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ABSTRACT
In this paper, two types of controllers are proposed and compared to attain a better understanding of the 
potential of a real-time control (RTC) approach based on wastewater quantity and quality for combined 
sewer networks. The first controller is solely based on a wastewater quantity control approach, whilst, 
the second one is also considering wastewater quality modelling, as well as its uncertainty propagation. 
In fact, we have developed the first controller to achieve the second one without the requirement of add-
ing new measurement devices to the given system. Model Predictive Control (MPC) approach is selected 
as the underlying control method. The control model in this study is a simple but fast model which is 
developed based on volume balance and mass balance laws in the tanks and time delay concept in the 
pipes. This model is described and applied to a simple case study to illustrate and discuss the results. The 
uncertainty propagation in the second controller is based on Taylor series of first order approximation. 
Based on the simulations and the achieved results, it was observed that the introduced pollution-based 
MPC approach is able to reduce significantly the volume of combined sewer overflows (CSOs) as well 
as the pollution load caused by them. Finally, it is concluded that considering the pollution load and its 
uncertainty propagation in the objective function of the optimization problem has a significant effect 
on the system performance improvement. This is a very important achievement because it can reduce 
the released pollution load to the environment without the requirement of additional equipment in the 
system. Because such elements (e.g. sensors) are normally expensive to purchase and maintain.
Keywords: combined sewer overflow (CSO), model predictive control (MPC), real-time control (RTC), 
uncertainty propagation, wastewater quality.

1 INTRODUCTION
Real-time control (RTC) of urban drainage systems to improve their efficiency and perfor-
mance has become an active area of research in recent years, see [1–3]. This fact is not only 
because these systems are essential for human health, but also as a result of increased require-
ments regarding the environmental and economic considerations [4, 5].

Combined sewer networks are smoothly capable of handling the wastewater produced 
from the dwellings during the dry weather flow (DWF) while there is no rainfall in the catch-
ment. However, the problem arises when a long or heavy rainfall occurs and the rain water 
combines with the DWF and produces wet weather flow (WWF). In this situation, the capac-
ity of network pipes and storage tanks may not be sufficient to store the wastewater before 
passing it to the wastewater treatment plant (WWTP). Consequently, some part of the excess 
untreated wastewater, which is referred as combined sewer overflow (CSO), will be released 
to the surrounding environment. This event increases the pollution risk of the receiving water 
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bodies and complicates the sewer network management. Proper modelling and effective RTC 
of storage tanks in the sewer networks before the treatment plants has a great importance to 
deal with this problem. Hence, quality-based RTC for the urban drainage systems should be 
taken into account more seriously, see [5–8].

In this paper, it has been tried to introduce a methodology for RTC of the combined sewer 
networks using a simple tank-based model. First, a quantity-based model is introduced. 
Consequently, this model is developed to consider wastewater quality. These models are 
employed as the control models in an MPC approach for RTC. Quantitative and qualitative 
objective functions and the constraints are presented in the next step. A simple uncertainty 
propagation method for wastewater quality modelling is also introduced in this paper, which 
is going to be considered in the qualitative objective function. Finally, the developed control-
lers are implemented for a simple case study and the main results are presented and discussed  
briefly.

2 METHOD
2.1 Control model

Control model in MPC approach is normally a simple and fast model which simulates the 
general behavior of the system according to our interests in controlling the given system. In 
this study, the control model has been evolved during the progress of the research. Initially, 
a simple model was developed for wastewater quantity control which has been in operation 
in Luxembourg Institute of Science and Technology (LIST) for some years. In this paper, the 
former model is expanded to consider wastewater quality as well. In the following paragraphs 
these two control models are briefly explained.

2.1.1 Simple wastewater quantity model
In this section, the concept of the simple tank model used for quantity modelling of the waste-
water in the network is described. This model is based on conservation of volume in the tank. 
Figure 1 shows the involved system variables of the model.

