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ABstrACt
Consensus and conflict are modelled in the context of interacting pairs of agents who may have very 
diverging sentiments regarding some particular issue. simulations using the model display character-
istics of complexity. Agents are modelled using Beta probability density functions whose parameters 
determine the agent’s opinion and resistance to change after an interaction, and a third independent 
parameter that determines the agent’s influence. interactions among groups of agents with both aligned 
and opposing sentiments are simulated. the results indicate that in most cases a form of consensus is 
reached eventually, but for opposed agents, it is not possible to tell which agents that consensus will 
favour. proofs of convergence are given in the cases where the initial state is one of consensus, and 
when it is one of conflict.
Keywords: Beta distribution, conflict, consensus, convergence, influence, resistance, senti-
ment, simulation

1 introduCtion
in this analysis we build a framework for complexity that is consistent with the characteristics 
of complexity stated by rzevski in [1]: autonomy, emergence, non-equilibrium, non-linear-
ity, connectivity, self-organisation and co-evolution. the framework, once initialised, is 
designed to evolve with time according to rules that are stochastically determined, and follow 
general principles. those principles are consistent with rzevski’s discussion in [2], namely 
that a model of a complex system must be adaptable to changes, and that the adaptation must 
be autonomous (i.e. without specific instructions). A major consequence is that the agents in 
the system must be able to self-organise (see the details in section 3).

the framework comprises a set of n agents X = …{ }X X Xn1 2, , , . in the interaction model 
of section 3, time is discretised such that times t t1 2, ,… are the times at which an agent-agent 
interaction occurs. the resulting time intervals, t t t t2 1 3 2− − …, ,  are therefore not necessarily 
of constant length. the framework is used to examine the general principles of conflict and 
consensus in the context of agreement or disagreement on some issue. we say that an agent 
has a particular sentiment with respect to an issue, and measure that sentiment by a real num-
ber in (0,1) which represents the degree to which the agent either agrees or disagrees with 
some proposition. 

1.1 Conflict and Consensus

Any pair of agents can “agree” or “disagree” with each other with respect to an issue. Agree-
ments constitute consensus, and large disagreements constitute conflict. the precise definition 
of an agent (section 3.1) will clarify the distinction between conflict and consensus ade-
quately. the development over time of opinions of a group of agents will be simulated 
(section 4). the complexity-derived simulations determine whether or not consensus can be 
reached following initial conflict, and whether or not conflict can arise from initial consensus. 
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the interaction between agents is modelled by the balance of influence of one agent and 
resistance of another. that balance results in emergent behaviour: non-deterministic results 
which sometimes cannot be explained precisely. 

2 previous work on Crowds, ConFliCt And Consensus
this section contains a brief account of studies of agent interaction that relate to consensus 
or conflict. early work in this context was done by epstein [3], and it forms the basis of many 
subsequent studies. epstein states principles, broadly the same as the ones stated in the pre-
vious section, in the form of interaction rules. However, no specific model is proposed, and 
emergence is not mentioned. in a later paper [4], epstein introduces a rule-based model in 
which the state of a non-authority set of agents can be changed by an authority set of agents. 
the model incorporates hard thresholds: breaching a threshold results in a state change.

epstein’s principles persist in the review of lemos et al. [5], with the addition of emer-
gence. the context remains social conflict. they discuss, first, threshold-based models, such 
as from Granovetter [6]. each agent has a threshold, and joins a protest if the number of other 
agents in the protest exceeds the threshold. Among other more specialised models cited are 
papers by doran [7] (weak but agile agents against strong but sluggish agents), and kim & 
Hanneman [8] (rules for opposing agents are distribution-based). in the context of threshold 
models, we also mention Gurr’s Relative Deprivation model [9], in which an agent’s increas-
ing disparity between expectation and reality leads to a change of state.

Game theory is a second, and common alternative, approach to agent interaction. this 
choice is natural, since such models use constraints on actions due to other agents. Jones [10] 
gives a comprehensive overview of conflict and consensus models with non-cooperative and 
cooperative game theory respectively. Among the concepts considered are threats, bargaining 
and strategy. Axtell et al. [11] models agent interaction as a game where two players bargain 
for ownership of a resource. if their joint demand exceeds some predetermined limit, they both 
get nothing. otherwise, they get their demands. All possible outcomes are shown, as is the 
location of each agent with respect to those outcomes. weisbuch [12] extends the Axtell ana-
lysis to include features (e.g. a moving average of previous gains) for each agent. weisbuch‘s 
result shows that there is a stabilisation as time increases, and that divergence does not emerge 
spontaneously from a random starting point, agreeing with results in section 4 of this paper.

