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ABSTRACT
This article explores the projected changes in precipitation, maximum temperature (Tmax) and minimum 
temperature (Tmin) in the Malaysian state of Sarawak under Representative Concentration Pathways 
(RCPs) with the CanESM2 Global Circulation Model. The Statistical Downscaling Model (SDSM) was 
used to downscale these climate variables at three stations in Sarawak. The model performed well dur-
ing the validation period and thus was used for future projections under three RCPs with the CanESM2 
General Circulation Model. It is noted that the Tmax will increase by 1.94°C at Kuching, 0.09°C at 
Bintulu and 1.29°C at Limbang, when comparing the period of 2071–2100 with the baseline period of 
1981–2010, under the most robust scenario of RCP8.5. Tmin is also expected to increase by 1.21°C at 
Kuching, 0.15°C at Bintulu and 2.08°C at Limbang, under the RCP 8.5 projection for the same period. 
The precipitation at Kuching and Bintulu is expected to increase slightly to 1.6% and 1.4% at Kuch-
ing and Bintulu respectively; however, the seasonal shift is projected as follows: lesser precipitation 
during the December–February period and more during the June–August season. On the other hand, 
precipitation is expected to increase at Limbang during all seasons, when compared with the period 
of 1981–2010; it is expected that under RCP4.5 the annual precipitation at Limbang will increase by 
10.5% during the 2071–2100 period.
Keywords: Borneo, CanESM2, climate change, CMIP5 scenarios, Malaysia, NCEP, precipitation and 
temperature projection, Sarawak, statistical downscaling.

1 INTRODUCTION
Increased greenhouse gas (GHG) emissions and positive radiative forcing are the evidence of 
human impact on the global climate system. GHG emissions caused global surface warming, 
ranging from 0.5°C to 1.3°C during the years from 1951 to 2010; continued GHG emissions 
will cause further warming and change the equilibrium of the climate system, according to 
IPCC [1]. Under the projected future climate, it is plausible that grievous and extreme weather 
events (i.e. severe floods and droughts) will occur in global monsoon areas [2–5].

Temperature and precipitation are two main climate variables that influence the hydro-
logical cycle as an impact of climate change. Global Climate Models, also called Global 
Circulation Models (GCMs), are the main tools for projecting the changes in temperature and 
precipitation. These models interpret global systems such as sea-ice, oceans and the atmos-
phere [6]. Although GCMs are very useful for the projection of future climate changes, the 
outputs of these models are based on a large grid scale (i.e. 250 to 600 km). Because of their 
coarse resolution, the outputs cannot be used directly to investigate the environmental and 
hydrological impacts of climate change on a regional scale [7]. Therefore, for climate change 
impact studies, it is necessary to downscale GCMs’ output to a regional or local scale.

Two main approaches are used to downscale the GCM output: statistical downscaling (SD) 
and dynamical downscaling (DD). The SD methods are much simpler than the DD methods; 
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in the SD global scale, GCM climate variables, such as mean sea-level pressure, zonal wind, 
temperature, precipitation, geo-potential height etc., are linked with local-scale variables, 
such as observed temperature and precipitation, through various regression techniques for the 
controlled historical period. Then the future changes in local-scale temperature and precipita-
tion are derived by forcing the future simulated data for selected GCM variables into the 
developed regression equations [8–11].

Many statistical models have been developed during recent years and have been used in 
various regions. The statistical downscaling model (SDSM) is also widely used to downscale 
the most important climate variables such as temperature and precipitation [12–16]. The 
objectives of this study are to derive an SD model using the SDSM toolbox for downscaling 
the precipitation, maximum temperature (Tmax) and minimum temperature (Tmin) in Sarawak 
and to assess the projected changes in precipitation, Tmax and Tmin under the representative 
concentration pathways (RCPs) of CanESM2 for the periods, 2011–2040, 2041–2070 and 
2071–2100.

2 STUDY AREA AND DATA DESCRIPTION
Sarawak is the largest state of Malaysia (124,450 Km2), located on Borneo Island in South 
East Asia. It experiences a wet and humid tropical climate throughout the year, with annual 
precipitation of between 2800 mm and 5000 mm and temperature variations between 20°C 
and 36°C. In this study, three cities, i.e. Limbang, Bintulu and Kuching, in the northern, cen-
tral and western regions, respectively, have been selected for the exploration of potential 
changes in temperature and precipitation. Most of the state’s population is settled along the 
coast, and therefore the historical temperature record is only available at the airports in these 
coastal cities. The observed daily data of precipitation, Tmax and Tmin was collected from the 
Department of Irrigation and Drainage, Sarawak (DID) for three climate stations, as described 
in Table 1 and shown in Fig. 1.