Each tank contains a wastewater level sensor which gives the water level (h) in the tank. 
By taking advantage of this measurement and considering the geometry of the tank, one can 
calculate the volume of stored wastewater in the tank V. The volume is controlled by a valve 
or pump at the outlet of the tank, thereby controlling the outflow, Qout, which is measured. 

Figure 1: System variables of the tank model for wastewater quantity modelling.
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However, the inflow to the tank Qin is not measured, but it can be derived from the law of 
conservation of volume in the tank:

 V t V t t Q t t Q t t V tin out ov( ) = −( ) + ( ) − ( ) − ( )∆ ∆ ∆  (1)

Qin and Qout are supposed constant over ∆t. Thus, we find that:

 Q t
V t V t t V t

t
Q tin

ov
out( ) =

( ) − −( ) − ( )












+ ( )

∆
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 (2)

In case of having a CSO event, Vov > 0, otherwise Vov = 0. The overflow volume is calculated 
based on a simple technique by considering a tank with known geometry and an infinite 
height. If h is higher than hmax, the excess volume is calculated as the overflow volume as a 
function of (h-hmax).

Since the sewer system is a combined one, the incoming flow is a combination of the 
wastewater flow from the dwellings QDW and the flow from the rain water QWW:

 Q t Q t Q tin DW WW( ) = ( ) + ( ) (3)

In this approach, we consider that QDW has a daily pattern for each tank in the network. For 
the tanks in our case study these patterns are available. Therefore, the amount of QWW can be 
easily calculated by subtracting the QDW from Qin measurement. It should be noted that, for 
Qin there are measurement campaigns available for our case study tanks as well.

In this quantitative modelling, the flow in the pipelines of the network is modelled using 
the delay time concept (see Fig. 2). Hence, for the simple model introduced in this paper, it 
would be beneficial to have an idea about the amount of delay time between different tanks 
in the sewer network.

2.1.2 Extension to a simple wastewater quality model
To better understand the system variables of the tank in this model, the Fig. 3 is modified as 
follows:

Here, we make three main assumptions: there is only one global indicator to reflect the 
pollution load; there is only a simple dilution effect in the tank; and the concentration ‘C’ of 

Figure 2: Time delay concept used in the network modelling.
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the pollutant load in the tank is homogeneous. Hence, by taking into account the eqn (1) and 
the mass balance law, we have: (m represents the pollutant load mass).

 m t m t t m t m t m tin out ov( ) = −( ) + ( ) − ( ) − ( )∆  (4)

We assume that the concentration ‘C’ exiting the tank, either by the outlet valve or in case of 
a CSO, is the same as the one inside the tank. From eqn (4) we obtain:

 
C t V t C t t V t t C t Q t t

C t t Q t t

in in

out

( ) ( ) = −( ) −( ) + ( ) ( )

− −( ) ( )

∆ ∆ ∆

∆ ∆ − −( ) ( )C t t V tov∆
 (5)

Using this eqn (5) and substituting eqn (1) in it, one can achieve the equation for the concen-
tration of pollutants in the tank:

C t
C t t V t t C t Q t t C t t Q t t C t tin in out

( ) =
−( ) −( ) + ( ) ( ) − −( ) ( ) − −(∆ ∆ ∆ ∆ ∆ ∆ )) ( )

−( ) + ( ) − ( )





− ( )

V t

V t t Q t Q t t V t
ov

in out ov∆ ∆

 (6)

It needs to be mentioned that, in this modelling step there should not be any changes on 
the real network for the purpose of quality-based RTC. It means, there is no need to add new 
sensors to the real system for the purpose of quality measurement in the tanks. Thus, the 
concentration of the global quality indicator in the tank is completely simulated and therefore 
uncertain. The uncertainty propagation for the concentration of the load in the tank is briefly 
discussed in the following section.