Game theory models tied to a network represent a third mode of agent interaction. many 
have the Voter model [13] as a basis. within a network, a target agent having a discrete set of 
opinions is selected at random, and is then assigned the opinion of one of its nearest neigh-
bours, also chosen at random. in terms of the network topology context, the ‘nearest’ neighbours 
are the agents that are directly connected to the target agent. physical distance between the 
target agent and any other agents is not relevant: network connections are virtual.

this opinion-formation mechanism is best suited as a model of agents’ lack of self-confi-
dence, resulting in imitation. under assumptions that state transitions are binary (only two 
opinions, with a potential transition of one to another), and that such transitions follow a 
markov process, agents’ opinions converge to one of the possible opinions. the Axelrod 
model [14] is an extension of the Voter model in that each agent is assigned a set of features. 
in an agent-agent interaction, corresponding features are compared, and if they differ, the 
features of one agent are set to the features of the other. After multiple interactions, the Axel-
rod model predicts either global convergence, or the emergence of several groups. the 
Axelrod model is appropriate when applied to social groups that have multiple distinct char-
acteristics, some of which are opposed. simulations and summaries for both the Voter and 
Axelrod models are shown in miguel et al. [15].
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3 AGents And AGent interACtion
in this section we describe a new way to represent agents and to investigate interactions 
between them. this analysis differs from the prior analyses (section 2) in that the context in 
which the agents interact is completely general. no assumptions are made apart from the 
general principles underlying complexity. the Mathematica implementation permits, a suit-
able combination of mathematical formulation, manipulation ability, and display. example 
applications are given in this section, and in section 4.

3.1 Agent structure

An agent A is represented by a triple:

 A a b I s= ( ){ }, , , .  (1)

in (1), a and b are the parameters of a Beta density β(a, b, x); x a b, , ,∈( )0 1 , I ∈( )0 1,  rep-
resents the agent’s influence and s is an alphanumeric name for the agent. with those values 
of a and b, a Beta density has a single peak with a skew that depends on the values of a and 
b. the degree to which an agent agrees or disagrees with an issue (i.e. the agent’s opinion) is 
modelled by the location of the peak of the density in (0, 1). specifically, an agent’s location 
L(A) is given by the mean of the density, 

 L A
a

a b
( ) =

+

.  (2)

An agent with a biased opinion is represented by either a b<  (the peak is near x = 0) or 
b a<  (the peak is near x = 1). the parameter values in very biased cases are approximately in 
the ratios 1:10 and 10:1 respectively. An agent with a neutral opinion has a = b, and that 
opinion is most open to influence if a and b are small (typically less than 10). Both very 
biased and near neutral opinions are typically found in political contexts. most recently very 
biased opinions have been noted with respect to referenda. examples are Brexit, scottish 
independence and Catalonian independence. in the illustrations in the following section, an 
agent with very low influence (I ~ 0) is shown with very low opacity, and an agent with very 
high influence (I ~ 1) is shown with very high opacity. intermediate opacities indicate medium 
influence (I ~ 0.5). it is easy to identify people who are or have been influential. the result of 
their influence may only be apparent with hindsight. one example is rosa parks, who trig-
gered the campaign for racial equality in the usA in 1955. Another is nelson mandela, who 
had a key role in formulating proposals to end apartheid in south Africa in 1989. 

3.2 the mechanism for Agent interaction

the way in which agents interact is a more sophisticated version of the mechanism used by 
Burt [16]. the mechanism uses an agent’s resistance to influence, ρ, which is defined in 
terms of the variance, v, of the agent’s underlying Beta (a, b) distribution, ultimately mapped 
to (0,1) using a sigmoid transformation on the inverse square root of v ( ′ρ  in (3), below). 
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when two agents X((aX,bX),IX,”x”) and Y((aY,bY),IY,”y”) interact, the convention used is 
that Y affects X, Y remains unchanged afterwards, and X transforms to a resultant, Z((aZ, bZ), 
IZ, “Z”), denoted by Z = < X, Y >. the interaction proceeds by defining Beta parameters (aZ, 
bZ) for Z according to Algorithm 1, below. 

