15-17 reveal the variation of Nusselt number against
the flow parameter Gr, Pr and Sc. The numerical calculations
are to be carried out for U=1, Ec=0.001, k=0.5 throughout the
discussion. The various combinations of flow parameters are
given in the table 1.

figures 2 to 8 represent the pattern of velocity profile
u against the distance y for various values of other flow
parameters. The graphs show that the velocity profile boosts
up considerably in the neighbourhood of the plate and then it
starts to converge to free stream velocity for both Newtonian
and visco-elastic. The elasticity factor of Walters liquid
(Model B') diminishes the speed of the fluid in comparison
with a Newtonian fluid.

Figures 2 and 3 represent the variation of fluid
velocity against Grashof number for heat transfer (Gr) and
Grashof number for mass transfer (Gm). Grashof number
studies the behaviour of free convection and it is defined as
the ratio of buoyancy force to viscous force. It plays an
important role in both heat and mass transfer mechanisms. Gr
characterizes the free convection parameter for heat transfer
and Gm characterizes the free convection parameter for mass
transfer. In both the cases, it is observed that velocity profile
boost up to a considerable amount and then follows a steady

path.

The effect of Pr on the fluid flow is illustrated in
Figure 4. With the rising value of Prandtl number fluid
velocity experiences a decelerating trend. This phenomenon is
observed in both Newtonian and elastico-viscous fluid.

The magnetic Prandtl number (Pm) signifies the
relative importance of momentum diffusion and magnetic
diffusion as it is defined as the ratio of momentum diffusivity
to magnetic diffusivity. The effects of Pm on Newtonian and
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non-Newtonian fluids have been observed in figure 5. It
shows that the rising value of Pm accelerates the fluid flow
but due to the presence of elasticity, the visco-elastic fluid
flow experiences a declined trend during the enhancement of
magnetic Prandt] number.

The effects of heat source parameter and Hartmann
number on fluid velocity have been cited in figure 6 and 7. An
inclined trend is observed for both kind of velocity profile
with the growing nature of magnetic parameter and heat
source parameter. The maximum effect of both the parameters
on visco-elastic fluid and Newtonian fluid is seen in the
neighbourhood of the plate.

Schmidt number signifies the ratio of momentum
diffusivity to concentration diffusivity. The role of Schmidt
number on the fluid velocity is illustrated in figure 8.
Increasing value of Schmidt number increases the velocity of
the Newtonian fluid as well as visco-elastic fluid. Also, the
velocity of the visco-elastic fluid subdues with the
enhancement of Schmidt number in comparison with simple
Newtonian fluid.

Figures 9 to 14 exhibit the variation of skin friction ¢
against various flow parameters. In addition to this, the visco-
elastic effects of skin frictions are also measured in these
graphs. The elasticity factor present in the visco-elastic fluid
subdues the shearing stress at the plate in comparison with
Newtonian fluid.

Figures 9 and 10, characterize the variations of
shearing stress against Pm and Pr. The positive values of
Prandtl number signify the dominant effect of viscosity. It is
noticed that the shearing stress formed by the visco-elastic
fluid flow is negative, which interprets that the viscous drag
experiences a reverse direction.

Figure 11 and 12 shows that the magnitude of skin
friction reduced along with the amplified values of Grashof
number for mass transfer Gm and heat source parameter S for
Newtonian as well as non-Newtonian cases.

Figure 13 shows the effects of Schmidt number on
shearing sterss. It is noticed that the magnitude of skin friction
increases with the increasing value of Sc for visco-elastic
fluid but an opposite behaviour is observed in case of
Newtonian fluid. The intensity of transverse magnetic field is
shown in figure 14. Hartmann number subdues the shearing
stress of visco-elastic fluid in comparison with the Newtonian
fluid.

Nusselt number studies the rate of heat transfer
through the fluid system. Here we have investigated the
nature of Nusselt number on the flat plate. The graphical
presentations of rate of heat transfer are given in figures 15 to
17. Visco-elasticity factor present in the complex fluid flow
system subdues the rate of heat transfer in comparison with
the Newtonian fluid flow system.

Figure 15 characterizes the pattern of rate of heat
transfer against Gr. It shows that increasing values of Gr
modify the rate of heat transfer of Newtonian fluid in
comparison with visco-elastic fluids. Figures 16 and 17
analyze the effects of heat source parameter S and Schmidt
number Sc on variation of Nusselt number. In the both the
cases, it is observed that with the increasing values of flow
parameters Nusselt number for non-Newtonian fluid
increases.



Table 2 demonstrates the variation of induced
magnetic field b, for various combinations of flow
parameters (Table 1). From the table 2, it is observed that b,
enhances with the increasing values of the visco-elastic
parameter k; in comparison with the Newtonian fluid for
different cases. Also, the induced magnetic field b, increases
with the increase of Grashof number Gr (cases I & II) for
visco-elastic fluid, but remains same for viscous fluid. Due to
the increase of all other flow parameters (cases 1 & 111, IV, V,
VL, VIL VII) the values of induced magnetic field slightly
diminishes for non-Newtonian cases but modifies in case of
Newtonian cases.

