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1. INTRODUCTION 

Combined conduction-radiation heat transfer has 

numerous engineering applications such as heat transfer 

through semitransparent and porous materials, multilayered 

insulations, burning of coal in furnaces, fluidized beds, 

nuclear engineering, and so on. The cases of constant 

thermal conductivity and unity refractive index in combined 

conduction–radiation heat transfer problems have been 

studied in detail by many investigators [1-5]. Because of the 

mathematical complexities, a limited literature is available 

that individually deal with the effects of variable thermal 

conductivity [6] and constant and/or variable refractive index 

[7]. The case of variable thermal conductivity and variable 

refractive index finds application in the thermal analysis of 

graded index medium [8]. The present work is, therefore, 

aimed at the analysis of conduction and radiation heat 

transfer in a participating medium, by lattice Boltzmann 

method. The effect of variable thermal conductivity and 

constant and/or variable refractive index are considered. In 

recent years, use of the lattice Boltzmann method (LBM) as a 

potential computational fluid dynamics (CFD) tool for the 

solution of a large class of problems in science and 

engineering has gained a momentum. Chaabane et al. [9] 

used the lattice boltzmann method to solve the energy 

equation in two dimensional enclosure of a problem 

involving a variety of boundary conditions, they found that 

the LBM results agree very well with the finite volume 

results. Mejri et al. [10] studied 1-D conduction-radiation 

problem by lattice Boltzmann method. LBM is used to solve 

the energy equation and the radiative transfer equation. The 

found results are compared with those available in the 

literature and a very good agreement was found. Lorenzini et 

al. [11] optimized the dimensionless excess of temperature of 

an open T-shaped cavity cooled by a steady stream of 

convection that intrudes into a solid conducting wall subject 

to an area fraction. Lorenzini et al. [12] Lorenzini et al. 

optimized the shape of cavities that intrude into a cylindrical 

solid body. The objective is to minimize the global thermal 

resistance between the solid body and the cavities. The 

results indicate that the optimal distribution of the hot spots 

is affected not only by the complexity of the configuration 

(larger N) but also by the area of cavities fraction. Mahmoudi 

et al. [13] studied MHD natural convection in a nanofluid-

filled open cavity with non uniform boundary condition in 

the presence of uniform heat generation/absorption. The 

found results show that the heat transfer rate decreases with 

the rise of the Hartmann number and increases with the 

augmentation of the Rayleigh number. Mahmoudi et al. [14] 

studied the effect of the magnetic field intensity and direction 

on natural convection in a square enclosure filled with 

nanofluid. The found results show that the heat transfer and 

fluid flow depends strongly upon the direction of magnetic 

field. Mejri et al. [15] studied magnetic field effect on 

natural convection in a nanofluid filled enclosure with non-

uniform heating on both side walls. The authors used lattice 

Boltzmann method to solve the coupled equations of flow 

and temperature fields. The found results show that the heat 

transfer rate increases with the increase of the Rayleigh 

number but it decreases with the increase of the Hartmann 

number. 

In this paper, the 1-D conduction-radiation problem with 

variable thermal conductivity and variable refractive index is 

solved by the lattice Boltzmann method. The effects of 

various parameters such as the scattering albedo, the 

conduction–radiation parameter, the wall emissivity and the 

thermal conductivity parameter are studied. In order to check 

on the accuracy of the numerical technique employed for the 
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solution of the considered problem, the present numerical 

code was validated with the published study. 

2. MATHEMATICAL FORMULATION 

Consider a 1-D planar conducting–radiating medium of 

length L, with variable thermal conductivity k. Other 

thermo-physical properties such as density ρ, specific heat cp, 

and optical properties such as extinction coefficient β and 

scattering albedo ω are assumed constant. The system is 

initially at temperature TE and for time t > 0, its west 

boundary is raised to temperature TW. The variation of 

thermal conductivity with temperature is taken as:    

 

0 w'( - )k k T T 
                                                        (1)                                                    

 

 