The Canadian Centre for Climate Modelling and Analysis (CCCma) has developed a 
 number of climate models. These are used to study climate change and its variability and to 

Table 1:  Geographical location, altitude and climate variables used for the selected meteoro-
logical stations in the Malaysian state of Sarawak.

Station

Location

Altitude  
(masl)

Climate  
Variables

Latitude  
(D, M, S)

Longitude  
(D, M, S)

Kuching 001 29 27 110 20 57 25 Precipitation

Tmax

Tmin

Bintulu 003 07 15 113 01 17 34 Precipitation
Tmax

Tmin

Limbang 004 44 46 114 59 58 15 Precipitation
Tmax

Tmin
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understand the various processes that govern the global climate system. These models are 
also used to make quantitative projections of future long-term climate change under various 
GHG and aerosol forcing scenarios. In this study, two types of daily climate variables were 
obtained from the Canadian Climate Data and Scenarios website (http://ccds-dscc.ec.gc.
ca/?page=dst-sdi): (a) 26 variables of the National Center of Environmental Prediction 
(NCEP) for the period 1981–2005, and (b) 26 variables of CanESM2 from CCCma for the 
historical period 1981–2005, as well as for the future period, 2006–2100, for three RCPs, i.e. 
RCP2.6, RCP4.5 and RCP8.5. These RCPs were developed by different modelling groups 
and address the different scenarios of future GHG emission scenarios. The RCP2.6 scenario 
leads to a very low level of GHG concentration. The RCP4.5 is a stabilization scenario, in 
which total radiative forcing is stabilized before 2100 by adopting various technologies and 
policies for minimizing the GHG emissions. The RCP8.5 scenario is categorized by increas-
ing GHG emissions over time, leading to a high level of GHG concentration levels. The list 
of the NCEP and CanESM2 climate variables used in this study is shown in Table 2. All data 
used is available at a grid resolution of 2.8125° × 2.8125° (Latitude × Longitude).

3 METHODOLGY

3.1 Statistical downscaling model (SDSM)

The SDSM is a downscaling tool developed by [17]; it combines multiple linear regression 
(MLR) with a stochastic weather generator (SWG). MLR establishes a statistical relationship 
between GCM predictor variables and local-scale predictands’ variables to produce regres-
sion parameters. These calibrated regression parameters are further used with NCEP and 
GCM predictor variables in SWG to simulate daily time series to create a better correlation 
with the observed predictands’ time series.

Figure 1:  Location map of the selected meteorological stations in the Malaysian state of 
Sarawak.
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There are three kinds of sub-models – monthly, seasonal and annual sub-models – that 
comprise the statistical/empirical relationship between the regional-scale variables (tempera-
ture and precipitation) and large-scale variables. Annual sub-models derive a single regression 
equation for all months in the year, seasonal sub-models derive a regression equation for each 
season, and the monthly sub-model represents a separate regression equation for each month.

There are also two options within sub-models: conditional and unconditional sub-models. 
The conditional sub-models are used for the parameters that are dependent on the occurrence 
of other climate parameters, i.e. precipitation, evaporation, etc., while the unconditional mod-
els are used for independent climate parameters, i.e. temperature [15, 17]. SDSM also contains 
a tool to normalize the input climate data prior to its usage in the regression equations.

3.2 Screening of predictors

In SDSM, the most suitable variables from the atmospheric predictors are selected through a 
MLR model, utilizing the combination of the correlation matrix, partial correlation, P-value, 

Table 2: List of NCEP and CanESM2 climate variables used in this study.