4. CONCLUSIONS
The study concludes the following results:

e The velocity profile shows an enhancement trend in
the neighbourhood of the plate and then follows a
steady path.

e The visco-clasticity factor decelerates the speed of
fluid flow in comparison with the Newtonian fluid.

e The shearing stress formed at the plate is subdued
with the growing trend of visco-elastic parameter.

e The increasing values of Gm, S and M lessen the
shearing stress formed by visco-elastic fluid.

e Skin friction profile modifies with the increasing
values of Schmidt number Sc.

e Rate of heat transfer enhances with the enhancement
of S and Sc.

e The rate of mass transfer is not significantly affected
by visco-elastic parameter.
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Table 1: Various combinations of flow parameters

Cases | Gr Gm | Pr Pm | S M Sc
| 8 7 5 4 2 5 5
1 12 7 5 4 2 5 5
11 8 10 |5 4 2 3 5
v 8 7 8 4 2 5 5
\' 8 7 5 6 2 5 5
VI 8 7 5 4 4 5 5
Vil 8 7 5 4 2 8 5
vin | 8 7 5 4 2 5 6




Table 2: The values of induced magnetic field b,.
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Figure2. Variation of transient velocity u against y for Pr=5,
Pm=4, Gm=7, S=2, Sc=5, M=5.
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Figure3. Variation of transient velocity u against y for Pr=>5,
Pm=4, Gr=8, S=2Sc=5, M=5.
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Figure4. Variation of transient velocity u against y for Gr=8,
Pm=4, Gm=7, §=2, Sc=3, M=5.
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Figure5. Variation of transient velocity u against y for Pr=>5,
Gr=8, Gm=7, S=2, S¢=5, M=5.
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Figure6. Variation of transient velocity u against y for Pr=5,
Pm=4, Gm=7, Gr=8, S¢=3, M=5.
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Figure7. Variation of transient velocity u against y for Pr=5,
Pm=4, Gm=7, §=2, Sc=5, Gr=8.
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Figure8. Variation of transient velocity u against y for Pr=5,
Pm=4, Gm=7, S§=2, Gr=8, M=5.
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Figure9. Variation of skin friction o at the plate y=0 against
Pm for Pr=5, Gr=8, Gm=7, S=2, Sc=5, M=5.
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Figure10. Variation of skin friction o at the plate y=0 against
Pr for Pm=4, Gr=8, Gm=7, §=2, Sc=5, M=5.
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Figurell. Variation of skin friction o at the plate y=0 against
Gm for Pr=5, Gr=8, Pm=4, S=2, Sc=35, M=5.
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Figurel2. Variation of skin friction o at the plate y=0 against
S for Pr=5, Gr=8, Gm=7, Pm=4, Sc=5, M=5.

Figurel3. Variation of skin friction o at the plate y=0 against
Sc for Pr=5, Gr=8, Gm=7, S=2, Pm=4, M=5.
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Figurel4. Variation of skin friction o at the plate y=0 against
M for Pr=5, Gr=8, Gm=7, §=2, Sc=5, Pm=4.



Figurel5.Nusselt number against Gr for Pr=5, 8c=5, Gm=7,

§=2, M=5, Pm=4.
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Figure16.Nusselt number against S for Pr=5, Gr=8, Gm=7,

Sc=5, M=5, Pm=4.
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Figurel7.Nusselt number against Sc for Pr=5, Gr=8, Gm=7,

§=2, M=5, Pm=4.

NOMENCLATURE

Ec Eckert number

Gm Grashof number for mass transfer
Gr Grashof number for heat transfer
k Thermal conductivity

M Hartmann number

34

=

ik
Bik

Mo

N(1)
(x,y,2)
(x,y,2)

=y

Isotropic pressure
Magnetic Prandtl number
Prandtl number

Heat source parameter
Schmidt number

Suction velocity (ms™1)

Volumetric coefficient of thermal expansion (K1)

Volumetric coefficient of mass expansion (K1)
Stress tensor

Metric tensor of a fixed co-ordinate system
Dynamic viscosity (kg m™1 s™1)

Relaxation spectrum

Cartesians coordinates

Dimensionless Cartesian coordinates

Fluid velocity at a point (%, ¥, Z) in the fluid.

(5,,, Ey, 0) Components of magnetic induction vector at a

point (x,7.2)
in the fluid.
Visco-¢lastic parameter
Acceleration due to gravity (ms™?)
Temperature (K)
Ambient temperature (K)
Strength of the magnetic field
Electrical conductivity((ohmm)~?)
Specific heat at constant pressure
Magnetic diffusivity
Density (Kgm™3)
Kinematic viscosity((m?s~1)
Heat source parameter
Species concentration (kgm—3)
Free stream concentration
Concentration at the plate

Coefficient of chemical molecular diffusivity



	27
	28
	29
	30
	31
	32
	33
	34

