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ABSTRACT
In crisis situations such as natural disasters, it is essential that people can be reached by fire and rescue 
services as well as police forces. Moreover, access to food and water supply should be ensured for 
everyone, for instance. In all cases, people depend on the (potentially damaged) road infrastructure – 
modelled as a graph network – that for all nodes in the network should provide connections to at least 
one supply node of each type (i.e., fire department, hospital etc.) even if some links in the network are 
currently unavailable. Assuming that there are multiple supply nodes per type among the whole net-
work, the present contribution discusses the risk that a given node of the network becomes isolated from 
all of these supply nodes depending on the topological structure of the network. For this purpose, the 
well-known concept of terminal reliability is adapted to the situation with multiple possible destinations 
which is realized by appropriately modifying the original graph. An algorithm is presented that allows 
finding all relevant cut sets in the modified graph which can be used for computing the probability Rsys  
that a given node remains connected to at least one of the supply nodes considered depending on the 
link failure probabilities pi. A simple clustering approach together with Boolean algebra finally yields 
explicit numbers for Rsys  depending on pi. The whole concept is demonstrated based on an illustrative 
example showing the different endangerment among the nodes of the network including a discussion 
about the specific criticality of each network link with regard to ensuring the connectivity between 
supply nodes and other nodes. Thus, by identifying critical links and quantifying the risk of isolation 
for all nodes in the network, the present contribution provides useful tools for prevention in crisis 
management.
Keywords: resilience, vulnerability, reliability analysis, road networks, minimal cut sets, algorithm

1 INTRODUCTION
The analysis of resilience and vulnerability of critical infrastructures is an essential aspect of 
crisis prevention and management (cf. [1]) and is still under research (cf. [2]). The Transpor-
tation Research Board (TRB) of the National Academies of Science – Engineering – Medicine 
in the United States, for example, periodically publishes a detailed overview of their corre-
sponding activities (cf. [3]). In this broad context, the present contribution particularly 
discusses a method and results with regard to the probabilities that certain nodes of a road 
network become isolated from a given subset of other nodes which are considered to provide 
specific – potentially life-critical – services. These “supply nodes” could be fire departments, 
hospitals or also supermarkets, for instance, and ideally need to be reached even if several 
links of the network are unavailable because of natural disasters or other catastrophic events.

The main questions in the following are: (1) How likely is it that a given node of the net-
work loses its connection to all supply nodes of a selected type (i.e., fire department, hospital 
etc.) depending on network topology and link failure probabilities? (2) What are the most 
critical links in the network in terms of negatively affecting the isolation risk of many nodes 
when becoming unavailable?
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For illustrative purposes, we will consider the artificial road network from Fig. 1a or a 
specific subset of it as in Fig. 1b. The whole network consists of ten regular nodes ( A J− ) 
which are connected with two distinguished supply nodes of the same type (S1 and S2) via 
fourteen bidirectional links (1 14− ). In some cases, we will focus specifically on the exem-
plary node E  in the center of the network for demonstrating our approach. Finally, let 
pi ∈  

0 1,  be the link failure probabilities for i = …1 14, ,  and Ii  the corresponding indicator 
functions representing the availability of the links, i.e.

 I ii =






1

0
if link is

available,

not available.
 (1)

For simplicity, we further assume that all Ii  are stochastically independent even if this could 
be unrealistic in some cases (e.g., flooding).

2 METHODOLOGY
Answering the questions from above (see Section 1) is strongly related to the concept of 
terminal reliability in graph networks (cf. [4]). Given a specific origin-destination pair X Y,( ) 
in the network, this addresses the probability that the corresponding nodes remain connected 
depending on potential link failures. Often, the terms connectivity reliability and terminal 
reliability are considered to be the same in the literature (cf. [1]). However note that connec-
tivity of a graph usually refers to the situation that there are paths not only between two 
particular nodes but between all nodes of the network which definitely is something 
different.

