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1. INTRODUCTION 

Nano-scale particle added fluids are called as a nanofluid; 
Choi [1] introduced this technique. Compared with the 
suspended particles of millimeters or higher, nanofluids have 
greater stability and rheological properties, higher thermal 
conductivity and negligible pressure drop. Nanofluids seem to 
constitute a very interesting alternative for electronic cooling 
applications, micro-electromechanical systems, process 
heating/cooling to energy conversion and supply and magnet 
cooling, etc. 

During the several past years, numerical studies of 
nanofluid free convection in a square cavity were well studied 
and discussed [2-6]. In particular, Aminossadati and Ghasemi 
[7] investigated free convection of nanofluid in a square 
cavity cooled from two vertical and horizontal walls and 
heated by a constant heat flux on its horizontal bottom wall. It 
was found that type of nanoparticles and the length and 
location of the heat source affected significantly the heat 
source maximum temperature. The same authors studied 
natural convection in an isosceles triangular enclosure with a 
heat source located at its bottom wall [8]. Khanafer et al. [9] 
investigated the heat transfer enhancement in a two-
dimensional enclosure using nanofluids for various pertinent 
parameters. They tested different models for nanofluid 
density, viscosity, and thermal expansion coefficients. It was 
found that the suspended nanoparticles substantially increase 
the heat transfer rate at any given Grashof number. Parvin et 
al.[10] studied heat transfer and entropy generation through 
nanofluid filled direct absorption solar collector and the 
results revealed that both the mean Nusselt number and 
entropy generation increase as the volume fraction of Cu 
nanoparticles. Cheng [11-13] studied a diversity of free 
convection such as non-Newtonian nanofluids about a vertical  

truncated cone in a porous medium, where he illustrated that 
increasing the thermophoresis parameter or the Brownian 
motion parameter tends to reduce the Nusselt number. Singh 
et al. [14] provided a study about entropy generation due to 
flow and heat transfer in nanofluids. They found that with the 
presence of a given nanofluid there is an optimum diameter at 
which entropy generation is minimum when both laminar and 
turbulent flow. Keblinski et al. [15] found that the increase of 
nanofluids thermal conductivity is due to the Brownian 
motion of particles, the molecular-level layering of the liquid 
at the liquid/particle interface, the nature of heat transport in 
the nanoparticles, and the effect of nanoparticle clustering. 
Saleh et al. [16] numerically investigated heat transfer 
enhancement of nanofluid in a trapezoidal enclosure using 
water–Cu and water–Al2O3, and developed a correlation of 
the average Nusselt number as a function of the angle of the 
sloping wall, effective thermal conductivity and viscosity as 
well as Grashof number. Jou and Tzeng [17] used nanofluids 
to enhance natural convection heat transfer in a two-
dimensional rectangular enclosure for various pertinent 
parameters. They conducted a numerical study using 
Khanafer’s model. They indicated that the solid volume 
fraction of nanofluids causes an increase in the average heat 
transfer coefficient. Oztop et al. [18] numerically analysed the 
problem of steady state natural convection in an enclosure 
filled with a nanofluid by using heating and cooling sinusoidal 
temperature profiles on one side. They found that the addition 
of nanoparticles into water affects the fluid flow and 
temperature distribution, especially for higher Rayleigh 
numbers. Hayat et al. [19] carried out an investigation on the 
flow of Power-Law Nanofluid over a stretching surface with 
Newtonian Heating. The result obtained have shown that 
Newtonian heating parameter and the volume fraction 
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increases the thermal boundary layer thickness. On the other 
side, regarding the researches based on entropy generation.  

Natural convection heat transfer of water-based nanofluids 
in an inclined square enclosure has a very interesting case of 
study in the literature. The researchers investigated the effects 
of the inclination angle of the cavity, solid volume fractions, 
length of the constant heat flux heater [20-21]. Mahmoodia 
and Hashemi [22] studied natural convection of a nanofluid in 
C-shaped enclosures. The discussed results show that where 
this last becomes narrower, the heat transfer rate increases. 
Besides the increasing of the Rayleigh number, the rate of 
heat transfer increases for a constant AR. Shahi et al. [23] 
studied the entropy generation due to natural convection 
cooling of a nanofluid; this last is consisted of water and Cu 
in protruded heat source cavity. Thus, they found that there is 
an inverse proportion between the Nusselt number and 
entropy generation.  

