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 The problem of managing selective collection of waste using containers inside historic city 
centres can be performed in three sequential phases: first, locating containers along the 
streets; then, determining the minimum fleet size required to perform all collecting services; 
and finally, identifying the optimal collection routes. Obviously, the result of the first phase 

highly influences the procedure since this will determine the decisions to be taken for the 
subsequent phases. This paper is focused on the first phase. Facility-customer distances, the 
size of container groups and the cost of installing those containers in specific sites along the 
streets are parameters to be considered when designing the collecting system. Additionally, 
we assume that customers are willing to have a solidarity behaviour, which consists of using 
a container assigned to them within a pre-established proximity radius, although the assigned 
container may not be necessarily the closest to their residence. For this scenario, a more 
efficient deployment of containers for selective collection of urban solid waste can be 

obtained. To illustrate the performance of the developed methodology, a computational 
experience has been carried out on a network with randomized data based on a zone 
belonging to city of Seville (Spain). 
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1. INTRODUCTION 

 

The concept of municipal waste is defined in Eurostat 

(2017) as those mainly produced by households, although 

similar wastes from sources such as commerce, offices and 

public institutions are included. The amount of municipal 

waste generated is collected by (or on behalf of) municipal 

authorities and disposed through a waste management system 

[1]. Municipal Solid Waste (MSW) includes used paper, 

discarded cans and bottles, food scraps, yard trimmings, and 
other items. Proportionally, household waste accounts for 

usually up to 75 per cent of all the municipal solid wastes. 

MSW management includes several functional phases such 

as waste generation, storage, collection, transportation, 

processing, recycling and disposal in a suitable landfill [2]. 

Collecting solid waste involves storage at the generation and 

pick-up points, pick up by the crew, trucks driving around the 

neighbourhood, and truck transport to a transfer station or 

disposal point. These tasks are difficult, complex and costly. 

Therefore, the objective of an efficient service should be the 

minimization of solid waste collection costs, together with 
the provision of an adequate and regular service to all of the 

target area [3]. Providing an efficient collection service to a 

city often requires a combination of techniques and 

equipment, to accommodate the different challenges of the 

various neighbourhoods within the city [4]. 

Waste collection and transportation phases are closely 

related, since the deployment of containers along the city 

determines both the vehicle fleet size required for picking up 

the collected waste into the containers and the design of 

efficient routes needed for that purpose. Typically, collection 

costs represent 80–90% and 50–80% of municipal solid 

waste management budget in low income and middle income 

countries, respectively [5]. Therefore, waste collection and 

transportation problems are considered as one of the most 

difficult operational problems when developing an integrated 

waste management system [6]. Eiselt and Marianov [7] 

provide a compilation of 64 papers that include applications 
throughout the world, where the main aspects of interest of 

the contributions have been summarized in a Table, and 

classified according to country, technique, criteria, objectives 

and type or facility to be located. 

Management of solid-waste collection services is 

intrinsically linked to the development of effective vehicle 

routing (VR) models that optimize the total traveling distance 

of vehicles, the environmental emission and the investment 

costs [8]. An optimal VR is a scheduled process that allows 

vehicles to load waste at gather sites and dump it at a landfill 

by satisfying multiple objectives [9]. Through a Route 
optimization for Waste management (WR), both the 

residential routing problem and the commercial routing 

problem settings can be solved. Beliën et al. [10] present a 

review of the available literature on solid waste management 

problems, with a particular focus on vehicle routing problems 

that are classified into different categories. 

Three main types of waste collection routing problems can 
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be distinguished in the literature: communal site collection, 

container collection and kerbside collection. In the communal 

case, a public place is defined by the local authority in order 

to be share by communities for dumping their solid waste [9]. 

The second type of collection routing problems, where full 

containers are collected, concerns the typical situation for 

industrial customers. In this case, the collection vehicles are 

often equipped with a specific loading mechanism and 

usually they can carry only one container [11]. The last 

collection type routing problem is the kerbside collection. In 
this case, householders put out their waste bins and retrieve 

them after the collection has been carried out by the 

collection fleet. In this case, the collection vehicles pass 

every street to pick up the garbage at a predefined date (for 

selective collection) or time [12].  