Let now P k( ) for k r= …1, ,  be the (minimal) paths between two selected nodes X  and Y  
of a given network with (stochastically independent) link indicator functions Ii  as in Eq. (1) 
for all links of the network (i m= …1, , ), where (minimal) path – in contrast to the more gen-
eral term way – means that P k( ) does not connect X  and Y  anymore whenever any of the 
elements of P k( ) is omitted. That is, the set P k( ) consists of all link indices of the k-th path 
between X  and Y  in this case. It can be shown then (cf. [4]) that the so-called structure 
function

 ψ I I Im k
r

i P k i1 11 1, , :…( ) = −∏ −∏( )= ∈ ( )
 (2)

represents whether there is a connection between X  and Y  available or not, i.e.

Figure 1: Exemplary road network with two supply nodes of the same type: (a) complete 
network; (b) reduced network.
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 ψ I Im1

1

0
, ,…( ) = if there is

at least one

no
connection betweenn and available.X Y







 (3)

Alternatively, ψ I Im1, ,…( ) can also be expressed based on the so-called (minimal) cut sets 
belonging to the origin-destination pair X Y,( ). Here, a cut set Z  is a set of link indices such 
that X  and Y  lose their connection if all corresponding links in the network fail. Conse-
quently, Z m: , ,= …{ }1  is a trivial cut set as it simply disconnects all nodes of the considered 
network. On the contrary, a cut set Z  is called minimal if Z  is no cut set anymore whenever 
any element of Z  is eliminated from it. Let now Z k( ) for k r= …1, , ’ be the minimal cut sets 
related to the connection between X  and Y , then

 ψ I I Im k
r

i Z k i1 1 1 1, , .…( ) = ∏ −∏ −( )( )= ∈ ( )

′

 (4)

However, note that finding all these cut sets manually can be laborious, even if the considered 
networks are small. Thus, Section 2.3 will provide a recursive algorithm that generates all 
minimal cut sets based on the paths between two given nodes.

We now ask for the probability that X  and Y  become disconnected depending on given link 
failure probabilities pi for i m= …1, ,  (cf. Section 1). Obviously, Ii  for i m= …1, ,  has a Ber-
noulli distribution with parameter R pi i:= −1  which is called link reliability in this context. 
Moreover, ψ I Im1, ,…( ) is Bernoulli-distributed as well, and the so-called system reliability 
Rsys  (i.e., the probability of having at least one available connection between X  and Y ) is 
given by

 R I I I Im msys = …( ) =( ) = …( )( )P Eψ ψ1 11, , , , . (5)

As a short example, we consider the (reduced) network from Fig. 1b and ask for the reliability 
of the connection between the nodes E  and F  given the corresponding link failure probabil-
ities pi. We obtain the link reliabilities R pi i= −1  for all i , and Eq. (2) yields the relevant 
structure function ψ  based on the two existing paths P 1 8 9( ) = { },  and P 2 9 11 12( ) = { }, ,  
between E  and F , namely – note that ( )I Ii

b
i=  for all b∈ –

 ψ I I I I I I I I I I I I I I I I4 8 9 10 11 12 8 9 9 11 12 8 9 9 111 1 1, , , , ,( ) = − −( ) −( ) = + 112 8 9 11 12− I I I I . (6)

Consequently,

 R I I I I I I R R R R R R R R Rsys = ( )( ) = + − ψ 4 8 9 10 11 12 8 9 9 11 12 8 9 11 12, , , , ,  (7)

in this example due to the fact that the appearing indicator functions Ii  were considered to be 
stochastically independent (see Section 1).

2.1 Graph modification and path search

Terminal reliability as explained in the previous section refers to the connection between two 
given nodes of a network, i.e. exactly one origin and one destination node. On the contrary, 
the actual focus of the present study is on the situation with multiple destinations where it is 
sufficient that the given origin remains connected to at least one of these possible destinations 
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(cf. Section 1). In case of an arbitrary regular node from the network in Fig. 1a, for instance, 
we require that one of the supply nodes can be reached. It is not mandatory that connections 
to both supply nodes are available at the same time.

Unfortunately, the corresponding system reliability Rsys  (i.e., the probability that there is at 
least one available path to at least one of the supply nodes) generally is no simple function of 
the separate probabilities that either the first or the second supply node can be reached. This 
is because there may be (partly) overlapping paths with regard to both these cases causing 
complex (stochastic) dependencies in consequence of the explicit network topology. Hence, 
we cannot apply the previously described concept of terminal reliability directly at this point. 
However, there is a simple solution.