In the present work, the objective is to investigate the 
steady laminar natural convection in a square cavity filled 
with nanofluid. The influence of the Rayleigh number, solid 
volume fraction, type of nanofluids and heat source length  on 
the average Nusselt number ratio and total entropy generation 
ratio were studied. This paper is organized as follows. Section 
2 presents the geometry and mathematical model. Section 3 
discusses the numerical method and code validation. Section 
4 presents the results and discussion. Finally, a conclusion is 
given. 

 

2. MATHEMATICAL FORMULATION 

2.1 Problem description 

Configurations considered in this study are shown in figures 
1a-c. Each square cavity of dimension L is filled with pure 
water and nanofluid. The left vertical wall is kept at a local 
hot temperature TH, the right vertical wall is maintained at a 
local cold temperature TC, and the remaining boundaries are 
adiabatic. The base fluid (water) used is incompressible, 
Newtonian fluid that satisfies the Boussinesq hypothesis, and 
the nanofluids assumed to be incompressible and the flow is 
laminar. The thermo-physical properties of the nanofluid are 
constant, except for the variation of density, which is 
estimated by the Boussinesq hypothesis. The base fluid and 
spherical solid nanoparticles (Cu, Ag, Al2O3 and TiO2) are in 
thermal balance.  

 

 
 

(a) B=0.5 

 
                                   (b) B=0.75 
 

 
                

    (c) B=1 

 

Figure 1. Geometeries and boundary conditions. L is the 
length of the cavity and B (normalized by L) is the 

dimensionless heat source length: (a) B=0.5, (b) B=0.75, (c) 
B=1. 

 

2.2 Governing equations 

The continuity, momentum and energy equations for the 
laminar and steady state natural convection in the two-
dimensional cavity can be written in dimensional form as 
follows: 
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The effective density of the nanofluidis given as: 
 

  pfn 1
f

                                              (5) 

 
where ϕ is the solid volume fraction of nanoparticles.  
The thermal diffusivity of the nanofluid is 
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where, the heat capacitance of the nanofluid  is given  by: 
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The thermal expansion coefficient of the nanofluid can be 

determined by 
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The effective dynamic viscosity of the nanofluid given by 

Brinkman [25] is: 
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In Equation (2), knf is the thermal conductivity of the 

nanofluid, which for spherical nanoparticles, according to 
Maxwell [26] is: 
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In order to cast the governing equations into a 

dimensionless form, the following dimensionless parameters 
are introduced: 

 

2

2

, , ,

,



  

  

 

f

f nf f

x y uL
X Y U

L L

vL pL
V P  

 

( )




  

C

H C

T T

T T T
 

 
The non-dimensional continuity, momentum and energy 

equations are written as follows: 
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Where Ra and Pr are the Rayleigh and Prandtl numbers 

defined as: 
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The entropy generation equation (Eq.15) includes two 

terms that quantify the irreversibility:  

 A first term reflects the heat transfer. 

 The last term corresponding to the viscous friction. 
The local entropy generation (or the entropy generation 

number) is then: 
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Where T0=(TH+TC)/2. 
 
By using dimensionless parameters introduced above, the 

dimensionless local entropy generation (Eq.16) becomes: 
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The irreversibility distribution ratio φ, which is defined as: 
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The dimensionless total entropy generation St is obtained 

by integrating equation (17) in all computational domains, as 

t genS S  dV                                                                      (18) 
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2.3 Boundary conditions 

The dimensionless boundary conditions are: 
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Along the heat sources, =1. 

