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1. INTRODUCTION 

The study of natural convection in cavities plays a vital 

role for the transport of heat energy in many engineering 

applications and naturally occurring process. Most of the 

works in natural convection are done in different cavities 

filled with fluids by many authors, especially Ostrach [1], 

Holmen[2], Taylor [3], Vahl Davis [4] are done with either 

vertical or horizontal imposed heat flux or temperature 

difference and Greenspan and Schultz [5] are numerically 

investigated that natural convection in a cavity with 
localized heating from below. The present work is motivated 

by a more general analysis of the heat transfer in electronic 

equipments. Thermocapillary convection is a fluid motion 

induced by surface tension gradients on a liquid-gas 

interface arising from temperature gradients. It is currently a 

topic of ongoing research interest because of its potential 

fundamental importance to the understanding of heat 

transfer in boiling. Rudraiah et al [6] are conducted a 

numerical study is to understand the effect of magnetic field 

on the flow driven by the combined mechanism of buoyancy 

and thermocapillarity in a rectangular open cavity filled with 

a low Prandtl number fluid (Pr = 0.054).  
     Natural convection cooling is widely used because of its 

simplicity, low cost and reliability. Torrance et al. [7] 

experimentally and Torrance and Rockett [8] numerically 

studied the convection of air in a vertical cylindrical 

enclosure, induced by a small hot spot centrally located on 

the floor. The  theoretical  results  were  found  to  be  in  an 

excellent   agreement   with   the   experimental  ones  in  the  

 

 

 
 

laminar region. Aydin and Yang [9] are numerically 

investigated that natural convection of air in a two-

dimensional, rectangular enclosure with localized heating 

from below and symmetrical cooling from the sides. They 

found that the average Nusselt number, Nu  increase with an 

increase in the Rayleigh number, Ra, or of the 

nondimensional heat source thickness, . Elatar et al [10] 
experimentally reported that studied the influence of bottom 

wall heating on the mean and turbulent flow behaviour in the 

near wall region during mixed convection. Experimentally 
and numerically analysis of natural convection in a cavity 

with Hollow blocks is studied by Stefanizzi et al [11]. 

Bairi and Oztop [12] surveyed is to quantify the free 

convective heat transfer that occurs in hemispherical air-

filled cavities. Also their results can be used in many 

engineering domains where hemispherical cavities are used, 

such as security and safety, solar energy, domestics, building 

or electronic and electrical devices.  

     In this paper, we considered the surface tension and 

natural convection flows in a square cavity having its top 

boundary open with bottom heating. Localized heating is 

simulated by a centrally located heat source on the bottom 
wall and five different dimensionless lengths are considered. 

The special attention is given to understand the effect of 

Grashof number and Marangoni number. Applications of 

this theoretical study will match many experimental heat 

transfer problems that arise in material manufacturing 

processes. 
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2. MATHEMATICAL FORMULATION 

Consider a square cavity of length (L) as shown in  Figure 

1. The lower wall has a centrally located heat source which 

is assumed to be isothermally heated at a constant 

temperature h. The sidewalls are isothermally cooled at a 

constant temperature c. The remaining portion of the 
bottom and the top wall are thermally insulated. The surface 

tension on the upper boundary varies linearly with 

temperature 
0 0[1 ( )]       , where 

0 - reference 

temperature, 
0 - reference surface tension and  - 

temperature  coefficient of surface tension defined by the 

equation,

0

1 


 


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 and the top surface of the flow domain 

is assumed to be free. The non-dimensional    set    of    the   

governing   equations   are: 
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The non dimensional parameters are defined in the 

following forms 
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    The following nondimensional boundary conditions are 

obtained: 
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The average Nusselt numbers, Nu  for the heated portion 

of the lower wall is given by 
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The average Nusselt number,  Nu  for the cooled portion 

of the left and right wall is given by  
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2
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where Nu is the local Nusselt number is given by 
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           Figure 1. Schematic of the physical system 

 
3. NUMERICAL PROCEDURE 

The governing equations along with the boundary 

conditions are discretised using the finite volume method, 

with power-law scheme by Patankar [13] and Versteeg and 

Malasekara [14].  Numerically solved by SIMPLE algorithm 

for pressure-velocity coupling together with under-

relaxation technique.  The steady state solution is obtained 
when the following convergence criteria for temperature and 

stream function have been met. 

 

 

 

 

 

The time step is taken to 10-5 for all computations. 

Uniform staggered grid system is employed in this 

                   presentation. The numerical solutions are presented by using 

151×151 grid points. As increasing grid size from 151×151 

to 181×181 there is no noticeable changes in the average 
heat transfer. Therefore, 151×151 grid size is approved to be 
sufficient to resolve the velocity and temperature fields for 

the related case.    
 

4. VALIDATION OF CODE 

Table 1 depicts the comparison of average Nusselt 
number for different Rayleigh number in an open cavity 

with Pr=0.7. The results are compared with the solutions of 

Vahl Davis [15], Tasnim [16], Ambarita[17] . The results are 

found to be good agreement with these solutions. Finally, 

the model is tested against the work of Sharif and 

Mohammad [18] for the case of 103 ≤Gr≤106 and =0.2 & 
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0.4 in Table 2. As increasing the Grashof number, the error 

percentage is decreases. This validation makes a good 

confidence in the present numerical model to deal with the 

same square configuration problem. 