In communal site and container collection, the collection 

vehicles only visit predetermined pick-up points, whereas in 

kerbside collection, every house needs to be visited. A 

second difference between both kinds of systems is that they 

are designed to serve different types of clients. Container 

collection serves industrial clients, who generally have a 
greater amount of waste, sometimes containing hazardous 

materials. On the other hand, kerbside collection, serves 

numerous residential customers, who typically have a small 

demand. Then, communal site collection and container 

collection problems are usually modelled as a variant of the 

Travelling Salesman Problem (TSP), while kerbside 

collection problems are typically modelled as a variant of the 

Chinese Postman Problem (CPP) which must include 

capacity constraints [6], for a detailed analysis on arc routing 

and node routing problems and differences. 

In real scenarios, the waste collection system is distributed 

in a set of zones. The purpose of the zoning phase is to 
determine collection districts. The districts must be defined 

such that the total solid waste loads within each one does not 

exceed the capacity of the vehicles used to perform the waste 

collection. The problem of districting is not widely addressed 

in the literature, or in many cases it is assumed to be solved a 

priori, neglecting the influence it could have on the 

subsequent routing phase. Male and Liebman [13] proposed a 

districting heuristic based on the construction of an auxiliary 

graph, in which nodes represent trips and edges represent 

feasible trips aggregations. Eisenstein and Iyer [14] devised 

flexible schedules for garbage trucks in the city of Chicago. 
Hanafi et al. [15] studied a weekly zoning schedule problem 

with the aim of determining a fixed number of sectors which 

must be balanced with respect to the daily total waste 

collection time. They proposed an optimization model which 

can be applied to small-size instances. For large-size 

scenarios these authors develop a local search heuristic that is 

based on the definition of a zoning matrix. The proposed 

methods are tested on three real-world instances and 28 

randomly generated instances. Labelle et al. [16] presented 

several models and heuristics for partitioning a city into 

sectors, with respect to snow disposal operations, and for 

assigning the sectors to disposal sites. The problem results 
quite similar to the problem encountered in garbage 

collection operations. Sahoo et al. [17] present a discussion 

on how to divide the area from which waste is collected into 

districts, with the aim of subdividing the problem, making it 

more manageable. Authors proposed both, a mathematical 

model and a two phase insertion algorithm, in which a 

feasible solution is first generated and later improved; see 

also the works of Kim et al. [18], Solomon [19] and Taillard 

et al. [20], which are used to address the two phase method. 

Each zone has a set of starting and ending nodes associated 

in order to determine the tours for vehicles responsible for 

carrying the garbage collected in the visited containers. A 

planning horizon must also be considered in order to 

schedule a sequence of services within the useful life of each 

vehicle. A succession of routes (one per day, belonging to the 

same or to different distribution zones and performed by the 

same vehicle along the planning horizon) is called a 

circulation. Plans for determining the vehicle circulation in 
transportation networks are described by, for instance, Ortega 

et al. [21] and Canca and Barrena [22]. 

Community containers are the locations in the street where 

the waste can be transferred to the collection agency at a 

short distance from the dwellings where garbage is generated. 

Sites where community storage facilities should be located 

depend on the customer behaviour. If a community is willing 

to co-operate in their proper use by carrying their waste to the 

containers, rather than dropping it in the street or on open 

plots nearer to their homes or businesses. In these cases, the 

task of collection will be transferred to the street sweeping 
service which is more expensive than collecting from 

containers. A solidarity co-operation of the costumers is 

assumed in this paper with the goal of reducing the number 

of collection points. 

Collection vehicles visit community containers at frequent 

intervals, usually once daily or every second day, to remove 

accumulated waste. A planning horizon must also be 

considered in order to schedule a sequence of services within 

the useful life of each vehicle. The set of collecting routes, 

belonging to the same or to different distribution zones in the 

city and performed by the same vehicle along the planning 

horizon, is called a vehicle circulation. Plans for efficiently 
determining vehicle circulations in transportation networks 

are described by Ortega et al. [21]. 