For this purpose, consider the modified graph networks from Fig. 2 where all supply nodes (of 
the same type) with their adjacent links were combined to form a single “virtual” supply node S 
(which can be considered as being located in a third dimension above the rest of the network, for 
instance). For a given regular node X of the original network from Fig. 1, the availability of a 
connection to at least one of the original supply nodes is equivalent then to the availability of a 
path between X and S in the modified graph. Thus, by passing over to the modified network, 
terminal reliability becomes applicable again for answering our original question.

In case of node E  in the complete network from Fig. 1a, for instance, the relevant paths 
between E  and S in the modified graph (see Fig. 2a) are given by P 1 1 5 6 7( ) = { }, , , , 

P 2 2 3 6 7( ) = { }, , , , P 3 10 11( ) = { }, , P 4 8 10 12( ) = { }, , , P 5 4 8 9( ) = { }, ,  and P 6 4 9 11 12( ) = { }, , ,  . 

Based on Eqs. (2) and (5), it is possible then to compute the probability Rsys  that E  remains 
connected to at least one of the supply nodes. Needless to say, the probability that E  becomes 
isolated from both supply nodes simply is Qsys := 1− Rsys. Finding all paths between two 
given nodes of a network can be done by recursively enumerating all possible neighbors 
using standard depth-first search algorithms (cf. [5]) although, of course, there are well-
known practical limitations due to the fact that the number of paths may grow exponentially 
with the number of nodes in the network.

2.2 Clustering and reliability estimation

Usually, the full expansion of the structure function ψ  as in Eq. (6) can be very cumbersome 
to obtain (cf. [6]). Consequently, several exact and heuristic approaches have been developed 

Figure 2: Modified exemplary network with a “virtual” supply node: (a) complete network; 
(b) reduced network.
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to optimize this computation (cf. [4]). But even in the standard case using Boolean algebra as 
above, it is sometimes possible to reduce the effort by two simple tricks (cf. Lemma 1 and 2).

Lemma 1: Let P k( ) for k r= …1, ,  be the (minimal) paths between two selected nodes of a 
given network with (stochastically independent) link indicator functions Ii  and link reliabili-
ties Ri for i m= …1, , . Moreover, let i m0 1∈ …{ },  be such that i P k0 ∈ ( ) for all k . Then,

 R I I R Im i k
r

i P k i isys = …( )( ) = ⋅ −∏ −∏( )( )= ∈ ( ) { }
 ψ 1 10 0

1 1, , \ . (8)

In other words, the indicator function Ii0
 can be excluded from the detailed expansion of ψ  

when computing its expectation if all paths contain the link i0. In case of the network from 
Fig. 1a, this becomes relevant for the nodes I  and J , for instance, when considering their 
connection to the given supply nodes.

Proof of Lemma 1: We prove the proposition of Lemma 1 by mathematical induction. Thus, 
let r =1 first. Due to the stochastic independence of the indicator functions Ii , we obtain (cf. 
Eqs. (2) and (5))

 R I I I R
i P i i i P i i i i Psys = ∏( ) = ( ) ⋅ ∏( ) = ⋅ − −∏
∈ ( ) ∈ ( ) { } ∈ (

   1 1 10 0 0
1 1\ )) { }( )( )\ i iI

0

. 

We now show that Eq. (8) also holds for r +1 given that it is correct for any given r∈. 
Namely, having in mind that ( )I Ii

b
i0 0

=  for all b∈ and that i P k0 ∈ ( ) for all k , the follow-
ing holds:

 
R I Ik

r
i P k i i P r i k

r
isys = −∏ −∏( )( ) = − −∏( )∏ −∏

=

+

∈ ( ) ∈ +( ) =
 1 1 1 1 11

1
1 1 ∈∈ ( )( )( )P k iI

 

 
= −∏ −∏( )( ) + ∏ ⋅∏ −∏( )( )= ∈ ( ) ∈ +( ) = ∈ ( )
 1 1 11 1 1k

r
i P k i i P r i k

r
i P k iI I I

 