2.4 Local and average Nusselt numbers 

The local Nusselt number on the heat source surface is 
defined as:  
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Where h is he heat transfer coefficient determined by: 
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By using the dimensionless variables mentioned above, the 

local Nusselt number becomes : 
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Where  and X are the dimensionless temperature and 
coordinate, respectively. Finally, the average Nusselt number 
Num along the heat source surface A can be obtained as: 
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3. NUMERICAL METHOD AND CODE VALIDATION  
 

The governing equations presented in Equations (11) - (14) 
along with the boundary conditions were solved by using 
FORTRAN code, which using a control volume formulation 
[24]. The numerical procedure called SIMPLER [24] was 
used to handle the pressure-velocity coupling. For treatment 
of the convection terms in equations (12)-(14), power-law 
scheme was adopted. The convergence was obtained when the 
energy balance between the heat source and the cold wall is 
less than a prescribed accuracy value, i.e., 0.1%. 

 

3.1 Grid independence study 

Six grids were used in this study: 122×122, 132×132, 
142×142, 152×152 and 162×162, 172×172 nodes.Table 1 
shows the variation of the maximum values of Num with grid 
size for Cu-water nanofluid, B=1, ϕ = 0.1 and Ra=105. The 
changes in the calculated values are very small for three 
152×152, 162×162, 172×172grids and we have noticed that 
the variation of Num between 152×152 and 162×162 nodes is 
less than 0.001248 (see Table 1). However, and after running 
tests of independence between the numerical solution and the 
mesh, the fourth grid 152×152 nodes was chosen to complete 
the calculations. This grid also gives the best compromise 
between cost and accuracy of calculations. 

 

Table 1. Grid independency results (Cu-water nanofluid, B=1, ϕ = 0.1, and Ra=105) 

 

Grid 122×122 132×132 142×142 152×152 162×162 172×172 

Num 5.251923 5.250128 5.248814 5.247566 5.246435 5.248814 

3.2 Code validation 

To verify the accuracy of the present numerical study, the 
numerical code was validated in two steps: 

a)With the work of Oztop and Abou-nada [21] for the 
average Nusselt number Num (Fig.1a). 

 
b)With the numerical results of Aminossadati and Ghasemi 

[7] at Ra=105, =0 and 0.10 for the local Nusselt number Nu 
(Fig.1b). As shown in Figures 1a-b it is clear that our results 
are in good agreement with the numerical results of references 
[7] and [21]. 
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Figure 2. (a) Comparison between our results and those of Oztop and Abu-nada [21] for the average Nusselt number Num at 

Ra=105 and =0.10 (Cu–water nanofluid), (b) Comparison between our results and those of Aminossadati and Ghasemi [7] for the 
local Nusselt number Nu at Ra=105 and 0.10 (Cu–water nanofluid).  

 

 

4. RESULTS AND DISCUSSION  

Steady state results presented in this paper are generated for 

different parameters: (104Ra106), solid volume fraction of 

nanoparticles (0ϕ0.10), dimensionless length of the heat 

source (0.50B1), and the type of nanofluids (Cu, Ag, Al2O3 
and TiO2). The study deals with the effects of the Rayleigh 
number, solid volume fraction, type of nanofluids, and heat 
source length on the average Nusselt number ratio along the 
heat source and on the total entropy generation ratio.  

4.1 Effects of Rayleigh number and solid volume fraction 

Figure 3 represents Variation of average Nusselt number 

ratio (defined as : Num
*=Num(0) /Num (=0) ) with solid volume 

fraction  for various Rayleigh numbers Ra, at dimensionless 
heat source length B=0.5.With an increase of Rayleigh 
number, convective heat transfer and hence Nusselt number 
increases. It is found that the addition of nanoparticles has an 
effect on the average Nusselt number, indicating a better heat 
transfer. In addition, the effect of the nanoparticles is more 
significant at low Rayleigh number than at high Rayleigh 
number. For (Ra=104), the average Nusselt number ratio 
increases in a non-linear way with the increasing of Rayleigh 
number, because the heat transfer is associated to conduction 
and convection regime effect. For Ra>104, Num

* increases 
linearly with the increase of Rayleigh number, this is justified 
by the higher buoyancy force effects, and the heat transfer 
inside the cavity is dominated by convection. In addition, the 
highest values for Nusselt number ratio are found at Ra = 106, 
where a stronger buoyant flow field appears in the enclosure. 
All figures show that the Nusselt numbers ratio Num

*are 
starting from the same value. It is worth remarking that, the 
Rayleigh number values move away, according to the solid 
volume increasing. 

