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ABSTRACT

This paper examines the natural convection in a square enclosure filled with a water-Al,O; nanofluid and is
subjected to a magnetic field. The bottom wall is uniformly heated and vertical walls are linearly heated whereas
the top wall is well insulated. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow
and temperature fields. This study has been carried out for the pertinent parameters in the following ranges:
Rayleigh number of the base fluid, Ra=10’ to 10°, Hartmann number varied from Ha=0 to 60, the inclination
angle of the magnetic field relative to the horizontal plane y= 0° to 180° and the solid volume fraction of the

nanoparticles between ¢ = 0 and 6%. The results show that the heat transfer and fluid flow depends strongly
upon the direction of magnetic field. In addition, according the Hartmann number, it observed that the magnetic

field direction controls the effects of nanoparticles.

1. Introduction

The problem of natural convection in square enclosures
has many engineering applications such as: cooling systems of
electronic components, building and thermal insulation
systems, built-in-storage solar collectors, nuclear reactor
systems, food storage industry and geophysical fluid
mechanics [1]. Some practical cases such as the crystal
growth in fluids, metal casting, fusion reactors and
geothermal energy extractions, natural convection is under the
influence of a magnetic field [2-3]. Badawi et al. [4] studied
numerically MHD natural convection iso-flux problem inside
a porous media filled inclined rectangular enclosures. The
results show that both the magnetic force and the inclination
angle have significant effect on the flow field and iso- heat
flux in porous medium. Abishek et al. [5] studied numerically
natural convection of an electrically conducting fluid due to
both heat and solutal transfer, in a square enclosure filled with
porous medium, subjected to a uniform magnetic field applied
parallel to the adiabatic walls on the plane of the enclosure. It
is found that the effect of the applied magnetic field is
significant to the extent that convection is completely

suppressed for large values of Ha. Fattahi et al. [6] applied
Lattice Boltzmann Method to investigate the natural
convection flows utilizing nanofluids in a square cavity. The
fluid in the cavity was a water-based nanofluid containing
Al O; or Cu nanoparticles. The results indicated that by
increasing solid volume fraction, the average Nusselt number
increased for both nanofluids. It was found that the effects of
solid volume fraction for Cu were stronger than AlyOs.
Kefayati et al. [7] simulated by the Lattice Boltzmann method
the natural convection in enclosures using water/SiO,
nanofluid. The results showed that the average Nusselt
number increased with volume fraction for the whole range of
Rayleigh numbers and aspect ratios. Also the effect of

nanoparticles on heat transfer augmented as the enclosure
aspect ratio increased. Lai and Yang [8] performed
mathematical modeling to simulate natural convection of
Al Os/water nanofluids in a vertical square enclosure using
the Lattice Boltzmann method. The results indicated that the
average Nusselt number increased with the increase of
Rayleigh number and particle volume concentration. The
average Nusselt number with the use of nanofluid was higher
than the use of water under the same Rayleigh number.
Mahmoudi et al. [9] presented a numerical study of natural
convection cooling of two heat sources vertically attached to
horizontal walls of a cavity. The results indicated that the
flow field and temperature distributions inside the cavity were
strongly dependent on the Rayleigh numbers and the position
of the heat sources. The results also indicated that the Nusselt
number was an increasing function of the Rayleigh number,
the distance between two heat sources, and distance from the
wall and the average Nusselt number increased linearly with
the increase in the solid volume fraction of nanoparticles

The LBM is an applicable method for simulating fluid
flow and heat transfer [10—-11]. This method was also applied
to simulate the MHD [12] and, recently, nanofluid [13]
successfully. The aim of the present study is to identify the
ability of Lattice Boltzmann Method (LBM) for solving
nanofluid, magnetic field simultaneously in the presence of a
linear boundary condition. Moreover, the effect of magnetic
field and its direction on the heat transfer in the cavity. In
fact, it is endeavored to express the best situation for heat
transfer and fluid flow with the considered parameters. Hence,
the Al,Os—water nanofluid on laminar natural convection heat
transfer at the presence of a magnetic field in linear
temperature distribution on vertical side walls of the cavity by
LBM was investigated.
The aim of the present study is to identify the ability of
Lattice Boltzmann Method (LBM) for solving nanofluid,



magnetic field simultaneously in the presence of a linear
boundary condition. Moreover, the effect of magnetic field
and its direction on the heat transfer in the cavity.

2. Mathematical formulation

2.1 Problem statement
A two-dimensional square cavity is considered for the present
study with the physical dimensions as shown in the Fig. 1.
The bottom wall of the cavity is maintained at a uniform
temperature and the top wall is insulated, the left and right
vertical walls are heated linearly. The cavity is filled with
water and Al,O; nanoparticles. The nanofluid is Newtonian
and incompressible. The flow is considered to be steady, two
dimensional and laminar, and the radiation effects are
negligible. The thermo-physical properties of the base fluid
and the nanoparticles are given in table 1.