2.2 Uncertainty propagation

By definition a model is an abstraction of the reality. Models rarely resemble the real world 
behavior perfectly, because of abstracting the information about the system and this fact 
causes the uncertainty Warmink et al. [9]. Hence, any departure from the unachievable ideal 
of complete determinism is defined as uncertainty Walker et al. [10]. Hence, there is a crucial 
requirement to analyze the uncertainty in any modelling process to achieve robust decisions 
Refsgaard et al. [11]. Warmink introduces a structured procedure for the identification and 
classification of uncertainties in environmental models [9]. A brief review of 14 different 
methods for uncertainty assessment and characterization is addressed in [11]. The next 

Figure 3: System variables of the tank model for wastewater quality modelling.
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paragraphs focus on understanding the behavior of the aforementioned unmeasured, uncer-
tain variable which is the pollutant load concentration in the network structures. This is done 
by applying an uncertainty propagation approach for the introduced simple quality model.

In 1996, a study on uncertainty propagation in urban rainfall-runoff models was proposed 
by Lei [12]. Three main methods of uncertainty propagation are described in that study 
including sensitivity analysis, Monte Carlo method and Taylor series or first order approxi-
mation. These methods are still among the most common approaches in the field of sewer 
networks, see [5, 6].

In this study, we have selected the Taylor method (first order), because the qualitative 
model, although not linear, is differentiable. Besides, through measures in the real system for 
each variable in our simple model there is an idea about the tolerance interval in which it is 
located.

Various simplifying assumptions have been made to simplify the calculations. In particu-
lar, we consider the different variables related to the concentration are not correlated. Thus, 
the Taylor series approximation of the concentration in the tank is written as:

 Var C t U
C t

A
UC t i

i
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( )( ) = =

∂ ( )

∂









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=

∑
2

1

6

2

2  (7)

With:

A1 = C(t-∆t), A2 = V(t-∆t), A3 = Qin(t), A4 = Cin(t-∆t), A5 = Qout(t), A6 = Vov(t-∆t).

After calculations of various partial derivatives, we can make the following assumptions:
V(t-∆t) and Qout(t) come from measurements and therefore have a measurement uncer-

tainty. However, this uncertainty remains negligible compared to the uncertainties on 
C(t-∆t) and Cin(t-∆t) that are unknown terms. So we can make the approximation that
U UV t Q tout( ) ( )−

= =
∆t 0.

Moreover, Vov(t-∆t) and Qin(t) are deducted directly from previous measurements, so we 
can do the same approximation U Ut Q tinV tov ( ) ( )−

= =
∆

0 .
Consider UX as the standard deviation of X such that variance of X is Var(X) = UX

2. Then, 
the eqn (7) is:
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With:
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It is obvious that uncertainty propagation equation is strongly dependent on X(t-∆t). Based 
on conservation of volume and the physical constraints of the model it can be easily proven 
that: 0 1( )≤ − ≤X t t∆ .

For the choice of probability distribution laws associated with the concentration of the 
loads in the tank, the most commonly used ones are: the uni-
form uncertainty law (or rectangular) and the Gaussian law (or 
normal distribution).

In our case, the uniform distribution is selected because when 
a concentration value is unknown and unmeasured, it has the 
same probability that it actually lies in the interval [-a ; a].
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Hence, the standard deviation is U
a

X =

3
 and the variance is Var X( ) =

a2

3
In terms of the standard deviation of the concentrations, the concentration Cin entering the 

tank is decomposable in CDW and CWW (respectively the concentrations of wastewater during 
dry and wet weather). Therefore, on the same principle as eqn (3) and based on conservation 
of mass:
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Thus, by applying the same method of first order Taylor approximation and the same 
assumption on the uncertainty of flows, the propagation of uncertainty for the concentration 
of incoming load can be written as:
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Finally, with the partial derivatives we have:
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For calculation acceleration, we can make the approximation that the uncertainty of the 
concentration in the tank at the initial moment, is equal to the uncertainty of the incoming 
concentration: U UC Cin

( ) ( )0 0= .
To summarize this section, with the introduced approach it is possible to calculate the 

uncertainty of the concentration of the load in the tank Uc(t). This can be done by applying 
the eqns (8) and (12), and defining UC ( )0  as the initial value.