Sr.  
No. Predictor Description

Sr.  
No. Predictor Description

1 temp Mean temperature at 2m 14 p1_zh Divergence at surface

2 mslp Mean sea level pressure 15 p5_f Geostrophic air flow velocity 
at 500 hPa 

3 p500 500 hPa geopotential 
height

16 p5_z Vorticity at 500 hPa 

4 p850 850 hPa geopotential 
height

17 p5_u Zonal velocity component at 
500 hPa 

5 r500 Relative humidity at 500 
hPa height

18 p5_v Meridional velocity 
component at 500 hPa 

6 r850 Relative humidity at 850 
hPa height

19 p5_th Wind direction at 500 hPa 

7 shum Near surface specific 
humidity

20 p5_zh Divergence at 500 hPa 

8 prec Total precipitation 21 p8_f Geostrophic air flow velocity 
at 850 hPa 

9 p1_f Geostrophic air flow 
velocity at surface

22 p8_z Vorticity at 850 hPa 

10 p1_z Vorticity at surface 23 p8_u Zonal velocity component at 
850 hPa 

11 p1_u Zonal velocity component 
at surface

24 p8_v Meridional velocity 
component at 850 hPa 

12 p1_v Meridional velocity 
component at surface

25 p8_th Wind direction at 850 hPa 

13 p1_th Wind direction at surface 26 p8_zh Divergence at 850 hPa 
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histograms, and scatter plots. In the current study, a correlation analysis was applied 
between predictands and NCEP predictors; each predictor was selected based on the highest 
correlation, partial correlation and least P-value with the predictand (precipitation, Tmax and 
Tmin). At Kuching, prec was the super predictor with higher rank for precipitation, temp 
for Tmax and shum for Tmin. At Bintulu, prec was the super predictor for precipitation, p1_z 
for Tmax and p500 for Tmin. At Limbang, prec was the super predictor for precipitation, 
temp for Tmax and p500 for Tmin. In general, the selection of predictor variables in this study 
was performed in a similar way to those applied in other studies, for example [14, 18].

3.3 Model calibration and validation

Based on the available observed data, two daily data sets, 1981–1995 and 1996–2005, were 
selected for the model calibration and validation, respectively. Daily downscaling models were 
developed in SDSM for precipitation, Tmax and Tmin to generate the separate regression equa-
tion for each month. The conditional sub-model is used for Tmax and Tmin without any 
transformation and the unconditional sub-model, for precipitation. Optimization of the best fit 
is performed by the ordinary Least Squares (OLS) method. The correlation coefficient (R) and 
root mean square error (RMSE) of simulated data to observed data were used as performance 
indicators during the calibration and validation. With the calibrated model for the period of 
1981–1995, 20 daily ensembles for precipitation, Tmax and Tmin were simulated for the period 
of 1996–2005, feeding the NCEP and CanESM2 predictors, and the mean ensemble of these 20 
ensembles was used for validation with the observed data for the same period (1996–2005).

During the calibration, at all stations, the model simulated daily precipitation, Tmax and Tmin 
well; however, it overestimated the daily precipitation at all stations. The performance of the 
model during the calibration period simulated by SDSM (using the NCEP variables) is shown 
in Table 3. This over-estimation of precipitation was addressed during the validation period, 
when these biases were calculated and daily precipitation was de-biased as explained in Sec-
tion 3.4. Kuching’s temperature and precipitation have better correlation during the calibration 
period, as compared to Bintulu and Limbang, the latter of which shows the lowest correlation. 
For the coefficient of correlation, the model performed better for Tmax as compared to Tmin and 
precipitation. During the calibration period, while comparing the coefficient of correlation, 
the SDSM performance is similar to that shown in [14], when applied to Peninsular Malaysia.

During the validation period, the precipitation, Tmax and Tmin were simulated using the 
NCEP data, as well as the CanESM2 historical data, to evaluate the model performance with 
both data sets. Table 4 shows the model’s performance during the validation period. The 
model simulated average daily and monthly Tmax and Tmin very well at all stations. Compared 
to the observed daily/monthly precipitation, the simulated monthly precipitation was slightly 
higher at Kuching and Bintulu and slightly lower at Limbang. In order to remove the errors, 
during validation, the biases were adjusted by the bias-correction method, as shown in Fig. 2. 
The model performed well for temperature downscaling at all three stations in Sarawak; 
however, for the precipitation downscaling, the model performance was fairly satisfactory 
and could be improved further with some alternative methods/models.

3.4 Bias correction

Bias correction (BC) has been used in several studies, such as [12, 13], to remove biases from 
the daily precipitation and temperature series of downscaled data. The techniques for bias 
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Table 3: Performance of model for daily and monthly time series of Tmax, Tmin and precipita-
tion during the calibration period (1981–1995).