Where k0 is the reference thermal conductivity and δ′ is 

the coefficient of thermal conductivity variation. The 

refractive index n of the medium assumes either a constant 

value (n ≥ 1) or varies linearly with 

distance ( ) ( ) /W W En x n n n x L   , where nW and nE are 

the refractive indices on the west and the east faces of the 

medium, respectively. For the problem under consideration, 

the energy equation is given by: 
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Where qR is the radiative heat flux and Rq

x




for a 

medium with a variable refractive index is given by: 
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G is the incident radiation. To solve for G at any location 

x, information about the intensity I distribution is required 

which for any direction s  is obtained from the following 

radiative transfer equation: 
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Where c is the speed of light in the medium, 
2 4T / πbI n  is the Planck’s black body intensity, d  is the 

solid angle and ( ' )p s s  is the anisotropic scattering phase 

function. For a given direction s , if the upstream point lies 

on the boundary, then its values have to be computed from 

the radiative boundary condition. Eq. (4) can be recast as: 
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Where S is the radiative source term given as: 
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For a linear anisotropic phase 

function 1 cos cos 'p a    , where  a is the anisotropy 

factor ( 1 1)a   , Eq. (6) can be written as: 

 

' 4

S( , , ) (1 ω) ( , )

ω
        ( , , )(1 cos cos ')d '

4π

bx s t I x t

I x s t a


 
 

 

  
     (7) 

 

 R

ω
S( , , ) (1 ω) ( , ) ( , ) cos q ( , )

4π
bx s t I x t G x t a x t       (8) 

 

 is the polar angle. 
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For a diffuse-gray boundary with temperature TE/W and 

emissivity εE/W, the boundary intensity is given by:
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For solving the considered problem, the following 

dimensionless numbers are defined: 
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N is the conduction–radiation parameter, ξ is the 

dimensionless time and δ is the variable thermal conductivity 

parameter.

  

2.1 Energy equation by LBM 

 

For a one-dimensional planar geometry, in the LBM with 

a D1Q2 lattice, the discrete Boltzmann equation with 

Bhatanagar- Gross-Krook (BGK) approximation is given by 

[8]: 
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Where 
if  is the particle distribution function denoting the 

number of particles at the lattice node x  and time t moving 

in direction i with velocity 
ie  along the lattice 

ix e t   connecting the neighbors,  is the relaxation time, 
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and eq

if is the equilibrium distribution function. The 

relaxation time  for the D1Q2 lattice is computed from: 
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For this lattice, the two velocities 
1e and

2e , and their 

corresponding weights
1w and 

2w , are given by: 
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After discretization, Eq. (14) is written as: 
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The temperature is obtained after summing 
if  overall 

direction: 
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To process Eq. (18), an equilibrium distribution function 

is required, which for a conduction-radiation problem is 

given by: 
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To account for the volumetric radiation, the energy 

equation in the LBM formulation, Eq. (18) is modified to: 
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2.2 Radiative information by LMB 

 

Multiplying Eq.(5) throughout by the speed of light c, the 

radiative transfer equation along any lattice link designated 

by the index i can be written as: 

 

( , , ) . ( )     =1,...,Mi i
i i i

DI I
x s t c I c I S i

Dt t



     
     (22)

 

 

Let 
ie be the velocity of propagation along the ith lattice 

link of the D1QM lattice structure. If the velocity of light 

c is fictitiously made equal to the velocity of particle 

propagation in the LBM, c e   a convenient tool would be 

obtained to solve the radiative transfer equation using the 

LBM approach 
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Discretizing Eq. (23), we obtain: 
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Clearly in Eq. (24), the term on the right hand side can be 

seen as the collision term in the LBM, where Ii is the 

intensity particle distribution function. Using the standard 

LBM terminology, Eq. (24) can be written as:
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Where 
R is the relaxation time for the collision process 

and eq

iI  is the equilibrium particle distribution function. 

 

1
    and    S

β

eq

R i i

i

I
e

  

                       (26)

 

 

The irradiation G and the heat flux qR due to diffuse 

radiation, are computed from the following: 
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3. RESULTS AND DISCUSSION 

In this paper, the energy equation of a 1-D transient 

conduction- radiation problem with variable thermal 

conductivity k, is solved with LBM. Initially the medium is 

at temperature
ET . For 0t  , the west boundary temperature 

is maintained at
W ET 2T . The medium is absorbing, 

emitting and isotropically scattering. The non dimensional 

time step 410   was considered and steady state condition 

was assumed to have been achieved when the maximum 

variation in temperature at any location between two 

consecutive time levels did not exceed
510

.  First the effect 

of the grid size to the non-dimensional temperature results 

(T/Tw) is studied by comparing the steady state (SS) results 

at three locations in the medium for several grid sizes for n = 

1,δ = 0, a = 0, β=1.0, N=0.1, TE=0.0, Tw=1.0, ω=0.5 and εw 

= εE = 1.0. The results are listed in table.1 and show that the 

non-dimensional temperature is practically independent of 

the grid size. In table.2, for ξ = 0.05, n = 1, δ = 0, a = 0, 

β=1.0, N=0.1, TE=0.0, Tw=1.0, ω=0.5, εw =1.0 and εE = 1.0 

or 0.0, the non-dimensional temperature results (T/Tw) are 

compared with those reported in the literature [1-2] at three 

locations in the medium, It is observed that the LBM results 

are in good agreements with the published results.  