Algorithm 1: Interaction Z = < X, Y >
Step 1: Calculate a linear combination of influences.

r
I

I
r

e
Y

Y Y
r1 2

2
1

1

1 1
=

+

− =

+
−

ρ

; ;

′ = + −( )a ra r aZ X Y1 ; ′ = + −( )b rb r bZ X Y1

Step 2: modify the Beta parameters in step 1 based on resistances, with a bias towards X.

a a aZ X X X Z= + −( ) ′r r1 ; b b bZ X X X Z= + −( ) ′r r1

Step 3: modify the Beta parameters in Step 2 by perturbations (see the explanation below). 
using single draws εaZ

 and εbZ
 from N(0, aZ /10) and N(0, bZ /10) distributions respectively,

a aZ Z aZ
→ +ε ; b bZ Z bZ

→ +ε .

Step 4: use a similar stochastic perturbation to derive the influence of Z, where ε IX
 is a single 

draw from a N(0, IX/100) distribution.

I IZ X IX
= +ε

Step 5: Apply limiters such that the results of steps 3 and 4 are in (0,1)

the perturbation stages (3 and 4) add a non-linear element to the Beta parameter transforma-
tions. they make the interaction process non-deterministic, and model the situation where agents 
do not make entirely rational or expected decisions. An example of such a decision is the election 
of donald trump as us president. overall, the effect of the Algorithm 1 rules say: “Balance 
influence and resistance with a bias towards the opinion of the influenced agent.”  
Figures 1a and b show two contrasting interactions using the Algorithm 1 rules. they both 

Figure 1(a): influential A has a has a limited effect on resistant Y
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illustrate the repeated effect of an agent A a second agent. in Fig. 1a, the  resultants of successive 
interactions are given by Y Y A r Y Yr r+

= = =1 11 4, , .. ; . in this case, A is a very influential (high 
opacity) agent with high resistance, who tries to influence a Y who is equally influential and 
resistant, but whose opinion directly opposes A’s opinion. A has some success in shifting Y’s 
opinion, as shown by the gradual progression of Y from location near 1 to location near 0.8 (the 
left-pointing arrow). this is a model of, for example, unsuccessful advertising. in Fig. 1b, Y is 
replaced by an agent X who has medium influence (shown as lower opacity), has lower resistance 
to persuasion, and is not opinionated. A is able to shift X’s opinion significantly to a location near 
0.3. successive resultants in this case are given by X X A r X Xr r+

= = =1 11 4, , .. ; . this situation 
models successful advertising, and also successful transmission of influence by social media.

3.3 Group Location and Convergence

A Group is a set of agents. the Group Location is a weighted average of the locations of the 
members of a Group. the weights are normalised ratios of influence to resistance for each 
member of the Group (equation 4). so for a Group X with n agents X X Xn1 2, , ,…{ },

 w
I X

X
i n L w L Xi

i

i i

n

i i=
( )
( ) = ( ) = ( )

=
∑r

, .. ;1
1

X .  (4)

Following a sequence of agent interactions among members of a Group, the Group Loca-
tion eventually converges to a consensus. the term ‘convergence’ is used in the sense that 
there exists a confidence interval in which the Group Location will lie following all interac-
tions. Appendix A is a proof that, under certain conditions, the Group Location for the case  
n = 2 is bounded by a subset of (0,1). Appendix B extends this result to the case n > 2. in the 
case of agents whose opinions broadly agree, the eventual opinion will also broadly agree 
with the initial opinions. if two subsets are markedly opposed, there will be consensus even-
tually, but it is not possible to say which subset will be favoured, despite a bias towards 
influenced agents who are resistant to change (Step 2 in Algorithm 1). 

4 simulAtion results
the principles introduced in the previous section are illustrated in this section. the appendi-
ces give proofs that predict what the results of simulations should be, and the simulations are 
consistent with those predictions. 