2.3 Optimization problem

RTC has various definitions in different fields of application. An urban wastewater network 
is considered to be controlled in real-time if the process variables are monitored in the given 
system and, (almost) at the same time, are used to operate actuators of the system during the 
flow process Schütze et al. [3]. As it was already mentioned, the RTC method used in this 
study is based on the MPC approach which employs an internal model (controller model) to 
forecast the behavior of a given system in future over a finite time horizon which is called 
prediction or control horizon. Taking the advantage of this prediction, MPC is able to prevent 
the undesired events that threaten the system. It presents the optimum control actions after 
solving an optimization problem Xu et al. [13]. Details of an MPC approach can be found in 
[14], an implementation in MATLAB® in [15] and more specifically related to wastewater 
systems can be seen in [16]. An optimization problem includes an objective function (O.F) 
and system constraints which are in fact the mathematical expression of the sewer network 
management objectives and physical system constraints. An O.F is normally a weighted 
aggregation of various goals according to the given optimization problem.

In this research, O.F has been evolved in two main steps along with the controller models. 
It initially was only including goals referring to quantity aspects of wastewater in the network. 
In the second step new goals are added to the previous O.F which are considering wastewater 
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quality and uncertainty propagation aspects. O.Fs using both quantitative and qualitative goals 
are presented briefly in the sections (2.3.1 and 2.3.2). The model constraints are also introduced 
in section 2.3.3. The O.F is subject to minimization during the optimization task in MPC.

2.3.1 Quantitative objectives
The O.F with only quantitative goals was already developed by LIST and it was in opera-
tion since 2013, see [11, 12]. The main purpose was to optimize the output flow rate of each 
tank by minimizing the objective function J, over the prediction horizon Hp. It represents a 
weighted aggregation of three goals, which is defined as follows:

 J n n n
n t

t HP

= ( ) + ( ) + ( )
−

+

∑λφ βφ αφ1 2 3  (13)

In which:
λ, β, α are the constants that enable weighting of the objectives to be preferred, and
n = t+1, ..., t+Hp are the time steps in the prediction horizon.
Φ1 is to use the storage capacity of the network homogenously. This is defined by the rela-

tive difference in volumes between the tanks.
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Φ2 is to keep the flow towards the WWTP as close as possible to the optimum operating 
reference value. It compares the inflow to the WWTP with its operating speed (reference 
value yref).

 φ2
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i N= 1...  is the number of tanks in the network and j NP= …1  the number of pipes in the 
network. di,k is the transport time of the ith tank to the destination tank j (j = k representing 
the arrival at the treatment plant). N*j is all the tanks draining directly to the destination j.
Φ3 is assigned in the O.F to minimize the CSO volume.

 φ3
1

2n Ov n NL
i

N

i( ) = ( ) −
=

∑( )  (16)

NL is a negative number and the purpose of introducing this value in Φ3 is to have a linear 
objective function, see Gillé et al. [17]. To process the overflow, we had to add a state variable 
Ov(t). Although, it is in fact directly related to the volume V(t) and the maximum volume 
Vmax of each tank.

2.3.2 Qualitative objectives
In this section, four new goals are added to the previous quantitative O.F based on the new 
state variables Ci and according to the interests in how to control the network. The new O.F 
to be minimised is defined as follows:

 J n n n n n n
nn t
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In which, Φ1, Φ2 and Φ3 are the same as before. γ , µ σ, , and δ  are the new constants to 
enable weighting of the objectives to be preferred in the O.F.
Φ4 is to minimize the overflowed mass.

 φ4
1

2
n C n Ov n NL

i

N

i i( ) = ( ) ( ) −( )
=

∑  (18)

Φ5 is to minimize the uncertainty present in the concentration of the mass which is directly 
linked to the above mentioned goal Φ4.