Tmax Tmin Precipitation

X R RMSE X R RMSE X R RMSE

(°C) (°C) (mm)

Western Region (Kuching)

Daily
Obs 31.60 23.09 11.26
NCEP 31.59 0.66 1.24 23.16 0.49 0.55 13.48 0.28 19.85
Monthly
Obs 31.60 23.09 342.6
NCEP 31.60 0.87 0.50 23.09 0.74 0.21 406.5 0.74 115.4
Central Region (Bintulu)
Daily
Obs 30.90 23.61 9.94
NCEP 30.98 0.54 1.25 23.70 0.34 0.75 12.22 0.18 20.08
Monthly
Obs 30.89 23.61 302.3
NCEP 30.90 0.73 0.35 23.60 0.58 0.26 361.1 0.59 110.3
Northern Region (Limbang)
Daily
Obs 32.30 23.30 7.33
NCEP 32.41 0.28 1.70 23.28 0.20 1.03 8.95 0.19 14.78
Monthly
Obs 32.30 23.23 222.9
NCEP 32.29 0.49 0.76 23.22 0.38 0.53 260.1 0.49 85.59

correction for temperature differ from those for precipitation, and the following equations are 
used to correct the biases in the daily time series of temperature and precipitation:

 T T T T
deb SCEN CONT obs

= − −( )  (1)

 P P
P

Pdeb SCEN
obs

CONT

= ×















 (2)

where Tdeb and Pdeb are the de-biased (corrected) daily time series of temperature (in °C) and 
precipitation (in mm/day), respectively, for future periods. SCEN represents the scenario data 
downscaled by SDSM for future periods (e.g., 2011–2040 etc.), and CONT represents data 
downscaled by SDSM for the historical controlled period (e.g. 1981–1995). TSCEN and PSCEN 
are the daily time series of temperature and precipitation generated by SDSM for future 
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periods, respectively. TCONT and PCONT are the mean monthly values for temperature and pre-
cipitation, respectively, for the control period (historical) simulated by SDSM. Tobs and Pobs 
represent the long-term mean monthly observed values for temperature and precipitation. 
The bar on T and P shows the long-term average. Table 5 presents the monthly standard 
deviation of observed and simulated data at Kuching for the period, 2071–2100. It demon-
strates that the model successfully generated the future time series of temperature and 
precipitation realistically.

Table 4: Performance of SDSM models for simulating Tmax, Tmin and precipitation during 
validation (1996–2005).

Tmax Tmin Precipitation

X R RMSE X R RMSE X R RMSE

°C °C mm

Western Region (Kuching)

Daily
Obs 31.60 23.37 11.46
NCEP 31.60 0.60 1.27 23.37 0.38 0.59 11.48 0.17 22.28
CanESM2 31.60 0.51 1.37 23.38 0.18 0.69 11.49 0.15 22.85
Montly
Obs 31.60 23.37 348.9
NCEP 31.74 0.87 0.55 23.03 0.62 0.45 375.9 0.66 166.5
CanESM2 31.36 0.83 0.64 22.94 0.48 0.55 385.5 0.61 176.2
Central Region (Bintulu)
Daily
Obs 31.19 23.84 10.26
NCEP 31.19 0.30 1.89 23.84 0.27 0.83 10.28 0.15 20.57
CanESM2 31.19 0.30 1.89 23.84 0.12 0.90 10.29 0.02 21.15
Monthly
Obs 31.19 23.84 312.4
NCEP 30.89 0.76 0.60 23.54 0.50 0.40 313.0 0.48 135.2
CanESM2 30.89 0.77 0.60 23.64 0.43 0.45 325.3 0.28 150.4
Northern Region (Limbang)
Daily
Obs 33.14 23.54 9.34
NCEP 33.14 0.29 1.25 23.54 0.07 0.92 9.34 0.10 17.79
CanESM2 33.14 0.29 1.26 23.55 0.18 0.90 9.34 0.01 18.17
Montly
Obs 33.13 23.54 284.2
NCEP 32.35 0.53 1.04 22.97 0.13 0.73 245.1 0.37 138.1
CanESM2 32.19 0.55 1.17 23.24 0.60 0.46 233.4 0.19 150.4
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4 RESULTS AND DISCUSSIONS