Figure 1(b): influential A significant effect on non-resistant Y.
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Consider r interactions for the Group X of section 3.3. At each interaction pairs of agents 
are chosen at random, with replacement. if the pair comprises two identical agents, the inter-
pretation is that the agent changes its opinion independently of other agents. the emergent 
behaviour is then examined by generating pair-wise interactions repeatedly. the existence of 
an implied fully connected network with agents as nodes is assumed. notable cases of influ-
ence and resistance follow. in each case, the plots presented show the Group Location directly 
after each interaction. in each case n = 10 and r ≥ 200. note that the interval between succes-
sive interactions is not necessarily constant. in each simulation, when agent Xp ∈ X  tries to 

influence agent Xq ∈ X , let the resultant after the rth interaction of N for Xq be X
N q r, , 

. then 

X
N q r, , + 

1
is defined by equation 5a. equation 5b gives the Group Location L rX +( )1  after 

r interactions (the weights wi are defined in equation 4).

 X X X r N X X
N q r N q r p N q q, , , , , ,

, , .. ;+[ ] [ ] [ ]= = =
1 1

1   (5a)

 L w L Xr
i

N

i i rX +
=

+( ) = ( )∑1
1

1,
  (5b)

the Group Locations are illustrated in the figures that follow. if p = q, the interpretation is 
that Xq has influenced itself (i.e. has had a change of mind).

4.1 Consensus: distinct Groups, each with similar opinions

Figure 2(a) shows three distinct Groups G1, G2 and G3 in their initial states, and Fig. 2b 
shows them after 200 repeated interactions. the ‘before’ and ‘after’ states look very similar. 
G1 and G3 are highly opinionated and remain clustered around their respective start loca-
tions, 0.9 and 0.1. G2 has no firm opinion and remains clustered near its starting location, 0.5. 
Figure 2(c) shows the corresponding Group Location for each Group. the G1 and G3 Group 
Locations are bounded within narrow limits, whereas G2 exhibits greater volatility (see 
Appendix A). these results reflect greater susceptibility of G2 to influence. these cases are 
typical of political groupings: some people are highly opinionated with respect to certain 
political parties, and they mostly stay that way. others are willing to be swayed.

the results obtained in this simulation resemble those obtained by namatame and Chen 
[17] in the context of reinforcement learning. they derive similar-shaped probability distri-
butions in simulations, but have no explicit densities.

Figure 2(a): three Groups initial state
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4.2 Conflict: Groups with opposing opinions

Figure 3 shows the progressive Group Locations of three distinct simulations for the same 
two agents, who have directly opposing strong opinions, as shown by their initial locations: 
0.95 and 0.05. the simulations have common characteristics: initial volatility followed by 
local convergence (as predicted in Appendix B). However, the limit points are different for 
every simulation. if a simulation is run for 1000 interactions, the pattern of shifting the Group 
Location of the pair between the limits 0 and 1 continues. there is an eventual ‘winner’ of the 
argument, but it is not possible to tell in advance which agent will be the winner. this result 
is really the only one of the results presented here that is surprising. it is not clear, in advance 
of running a simulation, that any such consensus might be reached. A plausible expected 
result is continued conflict. the Anglo-irish Good Friday agreement of April 1998 provides 
an example of where two conflicting parties eventually agreed on the issue of peace in north-
ern ireland. prior to that date it was not clear if an agreement would favour one side or the 
other, or to what extent.

4.3 the effect of one influential Agent on a Group

the illustration in this section (Fig. 4) shows the effect of a single influential agent, who joins 
a Group after the original Group has been interacting for some time. the entry point is at 

Figure 2(b): three Groups final state

Figure 2(c): three Groups: time progression of Group location (G3 in green,  
G2 in red, G1 in blue)
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Interaction = 250: the half-way stage. two traces are shown. the first represents a Group that 
holds a strong biased opinion, and the second represents a Group that holds an overall neutral 
opinion. the agent that enters has a strong opinion that opposes the first Group, and induces 
a period of volatility in the Group Location of both Groups.

if the Group has a hardened initial opinion, the opposing agent cannot really influence its 
members significantly. the dips in the Group Location show that the opposing agent has some 
effect, but there is no trend towards the opposing opinion for the original Group. As time pro-
gresses, the opposing agent is only able to generate volatility. Alternatively, the influencer can 
influence permanently the Group that was neutral initially. For such a Group, the Group Loca-
tion trace moves towards the influencer’s location, and stays there. there is inherently more 
volatility for a Group that is neutral initially. in both cases volatility increases markedly when 
the influencing agent enters. this simulation illustrates two points. First, the effect of a single 
influential agent on a Group can be significant. An analysis of the Brexit referendum (https://