Fig.1a-c shows the effect of the conduction-radiation 

parameter by comparing the LBM results (T/Tw) with those 

published at several times ξ, for n = 1, δ = 0, a = 0, β=1.0, ω 

= 0.0 and N = 0.01, 0.1 and 1.0. The LBM results are in 

good agreements with the published results. 

3



Fig.2a-c shows for several times the effect of the 

scattering albedo ω=0.0, 0.5 and 0.9
 
for n = 1, δ = 0, a = 0,  

β =1.0
 
and N=0.01 by comparing the LBM results (T/Tw) 

with those published. Excellent agreement is also found.  

 

Table 1. Effect of grid size on non-dimensional temperature 

steady state 

 

 x/L = 0.25 x/L = 0.50 x/L = 0.75 
Nx=20 
 

M=4 
M=8 
M=16 
M=32 
 

0.8265 
0.8356 
0.8389 
0.8400 

 

0.6076 
0.6204 
0.6254 
0.6270 

 

0.3339 
0.3438 
0.3479 
0.3492 

 
M=32 
 

Nx=20 
Nx=30 
Nx=40 
Nx=60 

0.8400 
0.8438 
0.8269 
0.8227 

0.6270 
0.6210 
0.6181 
0.6152 

0.3492 
0.3365 
0.3441 
0.3425 

 

Table 2. Comparison of transient temperature  

 

 x/L = 0.25 x/L = 0.5 x/L = 0.75 

W

E

ε 1.0

ε 1.0




 

[1] 
[2] 
LBM  

0.4888 
0.4889 
0.4893 

0.1778 
0.1773 
0.1787 

0.0591 
0.0588 

0.05724 

W

E

ε 1.0

ε 0.0




 

[1] 
[2] 
LBM 

0.5030 
0.5031 
0.5037 

0.2005 
0.2001 
0.1993 

0.0833 
0.0830 
0.0841 

 

a 

 
b 

 
c 

 
Figure 1. Comparison of the non dimensional temperature 

(T/Tw) at different instants ξ for (a) N = 0.01, (b) 0.1 and (c) 

1.0 

a 

 
b 

 
c 

 
Figure 2. Comparison of the non dimensional temperature 

(T/Tw) at different ξ
 
for (a) ω=0.1, (b) 0.5 and (c) 0.9 

 

Fig.3a-c show the effect of the emissivity εW = 0.1, 0.5 and 

0.9 by comparing the LBM results (T/Tw) with those 

published for n = 1, δ = 0, a = 0, β = 1.0, ω=0.0, N=0.01 and 

εE=1.0. It is shown that the LBM results are in good 

agreements with the published results.  

Fig.4 shows the effect of the extinction coefficient by 

comparing the steady-state (SS) results obtained by the LBM 

and the published results, for n = 1, δ = 0, a = 0, ω=0.0 and 

N = 0.1. These comparisons are shown for β = 0.1, 1.0 and 

2.0. Excellent agreement is also found.  

Fig.5a-b shows the effect of the variable thermal 

conductivity parameter for different extinction coefficients  

(β = 0.1 and 1.0) by comparing the steady-state results 

obtained by the LBM and the published results, for n = 1, a = 

0, ω=0.5, N = 0.5, εw = 1.0 and εE = 0.5.The LBM results are 

in good agreement with those published. 
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a 

 
b 

 
c 

 
Figure 3. Comparison of the non dimensional temperature 

(T/Tw) at different ξ
 
for (a) εW = 0.1, (b) 0.5 and (c) 0.9 

 

 
Figure 4. Comparison of the non dimensional temperature 

(T/Tw) for different β 

 

 

a 

 
b 

 
 

Figure 5. Comparison of the non dimensional temperature 

(T/Tw) for different δ for (a) β = 0.1 and (b) β = 1.0 

 

a 

 
b 

 
 

Figure 6. Comparison of the non dimensional temperature 

(T/Tw) for different δ for (a) N = 0.01 and (b) N = 0.1 

 

Fig.6a-b shows the effect of the variable thermal 

conductivity parameter for different conduction– radiation 

parameters (N = 0.01 and 0.1) by comparing the steady-state 

results obtained by the LBM and the published results, for  

n = 1, a = 0, ω=0.0, β = 1.0, εw = 1.0 and εE = 0.5. The LBM 

results are in good agreement with those published. 