 φ5
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2
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i( ) = ∑ ( ) −( )
=

 (19)

By introducing this objective, in case that two tanks have the possibility of overflowing 
simultaneously, the controller prefers overflowing the tank with less uncertainty.
Φ6 is to distribute the pollutant mass over the network homogenously which is in fact 

similar to Φ1.
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Φ7 is to maximize the pollutant mass arriving at the WWTP. This goal resembles the goal 
Φ2 which was to deal with volumes arriving at the WWTP.
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Since the objective Φ7 is to maximize the mass arriving at the WWTP and not to minimize 
it, the form 1/ Φ7 is used in the objective function.

2.3.3 Constraints
All the inequality constraints describing the physical constraints on the system variables 
should be considered in MPC. The volume of wastewater in each tank, the outflow, and the 
wastewater contained in the pipes are all positive variables and limited by their maximum 
capacity:

 0 ≤ Vi(n) ≤ Vimax
 (22)

 0 ≤ Outi(n) ≤ 0 ≤ ≤Out n Outi imax
( )  (23)

 0 ≤ Ov(n) (24)
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*
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∑  (25)

 And for the new variables in the qualitative model, we have:

 0 ≤ Ci(n) and 0 ≤ Ui(n) (26) 
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2.4 Case study

The case study sewer network that has been selected for this paper is a small part of 
Haute-Sure catchment in northwest of Luxembourg. The original network consists of 24 
storage tanks which are located upstream of a WWTP. In this study, only two of these stor-
age tanks (Buderscheid and Kaundorf) are taken into account to test the developed RTC  
approaches.

For this case study, we have a model or pattern for concentration of wastewater arriving 
from the dwellings (CDW). The pattern is determined by measurement campaigns that were 
carried out for this catchment by Kai et al. [18, 19]. Based on the knowledge and experience 
of the experts involved in the measurement campaigns, it is assumed that the uncertainty on 
this model or pattern is ±5%.

On the other hand, the concentration during the wet weather (CWW) is unknown. It is also 
estimated by a mean of the measurements on the real system. Here, it is assumed that the 
uncertainty on this value is ±50% which, in fact, is a wide range of uncertainty. The average 
concentration during the wet weather is considered equal to 1,000 mg/l or 1 kg/m3.

These values are selected only for initial demonstration of the method for this case study 
and cannot be generalized to other catchments.

In this case study, the weighting coefficients for the quantitative O.F were selected based 
on a previous work, see Gillé et al. [17]. These values are: λ = 1, β = 1; and α = 5. Whilst, 
for the qualitative O.F the weights were chosen based on trial and error, including: γ = 10, 
µ σ= =5 1, , and δ = 1. It should also be noted that, the dimensionality of different goals in 
the O.F is considered in the optimization process. It means, for example, α = 5 and β = 1 does 
not necessarily imply that Φ3 is five times more important than Φ2.

3 RESULTS AND DISCUSSION
Both of the developed MPC controllers were implemented for the introduced case study in 
MATLAB®. In case of quantitative O.F, the optimization task was done using CVX solver. 
But, since the qualitative model was not linear, the fmincon solver was used for the quali-
tative O.F. In this section, some of the main results for the two tanks in the case study are 
presented and compared to each other.

We are interested in understanding the behavior of our MPC controllers and their perfor-
mance during the period in which an overflow occurs and the related pollution risk. Therefore, 
a part of a rain scenario from 18th October to 1st November 2002 were selected in which a 
measurement campaign exists in the real catchment (Fig. 4).

The results of applying the two developed controllers around the previously selected time 
period are illustrated in the following graph (see Fig. 5).

As it can be observed from Fig. 5, the volume behavior of the tanks for the quantitative 
controller seems very similar. To minimise the CSO volume (Φ3), the maximum capacity of 
each tank is used. Homogenization of storage capacity in the network (Φ1), forces both of 
the tanks to fill and deplete in the same pattern, therefore the CSO events occur almost in the 
same time. The objective for keeping the flow toward WWTP as close as the reference value 
(Φ2) causes the depletion of the tanks.