 = − ∏ − ∏( )( ) + ∏ ∏= ∈ ( ) { } ∈ +( ) { } =R I I Ii k
r

i P k i i i i P r i i k
r

0 0 0 0
1 11 1 1 

\ \
11− ∏( )( )∈ ( )i P k iI  

 = − ∏ − ∏( )( ) + ∏ ∏= ∈ ( ) { } ∈ +( ) { } =R I I Ii k
r

i P k i i i P r i i k
r

i0 0 0 0
1 11 1 1 

\ \
−− ∏( )( )∈ ( )i P k iI  

 
= −∏ −∏( )( ) + ∏ ∏

= ∈ ( ) { } ∈ +( ) { } =
R I I Ii k

r
i P k i i i i P r i i k

r

0 0 0 0
1 11 1 1 \ \ 11

0
−∏( )( )∈ ( ) { }i P k i iI\

 

 
= −∏ −∏( )( ) + ∏ ∏

= ∈ ( ) { } ∈ +( ) { } =
R I R Ii k

r
i P k i i i i P r i i k

r

0 0 0 0
1 11 1 1 \ \ 11

0
−∏( )( )∈ ( ) { }i P k i iI\

 

 
= − −∏( )∏ −∏( )( )∈ +( ) { } = ∈ ( ) { }

R I Ii i P r i i k
r

i P k i i0 0 0
1 1 11 1 \ \

 

 = − ∏ − ∏( )( )=
+

∈ ( ) { }R Ii k
r

i P k i i0 0
1 11

1
\ .

 

Lemma 2: Let P k( ) for k r= …1, ,  be the (minimal) paths between two selected nodes of a 
given network with (stochastically independent) link indicator functions Ii  and link reliabili-
ties Ri for i m= …1, , . Moreover, let Cj for j l= …1, ,  be disjoint subsets of 1, ,…{ }m  such that 
for each k r∈ …{ }1, ,  there is a j l∈ …{ }1, ,  with P k C j( ) ⊆ . Then,
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 R I I Rm j
l j

sys sys= …( )( ) = −∏ −( )=

( ) ψ 1 11 1, ,  (9)

where

 R Ij

k P k C i P k ijsys
( )

( )⊆ ∈ ( )
= −∏ −∏( )( ): : 1 1 . (10)

That means, if it is possible to cluster the paths P k( ) in such a way that there is no link over-
lap between any two paths from different clusters, the structure function ψ  needs to be 
expanded per cluster only for computing the respective system reliability Rsys . Moreover, 
note that potentially the calculations can be simplified even further by applying Lemma 1 to 
the terms R j

sys
( ) from Eq. (10) whenever possible.

Proof of Lemma 2: Due to the stochastic independence of the indicator functions Ii  and 
because of the fact that the clusters Cj are disjoint per assumption, we obtain

 
R I Ik

r
i P k i j

l
k P k C i P k ijsys = −∏ −∏( )( ) = − ∏ ∏ −∏

= ∈ ( ) = ( )⊆ ∈ ( )
 1 1 1 11 1 : (( )( )

 

 = −∏ ∏ −∏( )( )= ( )⊆ ∈ ( )
1 11j

l
k P k C i P k ij

I :
. 

We demonstrate the above clustering approach in combination with Lemma 1 in case of 
node E  from the network in Fig. 1a considering its connection to at least one of the supply 
nodes. The relevant paths have already been found (see Section 2.1) and are defined by 

P 1 1 5 6 7( ) = { }, , , , P 2 2 3 6 7( ) = { }, , , , P 3 10 11( ) = { }, , P 4 8 10 12( ) = { }, , , P 5 4 8 9( ) = { }, ,  and 

P 6 4 9 11 12( ) = { }, , , . Obviously, there are two natural clusters. Namely, C1 1 2 3 5 6 7= { }, , , , ,  

and C2 4 8 9 10 11 12= { }, , , , ,  with P 1( ) and P 2( ) belonging to cluster C1 and P 3( ), P 4( ), 

P 5( ) as well as P 6( ) belonging to cluster C2. Moreover, the links 6  and 7 are part of all 

paths in cluster C1 while the cluster C2 comprises paths that are even completely disjoint 

(i.e., P 3( ) and P 5( )). According to Lemma 1 and 2, the system reliability Rsys  is thus 
given by

 R R Rsys sys sys= − −( ) −( )
( ) ( )1 1 11 2  (11)

where

 R R R I I I I R R I I I I I I I Isys
1

6 7 1 5 2 3 6 7 2 3 1 5 1 2 3 51 1 1( )
= − −( ) −( )( ) = + −(  )) 

 = + −( )R R R R R R R R R R6 7 2 3 1 5 1 2 3 5  (12)

and

 R I I I I I I I I I I I Isys
2

10 11 8 10 12 4 8 9 4 9 11 121 1 1 1 1( )
= − −( ) −( ) −( ) −( )( )) 

 = + + + − −�E I I I I I I I I I I I I I I I I I I I I10 11 4 8 9 8 10 12 4 9 11 12 8 10 11 12 4 8 9 10II11( − ... 