Figure 3: three simulations: two opposed agents

Figure 4: An opposing agent, entering at Interaction 250, having limited influence on a very 
biased Group (green trace), but more influence on a neutral Group (blue trace)
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www.referendumanalysis.eu/eu-referendum-analysis-2016/section-7-social-media/impact-of-
social-media-on-the-outcome-of-the-eu-referendum/) indicates that the Vote Leave campaign 
had a significant effect on the outcome. second, conflict can arise where there was initial con-
sensus. Brexit provides an example here too: a rise in hate crime was widely reported following 
the referendum (https://www.independent.co.uk/news/uk/home-news/racist-hate-crimes-
surge-to-record-high-after-brexit-vote-new-figures-reveal-a7829551.html).

4.4 random interactions with varying Group size

two sets of randomly-defined agents (with 10 and 100 agents respectively) interact sepa-
rately. in both cases their influences span the range (0,1) and their Beta distribution parameters 
are randomly chosen integers from the set 2..202. this allows for a comprehensive range of 
resistances and biases. we observe a much greater variation in the Group Location for the 
“100 agent” case (Fig. 5). similar simulations show that as the Group size increases, so does 
the variation in the Group Location. the conclusion is that the more agents there are in the 
Group, the less likely it is that consensus will be reached. large corporate organisations are 
examples where consensus is slow to emerge, whereas small startups are usually much faster. 
(https://www.fastcompany.com/3049164/how-to-make-decisions-more-efficiently).

5 disCussion And summAry
the simulation results in section 4 indicate that agents who ‘agree’ initially, continue to 
‘agree’ (section 4.1), a conclusion which makes intuitive sense. if agents ‘disagree’ initially 
(section 4.2), the outcome is not decidable in advance, but converges to some subset of the 
range (0,1). Consequently, the outcome may favour one or other of the opposing agent Groups 
more than the other, or possibly neither. in one sense the outcome is therefore highly unsat-
isfactory because there will always be one aggrieved party. yet the existence of some outcome 
rather than none can be considered an advance. in some cases any tolerable outcome is highly 
desirable, such as peace negotiations that lead to an end to physical violence. An example is 
the eventual resolution of the irish “troubles” of the latter half of the 20th century with the 
Good Friday agreement in April 1998. the possibility still exists that no consensus will be 
reached, and some simulations show that. in practical terms, it can be argued that consensus 
must emerge eventually, since continued conflict eventually becomes intolerable to people 
involved. the Arab-israel dispute is an example of a long-running dispute which appears to 
have been intractable since the 1917 Balfour declaration, which called for the establishment 

Figure 5: random interactions: Group size 10 (blue trace) and 100 (green trace)
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of a homeland for the Jews in palestine. even that dispute has had its quieter moments (i.e. a 
tacit consensus), although conflict continues to flare up. 

the conclusion that a single agent can have a fast significant effect on undecided agents 
(sections 4.3) is noteworthy in the context of advertising or political campaigns. Arguably, 
influential figures were a major deciding factor in the 2016 Brexit referendum. However, the 
simulations of section 4.4 show that an influential agent is unlikely to change the opinion of 
agents who are directly and strongly opposed in opinion. section 4.5 illustrates a result that 
makes any prospect of consensus difficult: the more agents there are, the harder it is to agree. 

As a suggestion for further work, we propose a change to deal with an unsatisfactory situ-
ation concerning the adequacy of the description of a Group comprising two distinct 
partitions, each with opposing opinions. in section 3.3, the location of such a Group, or any 
other Group, is given as a weighted average of the locations of the members of the Group. 
this is problematic because it effectively describes an agent whose location is midway 
between two extremes: a situation that does not exist. A possible way out is to adopt the con-
cept of a superposition of two opposing locations, which is essentially a quantum approach. 
the Group Location of a pair of agents would then be simultaneously two values, to be 
resolved on observation.
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Appendix A: Bounds on Group interACtions oF AGents
this result is first mentioned in section 3.3. the resultant of the interaction between two 
agents X and Y, Z = < X, Y >, has location LZ bounded by (the notation is explained 
below):
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Further, this result can be extended to multiple interactions between agents.

this result is proved by first considering two agents. let agents X and Y have respective 

locations {LX, LY}, and let their Beta distribution parameters be {aX, bX} and {aY, bY} respec-

tively. Consider the first two steps of Algorithm 1. if I ∈( )0 1,  and R∈( )0 1,  are factors 

representing influence and resistance respectively (see section 3.2), and ′a  is an intermediate 

parameter, then, supposing a aX Y<  (without loss of generality):

′ = + −( )a Ia I aX y1  (Algorithm 1, step 1), and 

a Ra R aZ X= + −( ) ′1  (Algorithm 1, step 2).