On the other hand, for the qualitative controller, the volume behavior of the tanks is slightly 
different. For instance, the blue tank depletes faster in comparison with the former controller. 
This can be justified as a result of less importance of Φ1 compared to the new goals in the 
objective function.
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Figure 4:  Measured inflow to the tanks during the October 2002 rain scenario (blue: 
Buderscheid tank; green: Kaundorf tank).

Figure 5: Comparing the controllers: quantitatively.
(blue: Buderscheid tank; green: Kaundorf tank).

The “oscillations” on quantity-based controller curves mainly come from the Φ1. It is 
interesting that these curves are “smoothened” in the qualitative controller by the objective 
Φ6 for homogenization of loads in the network.

In the case of overflows, the main observation is that by introducing the new quality-based 
controller the CSO volume of green overflow has decreased, while the blue overflow occurs 
earlier in time with almost the same CSO volume. By adding the objective (Φ4) for minimiz-
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ing the overflowed mass, the overflow volume is reduced as well. Table 1 summarizes the 
overflow volumes in case of application of both controllers.

Based on the results shown in Table 1, it can be calculated that there is a 13.8% relative 
reduction in the total overflow volume by introducing the quality-based controller in our case 
study. This can be considered as a significant reduction if we take into account a larger and 
more extensive case study. Figure 6 and Table 2 illustrate the results in terms of overflowed 
mass in case of implementation of the different controllers.

According to the results presented in the Table 2, there is 13.6% relative reduction in the 
total overflowed mass by implementing the qualitative MPC controller which is a consider-
able reduction.

Regarding the uncertainty propagation objective, it was observed that, over time the term (t)  
does not diverge, which was an encouraging result for the rest of the project. Although ini-
tially there was a high uncertainty on the concentration of the load and the input data, but over 
time it remained bounded.

From the results presented above, it can be concluded that, the new quality-based control-
ler decreases the overflow volume as well as its pollutant mass. This fact can be explained 
by the goal Φ4 in the quality-based objective function which was assigned to decrease the 

Table 1: Comparison of the controllers based on overflow volume.

Former controller: Quantitative New controller: Qualitative

Overflow volume (Green): 52.8 m3

Overflow volume (Blue): 4.5 m3

Total overflow volume: 57.3 m3

Overflow volume (Green): 45.9 m3

Overflow volume (Blue): 3.5 m3

Total overflow volume: 49.4 m3

Figure 6: Comparing the controllers: qualitatively
(blue: Buderscheid tank; green: Kaundorf tank).

Table 2: Comparison of the controllers based on overflowed mass.

Former controller: Quantitative New controller: Qualitative

Overflowed mass (Green): 27 kg
Overflowed mass (Blue): 2.3 kg
Total overflowed mass: 29.3 kg

Overflowed mass (Green): 23.5 kg
Overflowed mass (Blue): 1.8 kg
Total overflowed mass: 25.3 kg
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overflowed mass. Since this objective is the product of overflow volume by its concentration, 
the solver decreases both of the product state variables to minimise this objective. However, 
other goals in the objective function could have an effect on this result as well. Therefore, it 
should not be considered as an individual effect of Φ4 and a clearer conclusion can be made 
based on further sensitivity analysis. Investigation on the interactions between various goals 
can also be of interest in further studies.

4 CONCLUSIONS
Initially, two simple models were introduced for the purpose of quantity- and quality-based 
control of combined sewer networks. These types of simple and fast models are always 
favourable in MPC approach. The main idea was to understand if the quality-based control-
ler can improve the efficiency of the former quantity-based MPC controller. An uncertainty 
propagation method was also introduced for the unmeasured variable of pollution load in the 
tanks and included in the objective function of the quality-based controller.

In conclusion, the results showed a positive contribution of the new quality-based control-
ler in decreasing the overflowed pollution mass as well as CSO volume during the selected 
rain scenario. In fact, this is a very promising result and can be considered as a ‘soft’ solution 
for combined sewer network management. Because, the new controller reduces the pollution 
load and overflow volume without the need to add new physical elements (e.g. sensors) to the 
system which are normally expensive to purchase and maintain.
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