 …− − − +I I I I I I I I I I I I I I I I I I I I I4 8 9 10 12 4 8 9 11 12 4 9 10 11 12 4 8 9 10 11 12 22 ) (13)
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 = + + + − −R R R R R R R R R R R R R R R R R R R R R10 11 4 8 9 8 10 12 4 9 11 12 8 10 11 12 4 8 9 10 111 − ...

 …− − − +R R R R R R R R R R R R R R R R R R R R R4 8 9 10 12 4 8 9 11 12 4 9 10 11 12 4 8 9 10 11 12 22.

Assuming that R R pi ≡ = −: 1  for all i  where p∈  
0 1,  is a constant link failure probability 

for all links, we finally obtain

 R R R R R R Rsys = − − +( ) − − + −( )1 1 2 1 2 4 24 6 2 3 5 6  (14)

 = + + − − − + + − − +R R R R R R R R R R R2 3 4 5 6 7 8 9 10 11 122 2 4 4 10 4 4 2 . 

Figure 4 in Section 3 shows (among others) a plot of this Rsys  as a function of p.

2.3 Cut set detection and link criticality

As already discussed, the system reliability Rsys  can also be expressed based on (minimal) cut 
sets (see Eq. (4)). Moreover, cut sets may be used to identify the most critical links in a net-
work. For, whenever a cut set is active (i.e., when all links belonging to it fail), the 
corresponding structure function ψ  from Eq. (3) becomes zero indicating that there is no 
available connection between the considered nodes (i.e., between regular nodes and supply 
nodes in our specific case). This means that links that are part of many cut sets (and/or par-
ticular small cut sets) can be seen to be more critical than others in the network.

Therefore, in order to answer our second question from Section 1, it is necessary to obtain 
all (minimal) cut sets between the regular nodes and supply nodes first. More precisely, we 
need to know the (minimal) cut sets between the regular nodes and the corresponding “vir-
tual” supply node in the modified graph (cf. Fig. 2). Figure 3 presents the pseudo-code of a 
recursive algorithm that detects all (minimal) cut sets based on the knowledge about all paths 
between the nodes of a given origin-destination (OD) pair.

The basic idea of the algorithm from Fig. 3 is to systematically generate link combinations 
such that all relevant paths become cut when the respective links fail. Once a candidate for a 
cut set is found, it is checked with regard to minimality. We demonstrate the algorithm’s 
functionality using the node E  from the reduced network in Fig. 1b as an example. In this 
context, we ask for connectivity to at least one of the supply nodes. Consequently (cf. Section 
2.1), the relevant paths are given by P 1 10 11( ) = { }, , P 2 8 10 12( ) = { }, , , P 3 4 8 9( ) = { }, ,  and 
P 4 4 9 11 12( ) = { }, , , .

Obviously, in order to cut P 1( ), either link 10 or link 11 must fail. We start with the case 
that link 10 becomes unavailable. Then, P 2( ) is disconnected directly as well. Thus, we can 
pass over to P 3( ). Given that link 4 becomes interrupted, we obtain that then P 4( ) is cut, too. 
Hence, as there are no more paths, Z 1 4 10( ) = { }: ,  is the first candidate for a minimal cut set. 
We then move back to P 3( ) and check what happens if link 8 fails instead of link 4. Obvi-
ously, now P 4( ) remains connected so that link 4, 9, 11 or 12 needs to be interrupted 
additionally in order to get a candidate cut set. Obviously, the so-found cut set Z 2 4 8 10( ) = { }: , ,  
is not minimal because of  Z Z2 1( ) ⊃ ( ). On the other hand, Z 3 8 9 10( ) = { }: , , , Z 4 8 10 11( ) = { }: , ,  
and Z 5 8 10 12( ) = { }: , ,  will be added to the candidate list (at least for the moment). Again, we 
go back to P 3( ) with the assumption that (as last option) link 9 fails. Clearly, P 4( ) is not 
available then anymore, and Z 6 9 10( ) = { }: ,  becomes another candidate cut set directly. Fur-
thermore,  Z Z6 3( ) ⊂ ( ) so that ultimately Z 3( ) needs to be removed from the list of all 
minimal cut sets. After that, the algorithm repeats the previous steps based on the assumption 
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that link 11 in P 1( ) is interrupted instead of link 10. By that, finally seven additional cut sets 
are found, four of them being not minimal. Moreover, also Z 4( ) has to be rejected as a poten-
tial candidate in this context because of the smaller cut set Z 7 8 11( ) = { }: , .