4.1 Annual changes in precipitation and temperature

Feeding the selected CanESM2 predictors of three future scenarios, i.e. RCP2.6, RCP4.5 and 
RCP8.5 into developed SDSM models, daily precipitation, Tmax and Tmin were simulated for 
three future periods: 2011–2040, 2041–2070 and 2071–2100. BC was applied as calculated 
during the control period (1981–2005) to remove biases in the projected data. Future changes 
in precipitation, Tmax and Tmin were calculated by comparing them to the baseline period. In 
this study, the period from 1981 to 2010 was selected as the baseline period because this 
30-year period has been used in the majority of climate change studies across the world 
[5, 19, 20]. A 30-year period is considered sufficient to define the local climate, as it is 

Figure 2:  Comparison of monthly precipitation, Tmax and Tmin simulated by SDSM with 
observed dataset during validation period (with bias correction) in the Malaysian 
state of Sarawak.

Table 5:  Standard deviation of observed and simulated monthly precipitation, Tmax and Tmin 
at Kuching.

Variable

Historical RCP2.6 RCP4.5 RCP8.5

1981–2010 2071–2100

Precipitation 194 134 135 134

Tmax 1.6 1.12 1.16 1.30
Tmin 0.6 0.31 0.35 0.50
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anticipated that it will comprise different situations such as dry, wet, cool, and warm years or 
sub-periods.

As the RCP8.5 is the scenario considering a high concentration of GHG emissions, it is 
noted that the mean annual Tmax at Kuching would be expected to increase by 1.94°C during 
2080’s under the RCP8.5 scenario. At Bintulu, Tmax is expected to increase by 0.09°C during 
the 2080s. At Limbang, the Tmax would also increase by 1.29°C during the 2080s. The Tmin 
also followed the same pattern as of that of the Tmax and would be expected to increase by 
1.21°C at Kuching, 0.15°C at Bintulu and 2.08°C at Limbang during the 2080s, when com-
pared with the baseline period. In future, the annual precipitation at Kuching, Bintulu and 
Limbang is expected to increase by 0.3%, 1.4% and 4.5%, respectively, during the 2080s, as 
shown in Table 4. The projection of precipitation, Tmax and Tmin during the 2020s, 2050s and 
2080s under the RCP2.6, RCP4.5 and RCP8.5 is detailed in Table 6.

4.2 Seasonal changes in precipitation and temperature

The temperature in Sarawak has the same pattern throughout the year, with December to 
February (DJF) having heavy rainfall and slightly lower temperatures, as compared to the 
other seasons. The precipitation changes over the seasons; during DJF, Sarawak receives its 
highest rainfall due to the north-west monsoons, while June to August (JJA) are the lowest 
precipitation months. The other two seasons, i.e. March to May (MAM) and September to 
November (SON), are the inter-monsoon months and give average precipitation. The changes 
in future seasonal precipitation, Tmax and Tmin were calculated under the three RCPs of 
CanESM2, and the future period of 2071–2100 was compared with the baseline period of 
1981–2010.

During the drier season of JJA, it is noted that, during 2071–2100, surface Tmax would 
increase to 1.06°C, 1.44°C and 2.21°C at Kuching, to 0.17°C, 0.18°C and 0.18°C at Bintulu 

Table 6:  Future changes in annual precipitation, Tmax and Tmin with respect to the baseline 
(1981–2010) under CanESM2 runs for possible future RCP scenarios.

Kuching Bintulu Limbang

2020’s 2050’s 2080’s 2020’s 2050’s 2080’s 2020’s 2050’s 2080’s

Tmax (°C)

RCP2.6 0.68 0.88 0.85 0.08 0.10 0.10 0.71 0.79 0.78
RCP4.5 0.66 1.04 1.20 0.09 0.10 0.09 0.70 0.87 0.94
RCP8.5 0.76 1.27 1.94 0.09 0.09 0.09 0.75 0.98 1.29
Tmin (°C)
RCP2.6 0.51 0.60 0.58 0.13 0.15 0.14 0.64 0.88 0.83
RCP4.5 0.51 0.70 0.78 0.13 0.14 0.15 0.66 1.02 1.19
RCP8.5 0.54 0.84 1.21 0.14 0.14 0.15 0.72 1.36 2.08
Precipitation (%)
RCP2.6 1.3 1.3 –0.1 1.0 –0.6 –0.3 10.1 8.2 9.9
RCP4.5 0.5 0.9 1.6 –0.4 0.3 1.0 9.3 9.5 10.5
RCP8.5 1.4 1.1 0.3 0.1 1.6 1.4 10.0 7.6 4.5
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Figure 3:  Seasonal changes in Tmax, Tmin and precipitation at three stations for the period of 
2071–2100, compared to the baseline period of 1981–2010.