 ∴ = + −( ) + − + −( )( )a I R IR a I R IR aZ X Y1  

 ∴ < <a a aX Z Y  and similarly b b bX Z Y< < .  (A1)

 ∴ + < + < +a b a b a bX X Z Z Y Y . (A2) 

From (A2 and A1), 
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 ∴
+

+











 < <
+

+











L
a b

a b
L L

a b

a bX
X X

Y Y
Z Y

Y Y

X X

. (A3)

note that if a b a bX X Y Y+ > + , equation (A3) reduces to L L LX Z Y< < . in the subsequent 

perturbation stage, the limits set in (A3) are extended outwards accordingly. the standard 

error s corresponds to a given confidence level on a normal density N
c

0
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,






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
, where c is a 

placeholder for a b a bX X Y Y, , or . For example, at 95% confidence, the 2-tailed value of s is 

1.96. the upper limit in (A3) is then increased to a 95% confidence maximum:
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similarly, the lower limit in (A3) is then decreased to a 95% confidence minimum:
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lastly, step 4 of Algorithm 1 limits the resulting confidence interval to (0,1). therefore the 
final bound for LZ is given by (A6). inequality (A7) is an abbreviated version of (A6) in 
which ML  and MU are written in place of the quotient arguments to the max and min 
functions. 
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 (A6)

 max M X Y L min M X YL Z U0 1, , , ,( )( )< < ( )( )    (A7)

note that if agents X and Y have closely aligned sentiments (i.e. L LX Y~ ), the upper limit 

in (A6) is marginally greater than LY and the lower limit in (A6) is marginally less than LX . 

the result (A6) applies generally for the interaction between any pair of agents. with each 

interaction the bounds are extended further. For n agents X ={ } = ..
Xi i n1

, and r interactions, let 

the set X
n r,[ ] be the resultant of all those interactions. Further let X

n r, 

 be the weighted mean 

(section 3.3) location of the members of X
n r,[ ] therefore we can write (in the notation 

of (A7)):
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 max min M X L min max M Xr L n r Z r U n r
0 1, ,

, ,   
( )( )( )< < ( )( )( )    (A8)

equation (A8) is the desired result for a Group of agents.

Appendix B: ConverGenCe oF tHe Group loCAtion
this result is first mentioned in section 3.3, and is an extension of the result of Appendix A. 
Convergence of the Group Location may be summarised by the statement:

The interval in which the expected location of the resultant of an interaction between any 
two agents in a Group X is a subset of the corresponding interval for the previous 
interaction. 

this result shows that the expected Group Location converges to somewhere in (0,1) but 
does not specify where. the same notation that was used in Appendix A is used here. let Ur 
be the upper limit of the expected value of the locations of members of the Group X after r 
interactions. let Vr be the corresponding lower limit. then

 U max Er r n r
= ( )( )[ ]X

,
; V min Er r n r

= ( )( )[ ]X
,

   (B1)

let L rXi
( ) be the location of agent Xi after r interactions. At interaction r +1, the location 

of Xi changes under the influence of an agent Yi. using Φ 0 2,s( ) for a single draw from a 
normal distribution as in section 3.2, for some µr ∈( )0 1, :

 L r L r L r sX r X r Yi i i
+( ) = ( ) + −( ) ( ) + ( )1 1 0 2

µ µ ,Φ    (B2)

 ∴ +( )( ) = ( )( ) + −( ) ( )( ) +E L r E L r E L rX r X r Yi i i
1 1 0µ µ  

 ∴ +( )( )∈( )∈( )E L r V UX r ri
1 0 1, ,  

 ∴( )∈( )
+ +

V U V Ur r r r1 1, ,    (B3)

equation (B3) establishes local convergence, effectively an expected reversion to the cen-
tre of the interval (0,1). the expected diminution of the interval in (B3) shows an expected 
progressive reduction in the variance of the location of Group X with increasing r.