 

Table 1. Comparison  of  average  Nusselt  Number  for  different  Rayleigh  number  in a  square  cavity  with  Pr = 0.71 

 

 

 

Reference 

 

Nu 
 

 

Ra = 104 
 

Ra = 105 
 

Ra = 106 
 

Ra = 107 
 

 

Ra = 108 

 

Vahl Davis [15] 

 
2.234 

 

 
4.51 

 
8.798 

 
- 

 
- 

 

Tasnim [16] 

 

2.244 
 

 

4.5236 

 

8.8554 

 

- 

 

- 

 

Ambarita [17] 

 
2.228 

 
4.514 

 
8.804 

 
16.52 

 
30.48 

 

Present 

 
2.247 

 
4.542 

 
8.850 

 
16.92 

 
31.56 

 

Table 2.  Comparison of average Nusselt number for different  Grashof number and Pr=0.71 

 

 

 

 

 

Gr 

 

Nu 

 

 

Sharif and  

Mohammad [18] 

=0.2 

 

 

    Present  

 

Sharif and  

Mohammad [18] 

=0.4 

 

 

     Present 

 

103 

 

 
  5.926608 

 
  5.908235 

 
 4.084653 

 
 4.028635 
 

 

104 

 

 

  5.946352 

 

  5.913524 

 

 4.132314 

 

 4.101235 
 

 

105 

 

 
  7.124055 

 
  7.100892 

 
 6.057670 

 
 6.023842 
 

 

106 

 

 
  11.34151 

 
  11.318235 

 
 10.51224 

 
 10.48538 

 

 

5. RESULTS AND DISCUSSION 

Heat distribution and fluid flow are depicted in Figure 2 in 
the form of isotherms and streamlines respectively for 

different dimensionless heat source lengths (1/5≤≤5/5), 

Ma=100, Gr=105. In the beginning, the basic flow structure 

has two symmetrical counter rotating cells are exists about 

the vertical centreline. Due to the symmetrical boundary 

conditions on the vertical walls, the high buoyancy force 

gives a pair of flow structure inside the cavity. As  soars, 
the streamlines are gathering towards the cold walls and the 

gentle increase in flow strength. An increasing trend of non-

dimensional heater length produces larger temperature 
distribution in the entire zone of cavity and they are dense 

near the left and right corners of bottom wall. When the 

heater is stretching along the whole width of the bottom wall 

( = 5/5) pointing that the conduction dominated heat 
transfer mechanism over the heater surface.  Figure 3 shows 

the   streamlines  and  isotherm  contours  for  various    non-

dimensional size of the isothermal heat sources 

=1/5,2/5,..5/5 and Ma=1000, Gr=105. For =1/5, there is a  

 

formation of strong primary eddies at the bottom wall and 
weak  secondary  eddies  at  the top of  cavity. By increasing 

heat source length, the effect on secondary eddies   increases 

and pushed downwards. As  increases, the flow rate 
increases  and  the  magnitudes  of  the  temperature gradient 

increases.  When we compare the Figures 2 and 3, the Ma 

from 100 to 1000, a foremost secondary eddies  are appeared    

at    the    top   of   cavity   due   to  the  effect  of 

thermocapillary  force. But   in   isotherms,   the   convection 

mode is maintained.  In Figure 4 the steady state streamlines 

and isotherms are plotted to show the effect of different Ma 

and Gr=105, =2/5, Pr=0.054. This figure reveals the result 
of surface tension effect (0≤Ma≤1000) in an  opened  cavity  

and therefore a prominent secondary eddy is observed at the 

top due to the interface of Marangoni effect. On the whole, 
as increasing the surface tension force, the buoyancy force is 

dominated by the thermocapillary force. The same results 

are observed by the effect of surface tension force is shown 

in Figure 5. The same parameters except the heat source 

length =4/5 is taken. By increasing  from 2/5 to 4/5 from 
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the Figures 4 and 5, the flow rate is increases and thus 

convection gets strengthened. 

      In order to have a better understanding of the flow 

behaviour with in cavity, the bidirectional velocity profiles 

are plotted at the mid section of the cavity for various values 

of  and Ma in Figures 6 & 7. Figure 6 represents the mid-

height vertical velocity at the middle of cavity for different , 
Ma=100, Pr=0.054 and Gr=105. A Sinusoidal behaviour is 

observed for the distribution of the mid-height vertical 

velocity profile, as it is irregular for the various parameter of 

heater length, whilst it is interesting that the flow reaches its 

maximum point in the middle of the enclosure and returns to 

attain its mid value at the edges. This is due to the high 

values of the  stream  function with two symmetrical counter 
rotating cells, symmetric about the vertical centre line in the 

enclosure. The peak velocity deflection near the corner 

move towards the side wall with high surface tension force 

Ma=100 &1000 in Figure 7. The depression on the flow 

becomes  flatten  for  low   Marangoni  number  with  =4/5.   
Figure 8 is plotted for both hot and cold wall to show the 

effect  of    on  different  Grashof number over the Average 
Nusselt Number and Pr=0.054, Ma=100. In the hot wall, for 

Gr≤105  the  heat  transfer rate  is  almost  invariant.  When 

Gr>105, the buoyancy aids more and more in the heat 

transfer process which results in more rapid increase of Nu . 
For the cold wall, the changes in results are almost same and 

identical to the hot wall. Hence for the small length of the 

heat sources (1/5, 2/5) the heat transfer is purely conduction. 