Summarizing, the problem of managing selective 

collection of waste containers can be performed in three 

sequential phases devoted to: first, the location of containers 

along the streets; then, the determination of the minimum 

fleet size required to perform all collecting services; and 

finally, the design of optimal routes, in terms of total and 

equilibrated number of kilometres travelled by the trucks. 

The decisions to be taken in these three phases can be 

advised through the use of optimization models. Obviously, 
the result of the first phase (location of the containers) highly 

influences the procedure since this will determine the 

decisions to be taken for the subsequent phases (route of 

collection vehicles and service programming). 

Typically, the containers should be distributed so that the 

distance between any two containers is not excessive. In the 

cities which have historic core areas it may not be possible to 

locate containers at the most convenient distances, because 

community containers can only be located along the main 

streets and in places where there is enough space for the 

container itself and for operating the collection vehicle. 

The main contribution of this paper focuses on the location 
of collecting facilities (waste containers), and on the 

influence of customer solidarity behaviour on this location. 

For this purpose, we consider parameters such as container-

customer distances, the size of container groups, their 

capacities in accordance with the closest population, and the 

installation cost of those containers in specific sites along the 

streets. 

The remainder of this work is organized as follows. In 
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Section 2, an optimization model for locating waste 

containers is presented. In Section 3, a three-phases solving 

algorithm taking into account the characteristics of the 

problem and the customer solidarity behaviour is proposed. A 

computational experience, based on an application to a real 

case and distinguishing between scenarios with and without 

assuming customer solidarity behaviour, is implemented in 

Section 4. Finally, some conclusions are summarized in 

Section 5. 

 
 

2. MODEL FORMULATION 
 

We assume the following mathematical description, 

associated to the characteristics of the problem, that consists 

of a connected graph G=(V, A), composed of a node set V 

(portals) and an arcs set A (directed links, i.e. arcs, 

representing street sections). The arcs of set A connect the 

nodes belonging to set V, so that the existence of a shortest 

path in terms of distance or travel time between each pair of 

points of V is guaranteed. Let us suppose that set V contains 

nodes where urban waste is generated (set I) as well as points 

where it is possible to locate the containers to deposit them 

(set J). We will additionally assume that the following 

inclusion sequence is maintained: JIV Note that any node 
i of V located at the entrance gate of a building could be 

identified as a generating point of waste; in that case, node i 

would belong to set I. Alternatively, node i could simply be a 

feasible site along the street, where the waste container could 

temporarily be located (in that case, node i would also belong 

to set J).  

The following notation is used in order to formulate our 

location model for the waste containers: 

• I: set of demand nodes (iI). There is a population pi 

associated to each demand point iI 

• J: set of possible location nodes to locate waste 

containers (jJ). There is an upper bound (capj, jJ) in 

terms of capacity associated to each candidate point jJ. 

• K: set of main types of solid waste generated in the 

urban area (for instance, cardboard, plastic, organic 

waste, scrap metal, etc.) (kK).  

Additionally, we assume a compensation cost  k 

j 0 

associated with the economic value that the municipal 

cleaning company would be willing to pay to maintain a 

container of modality k in node j during the planning horizon. 

This means that the cleaning company should have 
previously negotiated a payment reduction with the 

inhabitants nearby node j, due to the inconveniences 

generated by permanently establishing the container of type k 

close to their dwellings. In this way, if node j is located in the 

public domain far from any building, the compensation cost 

could be considered to be 0; and, on the other hand, if the 

location of the container is technically unfeasible due to the 

proximity of a place of residence, this cost could be 

associated to an infinite value.  

The parameters involved in our optimization model are the 

following: 
- Each node i has a known weight wi

k (which can be 

identified with the amount of waste in kg or dm3 

generated in node i of waste modality k, i.e., organic 

material, glass, packaging or paper units) associated. 