Figure 4 shows the variation of total entropy generation 

ratio S* (defined as : S*=St(0) / St (=0) ) with solid volume 

fraction  for various Rayleigh numbers Ra, at B=0.5.We 
show that the presence of nanoparticles has different effects 
on the production of entropy. The enhanced heat transfer due 
to the presence of nanoparticles increases the temperature  
 
 

 
gradient and leads to a reduction of the production of entropy. 
The entropy generation due to heat transfer increases by 
increasing Ra and hence the buoyancy force. Nevertheless, 
the increase of Ra causes the reduction of entropy generation 
due to viscous effects. This fact, due to the increase of 
buoyancy effects which induces the flow intensity 
consequently causing reduction of viscosity. The effect of Ra 
in decreasing the total entropy generation, where viscous 
effects are dominant. The results show that the temperature 
gradient is the dominant factor in the entropy production, 
though; the effect of Ra is more considerable in nanofluid 
case than the base fluid in all the forms of entropy. 

4.2 Effect of Nanofluids type 

Figure 5 shows the variation of average Nusselt number 

ratio Num
* with solid volume fraction  for various nanofluids, 

at B =0.5 and Ra=105. We show that the average Nusselt 
number ratio increases almost monotonically with increasing 
concentration for all nanofluids, and this increase is negligible 
for small values of the Rayleigh number Ra (the natural 
convection mode). For Ra=105, we find the increase in the 
average Nusselt number ratio with the augmentation of the 
nanoparticles volume fraction, and this is justified by the 
increased heat transfer mode by convection. Also, we see that 
the average Nusselt ratio decreases as a function of the 
nanoparticle type (Ag, Cu, Al2O3, TiO2) and the lowest value 
of the average Nusselt ratio was obtained for TiO2 
nanoparticles, this can be justified by the effect of the heat 
transfer mode by conduction and their low thermal 
conductivity compared to the other type of nanoparticles. 
However, the difference between the values of the average 
Nusselt ratio of Ag and Cu is negligible; this is due to the 
thermal conductivity effect of the nanoparticle type as it has 
shown in table (1). In addition, we show that the average 
Nusselt number of the Ag and Cu nanoparticle are similar. 
We conclude that the highest value of the average Nusselt 
ratio is obtained for the type Ag nanoparticle. 

Figure 6 represents the variation of total entropy generation 

ratio S* with solid volume fraction  for various nanofluids, at 
B =0.5 and Ra=105.We show that the total entropy generation 
vratio S* decreases depending on the types of nanoparticles 
(Ag, Cu, Al2O3 and TiO2), respectively. The total entropy 
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generation ratio is always lower than the unit. Also, one can 
notice that, the increase in Rayleigh number corresponds to a 
reduction of total entropy generation ratio due to viscous 
effects; this is due to the effect of high heat transfer, and the 
higher temperature gradient. We conclude that the presence of 
nanoparticles plays a very important role in the entropy 
generation reduction. Where, these nanoparticles cause better 
heat transfer from the heater to the cold wall, which 
specifically generates smoother temperature distribution 
within the cavity and leads to the decrease in the total entropy 
generation.  

4.3 Effects of the volume fraction for different heat source 

lengths  
 

Figures 7a-b illustrate at Ra=105 the variation of average 

Nusselt number ratio Num
* with solid volume fraction  for 

different values of B, and the total entropy generation ratio S* 

with solid volume fraction  for different B, respectively.We 
observe that in all cases (B = 0.5, 0.75, 1), the average 
Nusselt number ratio increases linearly with the increase of 
solid volume fraction(Fig.7a). It concluded that a high 
Rayleigh number is introduced by a strong buoyancy effect, 
and therefore, the transfer of heat inside the enclosure is 
dominated by convection. Note that the average Nusselt ratio 
increases with the decrease of B.  