Table 1. Thermo-physical properties of water and

nanoparticles
p Cp (Mkg K B(K")
(kg /m*) K) (W/mK)

Pure water  997.1 4179 0.613 21x10~
ALO3 3970 765 40 0.85x10°
Y4
i Adiabatic wall U=y=0
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Fig.1 Geometry of the present study with boundary conditions

The density variation in the nanofluid is approximated by the
standard Boussinesq model. The magnetic field strength By is
applied at an angle y with respect to the coordinate system. It
is assumed that the induced magnetic field produced by the
motion of an electrically conducting fluid is negligible
compared to the applied magnetic field. Furthermore, it is
assumed that the viscous dissipation and Joule heating are
neglected.

Therefore, governing equations can be written in dimensional
form as follows:
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The classical models reported in the literature are used to
determine the properties of the nanofluid:
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In the above equations, ¢ is the solid volume fraction, p is
the density, o is the electrical conductivity, a is the thermal
diffusivity, ¢, is the specific heat at constant pressure and f is
the thermal expansion coefficient of the nanofluid, y is the
direction of the magnetic field. The effective dynamic
viscosity and thermal conductivity of the nanofluid can be
modelled by:
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The governing equations are subject to the following
boundary conditions:

Bottom wall u=v=0 T(x,0)=T,

Top wall u=v=_0 (Z}T]‘V_H =0 (13)
Left wall u=v=0 T(O.y)=7],—(?],—7:)%

Right wall u=v=0 T(H,y):T,,—(T.,—TZ)%



2.2 Lattice Boltzmann Method

For the incompressible non isothermal problems, Lattice
Boltzmann Method (LBM) utilizes two distribution functions,
Jfand g, for the flow and temperature fields respectively.

For the flow field:

L (x+eALt+Ar) = f(x,1)

(f,(x,t)—f,"cl (x,t))+AtF; o

1

Tv
For the temperature field:
g (x+eAnt+Ar) =g, (x,1)

(2 (x0)—g (x.1))

Where the discrete particle velocity vectors defined by ¢; , At
T, are the

e
TR

denotes lattice time step which is set to unity. 7
the
respectively. f,°, g% are the local equilibrium distribution

v

relaxation time for flow and temperature fields,

functions that have an appropriately prescribed functional
dependence on the local hydrodynamic properties which are
calculated with Egs.(16) and (17) for flow and temperature
fields respectively.
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u and Pare the macroscopic velocity and density,
respectively. ¢ is the lattice speed which is equal to
Ax /At where Axis the lattice space similar to the lattice

time step Afwhich is cqual to unity, @,is the weighting

factor for flow, @is the weighting factor for temperature.

D2Q9 model for flow and D2Q4 model for temperature are
used in this work so that the weighting factors and the discrete
particle velocity vectors are different for these two models
and they are calculated with Eqs (18-20) as follows:

For D2Q9
w(,:i,w,:l fori=1,2,3,4 and o, =L fwi=5678 (18)
9 9 36

0 i=0
(cos[(i—1)a/ 2},sin[(i -z / 2])e 1=1,234
V2 (cosl(i~5) 7/ 2+ 7/ 4] sinl(i~5)n/ 2+ 7/ 4])e i=5,6,7,8

For D2Q4
The temperature weighting factor for each direction is equal

tow,=1/4.
¢, =(coscos[(i—1)z /2],sin[(i—1)7z /2])c
i=123,4

The kinematic viscosity v and the thermal diffusivity ¢ are
then related to the relaxation time by Eq. (21):

v=|:rv—l:'c‘_2At a{r,,-l}fm 1)
2 2]

Where ¢, is the lattice speed of sound witch is equals

(19)
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(20)

toc, :C/\,E . In the simulation of natural convection, the
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external force term F appearing in Eq. (14) is given by
Eq.(22)
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Where F' = F,+F,
The macroscopic quantities, u and 7" can be calculated by the
mentioned variables, with Eq.(23-25).

p= (23)
pu=>fe, (24)
T=>%g, (25)

2.2 Non-dimensional parameters

By fixing Rayleigh number, Prandtl number and Mach
number, the viscosity and thermal diffusivity are calculated
from the definition of these non dimensional parameters.
Vf:N.Ma.qm Where N is number of lattices in y-
direction. Rayleigh and Prandtl numbers are defined as
Ra=gp H\T,~-T)/v,a, andPr=v, /a,. respectively.