- The shortest distances between nodes of set V, along 

network G, have previously been determined and 

recorded in the matrix D=(dij), dij0. 

Residents associated to node i would experience a 

displacement cost (discomfort) Cij
k when having to take their 

type k waste to the container located at point j. This 

discomfort should be limited by means of including a 

restriction on the maximum allowed walking distance for the 

users. In practice, this restriction can be modelled by the 

assignation of a feasible coverage radius from point i. A point 

i can be considered covered by another point j if the distance 

between them does not exceed a radius of displacement Rk. 

Observe that this radius is type-dependent since some types 
of waste may have less collecting points if its use is not as 

extended as others. Customers may be willing to walk longer 

or shorter to deposit the waste depending on its type. 

Let us assume users have solidarity behavior, that is, that 

each customer is willing to use any container, as long as a 

maximum walking distance from their residence to the 

assigned container is not exceeded. That container might not 

be the closest, but this must lie within a predefined radius. In 

our model, a portion of inhabitants associated with node i 

could take their garbage to the container j and another portion 

of the population of the same node would be willing to take 
out their garbage to another unfilled container j that is not 

excessively distant. This solidary behaviour of the clients 

would allow an efficient deployment of the containers in the 

area under analysis, reducing their total number and grouping 

them in the points of lowest cost. 

Let qk 

ij{0,1}
 
be a binary auxiliary data that takes value 1 

if the demand point I can be covered by site j by means of a 

container of modality k (note that qk 

ij=1 implies that dij0Rk), 

and 0, otherwise. Additionally, let Nj0 be an integer 

parameter that indicates the maximum number of containers 

that could be installed at location j. We assume that all 

containers are provided with the same capacity Q. 

Moreover, the following variables are required in the 

model: 
 

Variables. 

 

yk 

j  Binary variable that takes value 1, if container 

location j is activated to collect garbage type k, and 
0, otherwise. 

nk 

j   Number of containers type k to be installed at 

location j. 

xk 

ij  Percentage of garbage type k that the client 

corresponding to node i will deliver at location j.  

 

The nature of the variables used in the model yields varied 

formulations to face different objectives. In our case, the 

following integer programming formulation determines the 

minimum number of container groups to be installed in the 

area under consideration. Note that the lower the number of 
garbage deposit points, the more efficient the collection 

procedure will be for the vehicles. 

 

Objective and constraints. 

 





Kk

k

j

k

j

Jj

nMinz 1
 (1) 

 

Subject to: 

 

KkIiyq k

j

k

ij

Jj




,,1  (2) 
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


 (7) 

 

  .0,,1,0  + k

ij

k

j

k

j xZny  (8) 

 

The objective function (1) minimizes the cost of containers 

that should be installed. Note that when the radius Rk 
decrease, the number of containers that can be grouped in the 

same location will then increase. Constraints (2) ensure that 
all demand for each type of waste collection is covered by the 

set of locations to be determined. Constraints (3) establish 

that the sum of coverage percentages for every demand point 

from the container must be equal to 1. Constraints (4) imply 

that if a location is activated, then at least one container must 

be installed at it. Constraints (5) guarantee that if a location is 

not activated, then no demand point can be covered by it. 

Constraints (6) imply that demand points that may be served 

from location j cannot exceed its capacity. Constraints (7) 

establish an upper bound on the number of containers that 

can be located at each site. Constraints (8) specify the domain 

of the variables used in the model. 
Maintaining the above described constraints, an additional 

criterion, consisting of minimizing user travel costs, can be 

incorporated into the former objective by combining it with 

the previously considered minimization of costs in the 

deployment of the containers. The expression that follows 

formulates this double purpose: 

 




+
Kk

k

j

k

j

JjKk

k

j

k

ij

JjIi

nyCMinz 2
 (1’) 

 

Both models (1) – (8) and (1’) – (8) are of combinatorial 

nature and can be considered as instances of a Partial Set 

Covering problem [23]. The partial set covering model is NP-

hard since it is a generalization of the traditional location set 

covering problem, which is NP-hard. Cormen et al. [24] 
discuss the problem in detail and prove its complexity. This 

fact justifies the use of algorithms that provide a good 

heuristic solution. 