Fig.7a-c shows the effect of the variable thermal 

conductivity parameter for different scattering albedo (ω = 

0.0, 0.5 and 0.1) by comparing the steady-state results 

obtained by the LBM and the published results, for a = 0, 

N=0.5, β = 1.0,  
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εw = 1.0 and εE = 0.5. The LBM results are in good 

agreement with those published. 

 

a 

 
b 

 
c 

 
 

Figure 7. Comparison of the non dimensional temperature 

(T/Tw) for different δ for (a) ω = 0.0, (b) 0.5 and (c) 0.9 

 

 
 

Figure 8. Comparison of the non dimensional temperature 

(T/Tw) for different N 

 

Fig.8 shows the effect of the conduction– radiation 

parameter for nE =nW=1.5 by comparing the steady-state 

results obtained by the LBM and the published results, for  

a = 0, ω=0.0, β = 10.0, εw = εE = 1.0, δ=0.0 and TW =3TE. 

The LBM results are in good agreement with those published. 

 

 
 

Figure 9. Comparison of the non dimensional temperature 

(T/Tw) for different refractive index 

 

 
 

Figure 10. Comparison of the non dimensional temperature 

(T/Tw) for variable refractive index 

 

 
Figure 11. Comparison of the non dimensional temperature 

(T/Tw) for variable refractive index 

 

Fig.9 shows the effect of the refractive index by comparing 

the steady-state results obtained by the LBM and the 

published results, for a = 0, ω=0.0, β = 10.0, εw = εE = 1.0, 
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δ=0.5, N=0.2 and TW =3TE. The LBM results are in good 

agreement with those published. 

Fig.10 and 11 show the effect of the variable refractive 

index for different conduction– radiation parameters  and 

different variable thermal conductivity parameters by 

comparing the steady-state results obtained by the LBM and 

the published results, for a = 0, ω=0.0, β = 10.0, εw = εE = 0.0 

and TW =3TE. The LBM results are in good agreement with 

those published. 

4. CONCLUSIONS 

The LBM is used to analyze combined conduction–

radiation heat transfer in a planar absorbing, emitting and 

scattering medium with variable thermal conductivity and 

variable refractive index. The radiative information and the 

energy equation are solved using the LBM. The results of the 

LBM-LBM formulation are compared with those available in 

the literature. A very good agreement was found. 
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NOMENCLATURE 

 

a  

c       

cp 

ei 

f                    

f eq                    

G 

I  

I eq              

k       

L 

M 

N 

Nx 

p 

qR 

S 

t 

T                        

w
                     

 

Anisotropy factor 

Speed of light (m/s) 

Specific heat at constant pressure (JKg-1K-1) 

Lattice speed  (m/s) 

Internal energy distribution functions (K) 

Equilibrium internal energy distribution (K) 

Incident radiation (W/m²) 

Intensity of radiation (W/m²) 

Equilibrium intensity (W/m²) 

Thermal conductivity (Wm-1K-1) 

Length of the planar geometry (m) 

Total number of discrete directions 

Conduction-radiation parameter(=kβ/4σTw
3)  

Total number of node 

Scattering phase function 

Heat flux (W/m²) 

Source term (W/m²) 

Time (s) 

Temperature (K) 

Weight in the LBM 
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GREEK SYMBOLS 

 

Δx 

Δt  

α 

β 

δ 

ε 

γ 

σ 

ρ 

ξ 

τ 

τR 

ω 

Lattice spacing (m) 

Time increment (s) 

Thermal diffusivity (m2/s) 

Extinction coefficient (1/m) 

Thermal conductivity parameter 

Emissivity 

Polar angle (rad) 

Stefan–Boltzmann constant,5.67 10-8  (W/m2 K4) 

Density (Kg/m3) 

Non dimensional time 2( )t  

Relaxation time for temperature (s) 

Relaxation time for radiation (s) 

Scattering albedo 

 

SUBSCRIPT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E 

w 

East 

West 
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