In the end, the algorithm correctly provides the following minimal cut sets for the consid-
ered node E  from the reduced network in Fig. 1b with regard to its connection to at least one 
of the supply nodes. Namely, Z 1 4 10( ) = { }: , , Z 2 8 10 12( ) = { }: , , , Z 3 9 10( ) = { }: , , 
Z 4 8 11( ) = { }: , , Z 5 4 11 12( ) = { }: , ,  and Z 6 9 11 12( ) = { }: , , .

Figure 3: Recursive algorithm for finding all (minimal) cut sets between two given nodes of 
a network based on the knowledge of all (minimal) paths.
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3 RESULTS
In the following, we present the analysis of the network from Fig. 1a with regard to the orig-
inal questions from Section 1 based on the aforementioned methods. Figure 4 shows the 
derived probabilities RX

sys  for each regular node X  from the network that this node remains 
connected to at least one of the given supply nodes depending on the link failure probability 
p∈  

0 1,  that is assumed to be the same for all links.

Figure 4: System reliability RX
sys  per node (X A J= …, , ) depending on the link failure 

probability p in case of the exemplary network from Fig. 1a.
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Obviously, the system reliability RX
sys  (and thus also the isolation risk Q RX X

sys sys:= −1 ) for 
each node X A J∈ …{ }, ,  is a polynomial (but non-linear) function of p. Moreover, each node 
has its own characteristic curve in Fig. 4 reflecting the topological details of the network. 
Table 1 lists some concrete values of RX

sys  in case of p =1%, 5% and 10%. It turns out that 
whenever there are two or more completely disjoint paths between the considered (regular) 
node X  and the existing supply nodes, the isolation risk usually (i.e., at least for small values 
of p) is much lower than p. This, in particular, explains why the nodes I  (and J) are dis-
tinctly different from the others as there are no alternative paths in the network if link 13 
(or link 14) fails.

The completely different behavior of nodes with and without alternative paths to the given 
supply nodes becomes most obvious in the theoretical networks from Fig. 5 which, so to say, 
are the extreme situations. Both networks are considered to equally consist of m links with 

Table 1: Isolation risk QX
sys per node (X A J= …, , ) in case of the exemplary network from Fig. 1a 

for some fixed values of p. The factor values λ1 5% %→
 and λ5 10% %→

 describe the rates of 

increase of QX
sys when raising p as denoted (i.e., Q p Q pX X

sys sys=[ ]⋅ = =[ ]→a l ba b ).