A model similar to the one previously proposed has been 

investigated by Barrena et al. [25], in whose work heuristics 

were designed in a computationally feasible way and 

consistent with the approach. Tests carried out on randomly 

generated data have shown that a simple heuristic of 

Overflowing Deviated to Immediate Neighbourhood (ODIN) 

yields the best results if the inter-location spacing between 

adjacent containers is not excessively large. Taking these 
precedents into account, we propose the three-phases 

heuristic ODIN for solving our optimization model in order 

to determine the most effective deployment of waste 

containers along the street network. 

 

 

3. SOLVING ALGORITHM 
 

We propose a solving algorithm which is divided into 

three parts. The first phase, ODIN1, is a slightly modified 

version of the algorithm ODIN presented by Barrena et al. 

[26]. ODIN1 does not requires an initial solution and this 

yields a feasible solution which tends to minimize the 

objective function. This is done by reallocating containers 
that cannot be installed at their demand points to the cheapest 

(in terms of compensation cost) available location within 

radius Rk. Having into account the customer solidarity 

behaviour, we also propose an extension (ODIN2 and 

ODIN3) of this algorithm in order to minimize the number of 

containers at each node and to allocate them, respectively, 

when this change helps reducing the objective function. 

Allocation is then done in order to minimize the cost as well 

as to reduce the number of stops in subsequent phases of 

waste collection. 

 

3.1 Heuristic ODIN1 

 

1. Sort the points 𝑖 ∈ 𝐼 that generate urban waste according 

to their production, from highest to lowest levels and re-

label them. 

2. Assign the required number of containers of type 𝑘 to 

each node 𝑖 ∈ 𝐼, that is, 𝒏𝒊
𝒌 = ⌈

𝒘𝒊
𝒌

𝑸
⌉. 

3. While there exists a generator point i whose collection 

requirement exceed the established upper limit Ni (i.e., 

i

k

i

Kk

Nn 


) or which does not belong to the set of 

possible location nodes (that is, 𝑖 ∈ 𝐼 \ 𝐽), do  

            

3.1 Identify the set of possible location nodes 

Prox(i; k) whose distances to node i are less 

than 
kR  (excluding node i) 

3.2 Sort the nodes );( kiProxj  from the lowest 

to the highest levels according to ascending 

values of 
k

j  

3.3 For each );( kiProxj do 

While 0)( −


i

k

i

Kk

Nn and 

0)( − 


k

j

Kk

j nN  

do Decrease units from nk 

i  and increase them in 

nk 

j  

4. If all the generating points satisfy condition 
i

k

i

Kk

Nn 


then a solution to the problem has been obtained. 

Otherwise, a modification of parameters Rk or Ni is 

required.  

5. End. 

 

This ODIN1 algorithm reallocates containers when 
demand cannot be attended at a certain node and add a 

container for this unattended demand at another location. 

However, in some occasions, there may be non-used capacity 

of the existing containers, and there is therefore no need to 

add a new one to attend demand. This give raise to propose a 
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second part for this algorithm, aiming at a more efficient use 

of containers. This minimizes, not only compensation cost 

due to locations, but also the number of containers. 

 

3.2 Heuristic ODIN2 

 

In this second phase of the solution algorithm, a more 

efficient use of the containers is recommended. If there is 

enough non-used space at containers of type k at location j, 

then the waste of type k is reassigned to them in order to save 
number of containers.  

(1) For each location jJ we first calculate the number rk 

j  of 

containers of type k required to attend the demand from 

node j and from all others nodes whose demand is 

partially assigned to j (that is, for all 𝑖 such that xk 

ij0). 