Further increasing , the average Nusselt number is constant 

until Gr=105. But it increases for higher   Grashof number 
Gr=106.  

     The average Nusselt number is affected by the surface 

tension force Ma in a different way as seen in the Figure 9. 

Here the heat transfer rate is calculated for both hot and cold 

wall. The effect of surface tension force on the flow is more 

evident from these profiles as the heat transfer rate changes 

substantially when Ma is changed. For =2/5 for both hot 
and cold wall, there is no changes as Ma increases. While 

changing =4/5, Nu  elevates in a small region of the left 

wall of the cavity and then it starts to decrease  smoothly  for 

Gr=105 .   The  time  history  of  average  Nusselt number for 

different heater length  and Ma = 100, Ha = 50, Gr = 105 is 
depicted in Figure 10. At the initial time, the average Nusselt 

number drops for the increasing heater length and then it 
obviously attains the steady state for the hot wall. This is due 

to changing the mode of heat transfer from conduction to 

high convection. But in the cold wall, the Nu increases, 

passes through the maximum  and  reaches  the  steady  state. 

 

 

 

 

 

 

 
 

 

 

 

 

 

      
 

 

       
 

 

       
 

 

       

 

 

       
 

 
Figure 2. Steady state Streamlines and Isotherms for 

different heating locations and Ma=100, Gr = 105 
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Figure 3.  Steady state Streamlines and Isotherms for 

different heating locations and Ma = 1000, Gr = 105 

 

 

 

 

 

 

 

      
 

 

          
 

 

           
 

 

Figure 4. Steady state Streamlines and Isotherms for 

different Ma,  

Gr = 105  and    ε = 2/5 
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Figure 5. Steady state Streamlines and Isotherms for 

Different Ma, 

 Gr = 105  and   ε = 4/5 
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Figure 6.  Mid-height Vertical velocity at the middle of the 

cavity for different   ε and Ma=100, Pr=0.054 & Gr =105 
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Figure 7.  Mid-height Vertical velocity at the  middle of the 

cavity for different Ma and Pr=0.054, Gr=105 
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Figure 8.  Average Nusselt number vs Gr for 

different heating location, Pr=0.054 and Ma=100 
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Figure 9.  Average Nusselt number vs Marangoni number 

for different Gr, ε=2/5 & 4/5, Pr=0.054 
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Figure 10.  Time history for different ε, Pr=0.054, Ma=100 

& Gr=105 
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6. CONCLUSION 

The results of a numerical study of buoyancy and 

thermocapillary-driven flows in a two-dimensional free top 

surface cavity with constant heating at the bottom wall and 

isothermal cooling from the side walls are analyzed and 

presented. The most important parameters are Grashof 

number, Marangoni number and dimensionless heat source. 

The flow and temperature fields are symmetrical about the 

mid length of the cavity due to the symmetrical boundary 

conditions in the vertical direction. The following 

conclusion can be drawn from this study. 
(a) By varying length of the heat sources with different 

Marangoni number, the secondary eddies are 

formed due to thermocapillary force. 

(b) The average Nusselt number increases for 

increasing Grashof number. Increasing  enhances 
the heat transfer, especially for higher values of Gr. 

(c) Variation of average Nusselt number with  varies 
and reaches steady state by two driving mechanism 

acting on the flow. 
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NOMENCLATURE 

g = Gravitational acceleration (m/sec2)   

Gr = Grashof number(gβ(θh-θc)L3)/2        
k = Thermal conductivity (W/mK)             

L = Length of the square cavity (m)   

Ma = Marangoni number (/θ)((θh-θc)/)L 
Nu = Local Nusselt  number    

Nu    
= Average Nusselt number      

p = Pressure (Pa)   
P = Non-dimensional Pressure   

Pr = Prandtl number (/) 
T = Temperature (K) 

u,v = Velocity components (m/s)       

U,V = Dimensionless velocity components       

x,y = Cartesian coordinates  (m)    

X,Y = Dimensionless Cartesian coordinate  

 

Greek Symbols 

 

α  = Thermal diffusivity (m2/sec) 

β  = Coefficient of thermal expansion (1/K) 

  = Dimensionless length of  heatsource( l/L) 

  = Dimensionless temperature 

μ  = Dynamic viscosity (Ns/m2) 

ν  = Kinematics viscosity (m2/s) 
ρ  = Density of the working fluid (kg/m3) 

  = Surface tension 

  = Dimensionless time 

ψ  = Stream function 
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Subscripts 

c          =      Cold wall 

h          =      Hot wall 

0          =      Reference state            
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