Mach number should be less than Ma = 0.3 to insure an
incompressible flow. Therefore, in the present study, Mach
number was fixed at Ma = 0.1. Nusselt number is one of the
most important dimensionless parameters in the description of
the convective heat transport. Nusselt number is one of the
most important dimensionless parameters in the description of
the convective heat transport. The local Nusselt number and
the average value at the bottom and the right walls are
calculated as:

k 7
Nub,, = -2~ 2 ol
k, T,-T. o[, (26)
k
Nur, =—-% 4 g
k, T,—T, x|,
] H
Nub=— [Nub, dx
H
0 (27)

1 H
Nur = o _[Nur,oc dy

0

3. Results and discussion
3.1 Validation of the numerical code

Lattice Boltzmann Method scheme was utilized to obtain the
numerical simulations in a cavity with a linear boundary
condition that is filled with nanofluid of water/Al,O;. Fig. 2
demonstrates the effect of grid resolution and the lattice sizes
(20x20), (40x40), (60x60), (80x80) and (100x100) for

Ra=10" ,Ha=0 and ¢ =0 by calculating the average Nusselt

number on the bottom and right walls, it was found that a grid
size of (100x100) ensures a grid independent solution.In
order to check on the accuracy of the numerical technique



employed for the solution of the considered problem, the
present numerical code was validated with the published
study of Ghasemi et al [14] (Fig.3). it shows the
dimensionless temperature along the horizontal axial midline
of the enclosure for three values of the Hartmann number, for
Ra=10" and for a solid volume fraction ¢= 0.03, excellent

agreement is also found.
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Fig. 2. Average Nusselt number on bottom and right walls for
different uniform grids (¢ = 0, Ra=10" and Ha=0)

10

® Ghassemi et al [14]
present results

x/H

Fig. 3 Comparison of the temperature on axial midline
between the present results and numerical results by Ghassemi
ctal. [14](¢ = 0.03, Ra=10")

3.2 Results and discussion

Fig.4 presents the variation of the maximum value of the
stream function as a function of Hartman number for several

values of Rayleigh number for @ =0 and y =0°. It is observed

that the effect of Hartmann number is opposite to the effect of
Rayleigh number. For Ra = 10" and 10%, [y|y is constant and
small for all values of Hartmann number. The conduction is
dominant. For Ra = 5x10" and 10°, the convection is
dominant for low values of Hartmann number, more than the
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Hartmann number increases convection s
disadvantaged, until reaching the conductive regime.
Fig.5 show the average Nusselt number on the bottom wall,
the increase of Rayleigh number increases the heat transfer
rate , on the contrary, the increase of the Hartmann decreases
the heat transfer rate.
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Fig.4 Variation of the maximum of stream functionwith
Hartmann number for different Rayleigh number for y = 0°
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Fig.5 Variation of the average Nusselt number on the bottom
wall with Hartmann number for different Rayleigh number for
y=0°and ¢ =0

Fig. 6 presents the effect of Hartmann number and solid
volume fraction on the Nusselt number at Ra =5x10" and y =
0°. At small values of Hartmann number (Ha < 5). the
addition of nanoparticles augments the heat transfer, but if
Hartmann number increases (5<Ha < 15) the addition of
nanoparticles does not have a significant effect. For Ha>15
the heat transfer is obviously increase as the solid volume
fraction increases.



Nub

Fig.6 Variation of the average Nusselt number on the bottom
wall with Hartmann number for different volume fraction for
y=0° and Ra=5x10"

Figs .7 present the effect of the direction of the magnetic filed
and solid volume fraction on the Nusselt number at Ra
=5x10* and for several Hartmann number. At low Hartmann
number (Ha=5), for all y, the addition of nanoparticles
augments the heat transfer at the bottom of the cavity. For
Ha>15, it is observed that the magnetic field direction
controlled the effect of nanoparticles in the fluid. For the
bottom wall, the heat transfer decreases by the addition of
nanoparticles (60 <y<120) and increases by the addition of
nanoparticles for the rest of the range of y. This behavior
becomes more significant for Ha = 30.
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Fig.7 Variation the average Nusselt number on the bottom
wall with y for different Hartmann number and volume
fraction for Ra=5x10"

4. Conclusions
In this paper the effects of a magnetic field on nanofluid flow
in a cavity with a linear boundary condition has been analyzed
with Lattice Boltzmann Method. This study has been carried
out for the pertinent parameters in the following ranges: the
Rayleigh number of base fluid, Ra=10°-10", Hartmann
number of the magnetic field between 0 and 60, the volume
fraction is from ¢ =0 to 0.06 and the direction of the magnetic

field in the range 0° <y <180°
Nomenclature
B Magnetic field (Tesla)

¢ Lattice speed (ms™)
Speed of sound (ms™)

Cs
¢ Discrete particle speeds (ms™)
& Specific heat at constant pressure (JK™
F External forces (kg m s7)
o Density distribution functions (kgm'3)
. Equilibrium density distribution functions (kgm™)
g Internal energy distribution functions (K)
2% Equilibrium internal energy distribution (K)
g Gravity vector (m s7)
Ha Hartmann number .
& thermal conductivity (Wm K™}



Ma Mach number

Nu Local Nusselt number

Pr Prandtl number

Ra Rayleigh number

T Temperature (K)

Greek symbols

Ax Lattice spacing (m)

At Time increment (s)

Ty Relaxation time for temperature (s)
Ty Relaxation time for flow (s)

v Kinematic viscosity (m? s™")

(V] Thermal diffusivity (m?s™)

p Fluid density (kgm™)

Iy electrical conductivity (' m™)
W Non-dimensional stream function
L) Solid volume fraction
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