Table 7:  Future projected changes in seasonal precipitation, Tmax and Tmin during the period, 
2071–2100, with respect to the baseline (1981–2010) under CanESM2 runs for pos-
sible future RCP scenarios.

RCP2.6 RCP4.5 RCP8.5

DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

Tmax (°C) 

Kuching 0.74 0.54 1.06 1.04 1.03 0.92 1.44 1.39 1.68 1.63 2.21 2.23
Bintulu 0.13 0.02 0.17 0.06 0.10 0.01 0.18 0.07 0.10 0.01 0.18 0.07
Limbang 0.89 0.74 0.76 0.73 1.11 0.86 0.90 0.90 1.53 1.06 1.22 1.38
Tmin (°C)
Kuching 0.53 0.40 0.73 0.66 0.67 0.50 1.05 0.90 0.94 0.76 1.69 1.46
Bintulu 0.14 0.11 0.20 0.13 0.14 0.10 0.21 0.13 0.16 0.11 0.23 0.12
Limbang 0.72 1.24 1.01 0.35 1.05 1.80 1.43 0.48 1.91 3.10 2.49 0.81
Precipitation (%)
Kuching −5.6 −0.6 5.5 6.1 −4.4 0.4 7.3 7.7 −6.8 −2.2 6.8 9.1
Bintulu −14.2 10.4 9.8 −0.7 −14.5 9.0 10.1 2.3 −18.7 8.3 15.9 2.9
Limbang 7.7 11.4 14.4 7.2 8.0 9.2 15.0 6.7 −1.3 5.1 7.9 5.2



 M. Hussain, et al., Int. J. Sus. Dev. Plann. Vol. 12, No. 8 (2017) 1309

and to 0.76°C, 0.90°C and 1.22°C at Limbang, under the RCP2.6, RCP4.5 and RCP8.5 sce-
narios, respectively, when compared with the baseline period of 1976–2000. The Tmin is also 
projected to increase in future under the all RCPs, as shown in Table 5. Precipitation at Kuch-
ing is projected to decrease during DJF, increase during JJA and SON but to remain the same 
as the historical period during MAM. At Bintulu, the precipitation is also projected to 
decrease during DJF, increase during MAM and JJA but to remain the same during SON. At 
Limbang, the precipitation is projected to increase during all seasons under all RCPs by the 
end of the twentyfirst century, as shown in Fig. 3 and Table 7.

5 CONCLUSIONS
Sarawak is the wettest state in Malaysia and receives up to 5 m of precipitation per year. In 
the present study, the impact of climate change on temperature and precipitation was assessed 
at three different locations in the state. The study concluded that the surface temperature is 
projected to increase in future in all selected places in Sarawak under all selected RCPs. This 
coincides with the findings of other regional studies, i.e. [14, 21].

The annual precipitation at Kuching and Bintulu is projected to remain unchanged under 
all future climate scenarios; it coincides with [22] who studied future precipitation changes 
over Batang Ai catchment in Sarawak, where projected future precipitation is likely to be 
unchanged. However, a seasonal shift is expected at these locations, with a projection of less 
precipitation during DJF and more during JJA. On the other hand, Limbang is projected to 
have more precipitation during every season under all RCPs in future, when comparing the 
period of 2071–2100 with that of 1981–2010.

This study used precipitation and temperature data from three stations in different regions 
of the Malaysian state of Sarawak. It is recommended that more stations from each region be 
included to investigate any uncertainty associated with the data used. The temperature projec-
tion is limited by the unavailability of data across the state; however, the precipitation 
projection could be further expanded with the inclusion of more rainfall stations in each 
region.

In this study, only CanESM2 GCM output from the Coupled Model Intercomparison Pro-
ject Phase 5 (CMIP5) was used for the future projection of precipitation, Tmax and Tmin. It is 
recommended to include a few other CMIP5 models for projection and to adopt a mean 
ensemble of selected models to minimize the uncertainty associated with a single model 
projection.
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