Node

Isolation risk QX
sys

p =1% λ1 5% %→
p = 5% λ5 10% %→

p =10%

A 0 0104. % 28 7. 0 2984. % 4 6. 1 3679. %

B 0 0008. % 124 1. 0 0993. % 7 8. 0 7768. %

C 0 0104. % 28 7. 0 2984. % 4 6. 1 3679. %

D 0 0107. % 31 6. 0 3383. % 5 0. 1 6955. %

E 0 0006. % 136 0. 0 0816. % 8 4. 0 6814. %

F 0 0103. % 28 0. 0 2886. % 4 5. 1 3077. %

G 0 0005. % 132 6. 0 0663. % 8 2. 0 5417. %

H 0 0006. % 132 2. 0 0793. % 8 2. 0 6495. %

I 1 0008. % 5 1. 5 0943. % 2 1. 10 6991. %

J 1 9908. % 4 9. 9 8396. % 2 0. 19 6292. %

Figure 5: Theoretical networks with and without alternative paths between Y  and the given 
supply nodes Sj  ( j m= …1, , ): (a) star topology; (b) line topology
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the same link failure probability p∈( )0 1, . Then, the modified graph (cf. Section 2.1) belong-
ing to the star topology from Fig. 5a naturally consists of two nodes only that, however, are 
connected via m parallel links. That is, we obtain a multigraph in this case. On the contrary, 
the line network from Fig. 5b does not change at all in the modified graph, of course. The 
system reliability Rsys  of the node Y  with regard to its connection to (at least one of) the sup-
ply nodes is then given by (cf. Section 2)

 R p
m

m
sys = − −( ) →

→∞

1 1 1 (15)

in case of the star topology (see Fig. 5a) and

 R pm

m
sys = →

→∞

0 (16)

for the line network (see Fig. 5b), respectively.
We finally ask for the relevance of each single link in context of the overall network topol-

ogy (cf. Section 1). In the case of Figs 5a and b, it becomes easy to see that for symmetry 
reasons all links are equally relevant within each respective network. In the exemplary net-
work from Fig. 1a, however, it is much more difficult to decide what the critical links are. As 
a kind of heuristic, Fig. 6a shows the total counts of how often each link appears in the cut 
sets of the nodes A J, ,… . Assuming that links are more critical if they are part of many cut 
sets, it turns out that the links 3, 5 and 10 are the most important ones. On the contrary, the 
links 6 and 7 from the center of the network are seemingly much less critical. Clearly, the 
links 13 and 14 appear in very few cut sets (and thus are not very critical according to our 
simple definition of criticality) because their failure reduces the connectivity of the nodes I  
and J  only whereas the majority of the network remains unaffected.

Needless to say, the simple counts from Fig. 6a are just a first heuristic for identifying 
critical links. A more detailed approach should also take account of the different sizes of the 
cut sets, for instance. This could be done by suitably weighting the link counts depending on 
the respective cut sets they are part of. In this context, note that the average size of a cut set 
in case of our example from Fig. 1a is 4 04. . The complete size distribution is depicted in 
Fig. 6b.

4 CONCLUSION AND FURTHER DEVELOPMENT
The concept of terminal reliability is well-suited for analyzing the connectivity between two 
arbitrary nodes of a given network in case of stochastic link failures. The present contribution 
provides a simple method (graph modification, see Section 2.1) which enables us to also 

Figure 6: (a) Counts of link appearance in the minimal cut sets of all (regular) nodes from the 
exemplary network in Fig. 1a; (b) Size distribution of the cut sets.
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consider the case where the destination is defined by a set of multiple nodes instead of a sin-
gle node only. The most crucial point when applying terminal reliability, however, is the 
problem of scalability. For, besides the identification of all relevant paths and cut sets, the 
necessary expansion of the structure function ψ  using Boolean algebra (cf. Eq. (6)) can 
become highly expensive computationally in case of large networks. In this context, cluster-
ing (see Section 2.2) is a basic step for reducing the efforts. Nonetheless, more advanced 
methods (cf. [6]) are required for large-scale applications.

Apart from that, further analyses should consider how to deal with multiple types of supply 
nodes as destination in parallel. That is, what are the system reliabilities per node when con-
nections to more than one type of supply (e.g., fire department, hospital, police station) have 
to be available all the time? Moreover, we could ask for not only the isolation risk of single 
nodes but also how likely it is that M or more nodes lose their connection to the supply nodes 
at the same time where M ≥1. Another interesting question would be: What happens if not 
only links but also supply nodes fail? How can this be modelled in context of the above the-
ory and what are the effects on system reliability? The same, by the way, holds in case that 
we allow correlations with regard to the link failures instead of considering stochastically 
independent link indicator functions Ii  only (cf. Section 1).

Finally, in Section 3 we shortly discussed a simple heuristic for identifying critical links 
based on the found cut sets. Of course, the presented approach needs to be enhanced in order 
to provide more distinguished results. Besides simple weighting as already mentioned (see 
Section 3), this could also include taking account of the potentially different importance 
among the nodes of the network. Highly populated areas or nodes with a high strategic rele-
vance, for instance, could be considered as being more important than others in this context.
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