We notice that the entropy production rate decreased 
linearly with the increase of volume concentration, and 
indicates that increasing concentration causes the reduction of 

the total entropy ratio. We observe that the maximum value of 
the total entropy generation ratio is obtained for B=0.5. 

Figure 8 shows the variation of total entropy generation 

ratio S*with solid volume fraction  for different viscosity and 
thermal conductivity models (see table 2), at Ra=105 and 
B=1. Entropy generation is due to both heat transfer and fluid 
friction irreversibility. We note that, the total entropy 
generation ratio decreases with the increase of the volume 
fraction for all models, because the increases of heat transfer. 
In the case of adding nanoparticles in the pure fluid, the 
nanoparticles have two effect on entropy generation 
production, the first one, with increasing the viscosity of fluid 
it conducts to the increase in viscous dissipation, so its 
outcome in increasing of entropy generation rate. The second 
one, augmenting the thermal conductivity enhances the heat 
transfer and it causes a reduction in the entropy generation, 
because of smaller temperature gradient existence. These two 
contrasting effects of nanoparticles presence lead to a 
decrease in entropy generation. One can observe that, all the 
figures have the same form, except the first type. Where, its 
entropy generation decreases linearly with the increase of the 
volume fraction for Rayleigh number 105. According to table 
(2), the conductivity value of this model is the lowest among 
the other models and heat transfer is low compared to the 
other models that produce a large entropy production. 
However, the curves of the other types are parabolic and they 
tend almost to zero because these models have high values of 
thermal conductivity. Therefore, the heat transfer is greater in 
comparison to the first model. The type 5 gives a lower total 
entropy generation S* in comparison to other models too. 
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Figure 4. Variation of total entropy generation ratio S* with solid volume fraction  for various 
Rayleigh numbers Ra, at B=0.5. 

 
. 

Figure 3. Variation of average Nusselt number ratio Num
* with solid volume fraction  for various 

Rayleigh numbers Ra, at dimensionless heat source length B=0.5. 
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Table 2. Different models of the Thermal conductivity and dynamic viscosity 

Models Thermal conductivity Dynamic viscosity 
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Figure 5. Variation of average Nusselt number ratio Num
* with solid volume fraction  

for various nanofluids, at B =0.5 and Ra=105. 
 

Figure 6. Variation of total entropy generation ratio S* with solid volume fraction  
for various nanofluids, at B =0.5 and Ra=105. 
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5. CONCLUSION 
 

This study has performed a numerical investigation about 
the natural convection heat transfer performance in a square 
cavity filled with water-based nanofluids. The governing 
equations were solved using the finite volume method. 
Results have shown that, for the considered Rayleigh numbers 
in this study (104-106) the average Nusselt number increases 

and the total entropy generation decreases with an increasing 
volume fraction of nanoparticles. The results also show that, 
the Cu-water nanofluid gives good performance of heat 
transfer and a weak total entropy production in the considered  
nanofluids. In addition, the different type of viscosity and 
thermal conductivity have a big influence on the variation of 
total entropy generation. 
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NOMENCLATURE 

 
B dimensionless heat source length 
CP specific heat, J. kg-1. K-1 
g 
k 

gravitational acceleration, m.s-2 
thermal conductivity, W.m-1. K-1 

L cavity length, m 
Nu local Nusselt number along the heat 

source 
Num average Nusselt number 
U,V dimensionless velocity components 
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u,v 
x,y 

velocity components, m.s-1 
Cartesian coordinates, m 

X,Y dimensionless coordinats (x/L, y/L) 
P dimensionless pressure 
Ra Rayleigh number, (gβTL3/ νfαf) 
Pr Prandtl number ((νf /αf) 
St dimensionless total entropy 

generation 
 

Greek symbols  

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

 solid volume fraction 

Ɵ dimensionless temperature 

µ dynamic viscosity, kg. m-1.s-1 

 kinematic viscosity, m2.s-1 

 density, kg. m-3 

  

Subscripts  

p nanoparticle 
f fluid (pure water) 
nf nanofluid 
C 
H 

cold 
hot 
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