 

𝑟𝑗
𝑘 = ⌈

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐼 𝑤
𝑖

𝑘

𝑄
⌉ 

 

(2) If the number of containers needed is less than the 

number of containers obtained from ODIN1 (that is, if rk 

j

nk 

j ), then diminish nk 

j  and update its value to rk 

j . 

 

3.3 Heuristic ODIN3 

 

Once all the demand is attended with the minimum 

number of containers (solution obtained from ODIN1 and 

ODIN2), we propose to redistribute them in this third phase 

of the algorithm. Redistributing containers to cheaper 

locations may help to reduce the cost, and also to reduce the 
number of locations with containers. Reducing the number of 

locations with containers will facilitate the subsequent phases 

of waste collection and transportation since the number of 

stops is reduced. This phase makes more sense in scenarios in 

which there is a big proportion of generating nodes which are 

also possible container location nodes (that is, if set 𝐽  is 

large). In these cases, it may happen that an excessive 

number of locations is activated and it is important to reduce 

them for operational tasks. 

 

(1) Short 𝑗 ∈  𝐽  such that 𝑛𝑗
𝑘 ≠ 0  from the highest to the 

lowest value of compensation the cost 𝛽𝑗
𝑘  and re-label 

them.  

(2) Consider the location nodes 𝑗 ∈  𝐽  that only attend 

demand from its own node (that is, ∑ 𝑥𝑖𝑗
𝑘 = 0𝑖≠𝑗 ). 

(3) If there exists a location node 𝑗∗ ∈ 𝑃𝑟𝑜𝑥(𝑗; 𝑘) ∩ 𝐽 such 

that its compensation cost is lower than the one in 𝑗 

(𝛽 𝑗∗
𝑘 < 𝛽𝑗

𝑘) and that can allocate more containers (that is, 

if ∑ 𝑛𝑗∗
𝑘 < 𝑁𝑗∗𝑘 ) then increase 𝑛𝑗∗

𝑘  to 𝑚𝑎𝑥∑ 𝑛𝑗∗
𝑘

𝑘 +

𝑛𝑗
𝑘 , 𝑁𝑗∗ and decrease 𝑛𝑗

𝑘 accordingly. 

(4) Go to ODIN2 and Iterate until the stopping criterion is 

reached (when the improvement in the objective function 

is less or equal than a small value 𝛽).  

 

 
4. COMPUTATIONAL EXPERIENCE 

 

Our model has been tested on a graph representing a part 

of the street system in the city of Seville. In particular, the 

computational experience has been carried out on an urban 

area which contains a street network with 46 dwelling points 

(sites identified as elements of node set I). Location of nodes 

along the street network and internode distances are 

illustrated in Figure 1.  

 

 
 

Figure 1. A network of 46 nodes depicting an area of Seville 

 

 
 

Figure 2. Container distribution with 46 nodes 

 

The amount of daily produced waste has been randomised 

within the interval [400 kg, 5000 kg]. By considering 

homogeneous containers of capacity 500 kg, it is possible to 

initially assign to each residential place a container cluster 

(located at this same site) whose amount varies between 1 

and 10. In order to adapt to a real context, a limitation on the 

number of containers that share the same geographical 
location has been set to 10. Additionally, a monthly unit cost 

for locating a container at each site j must be considered. In 

the experiment, this cost has been considered as random 

within the interval [0, 10] measured in €.  

In the baseline scenario where no optimization procedure 

was applied, the 236 containers needed to collect all the 

produced garbage would involve a cost of 1149€ per month. 

In Figure 2, the container clusters, which are needed to 
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guarantee the collection of all urban waste by means of user 

displacements to the deposit point nearer than R = 100 m, are 

represented by circles of variable radius between 1 and 10. 

The radius of each circle is proportional to the size of the 

corresponding container group.  

On the other hand, we also consider a first scenario 

assuming customer solidarity behaviour, that is, that 

customers are willing to carry their garbage to their 

specifically assigned containers (not necessarily to the closest 

container to their place of residence), within a pre-established 
proximity radius of R=100 m. In this scenario, a more 

efficient distribution of the containers can be obtained by 

means of the optimization model previously proposed (ODIN 

1-3). Two sub-scenarios have been analysed according to size 

(N) of the container group at the same point. 

For N=6, the proposed methodology yields the following 

results: 

- The number of initial container groups (46) can be 

reduced to 43.  

- The compensation cost of the maintenance of the 

236 containers on the street, is reduced by 10.01 
percent. The monthly cost associated to the solution 

shown in Figure 3 is now 1034 euros. 

 

 
 

Figure 3. Container distribution with 43 nodes  

 

 
 

Figure 4. Container distribution with 33 nodes  

For N=8, the proposed methodology yields the following 

results: 

- The number of initial container groups (46) can be 

reduced to 33.  

- The compensation cost of the maintenance of the 

236 containers on the street, is reduced by 29.42 

percent. The monthly cost associated to the solution 

shown in Figure 4 is now 811 euros. 

In a second scenario, we consider a selective collection of 

solid waste by using three different types of containers (a 
situation like the one shown in the Figure 5). 

 

 
 

Figure 5. An example of three different types of solid waste 

collection 

 

For this case, the total amount of waste generated at each 

node coincides with that of the first scenario, but its 

distribution in each of the three types of waste considered has 

been randomly generated. The requirement to separately 
store the waste yields an increment in the number of 

containers needed to carry out the collection of waste. This 

increment with respect to the first scenario, which in the 

experiment is equal to 22.03% (288 containers now, versus 

236 in scenario 1), leads to a redistribution of the containers. 

A new application of the ODIN heuristics, maintaining the 

values established for the parameters Rk and Nj, provides a 

more efficient distribution of the containers, since those ones 

can be grouped in 41 places, instead of the initial 46 nodes. 

 

 
5. CONCLUSIONS 

 

A methodology for the deployment of containers for 

selective collection of urban solid waste has been proposed in 

this work. The mathematical optimization model formulated 

for this purpose has been identified as a version of the Partial 

Set Covering problem, whose computational complexity 

motivates the use of heuristics to face large real-life scenarios. 

Following that recommendation, a three-phase greedy 

algorithm of overflowing deviated to the immediate 

neighbourhood has been developed to solve the proposed 
mathematical programming model. This algorithm takes into 

account the characteristics of the problem and it specially 

considers the customer solidarity behaviour.  

In order to illustrate the performance of the developed 

methodology, a computational experience has been carried 

out on an urban system composed of 46 nodes with 

randomised data based on a zone belonging to the area of 

Seville (Spain). Apart from the baseline scenario, two 

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26
27

28

29

30

31

32

33

34

35

36

37 38 39 40

41

42 43 44 45
46

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37 38 39 40

41

42 43 44 45
46

138



 

different scenarios are considered by assuming that 

customers have solidarity behaviour, as they commit to 

deposit their waste in containers that are not necessarily the 

closest to their homes.  

The first scenario maintains the current non-selective 

collection of urban solid waste and considers different 

options by varying the size of the container group at the same 

point. After the optimization procedure for the biggest size 

considered, the compensation cost is reduced by 14.48% and 

the number of clusters is reduced from 46 to 33 (decrease of 
29.42%), thus facilitating the subsequent phases of service 

programming and collection route design. The second 

scenario incorporates the selective collection, thus yielding 

an increment on the number of containers but, even though, 

the number of nodes is reduced to 41 (decrease of 10.86%). 

The evaluation of two generated scenarios illustrates then 

that the methodology meets the objective of efficiently 

designing a deployment of containers for selective collection 

of urban solid waste. 

We must conclude that the optimization of sites, where 

community storage facilities should be located highly, 
depends on the customer behaviour. The number of 

containers and therefore the cost associated with their 

location and transportation can be significantly reduced if a 

community is willing to co-operate by carrying their waste to 

the appropriate containers within a predefined radius, even if 

eventually these are not the nearest to their residence. A 

solidarity co-operation of the costumers is assumed in this 

paper with the goal of reducing the number of collection 

points.  
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