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ABSTRACT
In any process of Environmental Impact Assessment (EIA) a key role is played by the action of moni-
toring. Indeed, the acquisition of real field data provides the evidence of the environmental status and 
identifies hazards and sources of pollution. When environmental pollution is revealed, it is important 
to identify the source following the source-path-target model. However, when monitoring operations 
are planned, often the three-dimensional (3D) nature of monitored hotspots is neglected. Instead, infor-
mation can be gathered through a multi-parametric, multi-level framework, which combines multiple 
disciplines and generates correlations between several data sets acquired in the analysed scenario. 
This novel new framework is named MuM3, meaning that the proposed Monitoring (M) is Multi-
Disciplinary, Multi-level and Multi-parametric (i.e. Mu) and it is developed in all the three dimensions 
of physical space (the superscript ‘3’). This paper outlines the implementation of this framework. In 
particular, monitoring polluted coastal waters refers to one of the critical areas identified by EIA regu-
lations. The framework incorporates different spatial scales of observation (Levels) and the potential 
sensors that can be used at each Level. A three-step work-flow model describes the raw data acquisi-
tion and the transformation and integration of different indicators into useful information for EIA. 
A schematic flow chart describes the approach to developing multi-level, multi-parameter connections. 
Extension of this framework can be applied to any EIA, especially in the case of critical areas that are 
identified by the regulations as: (i) Wetlands, riparian areas, river mouths; (ii) Mountain and forest 
areas; (iii) Nature reserves and parks; (iv) Densely populated areas; (v) Landscapes and sites of histori-
cal, cultural or archaeological significance.
Keywords: coastal waters, EIA, environmental impact assessment, environmental monitoring, environ-
mental pollution, framework, multi-level, multi-parameter, MuM3.

1 INTRODUCTION
Monitoring constitutes one of the relevant steps of Environmental Impact Assessment (EIA), 
aimed at assessing ‘environmental or socioeconomic variables by the systematic collection of 
specific data in space and time’ [1]. The European Directive 2014/52/EU [2] amending the 
Directive 2011/92/EU [3], indicates that EIA should identify the impacts on: population and 
human health; land, soil, water, air and climate; material assets, cultural heritage and the land-
scape; the interaction among the previously identified factors. In particular, according to the 
Directive Annexes, emission of pollutants, noise, vibration, light, heat and radiation, the creation 
of nuisances, and the elimination disposal and recovery of waste should be defined, considering 
the risks to human health, cultural heritage or the environment. Moreover, a special attention 
should be paid to coastal zones and the marine environment, as well as densely populated areas.

With this respect, monitoring of surface waters is particularly relevant, due to their high 
exposition to both natural (e.g. sediment transports, atmospheric deposition, etc.) and anthropo-
genic (e.g. wastewaters release, leachate contamination, artificial modification of natural water 
flows, etc.) influences [4]–[6]. However, the lack of data often constitutes a barrier to estimate 
the cumulative effects of those impacts [7]. Moreover, it creates difficulties in identifying the 
real pollutants sources, which are often far from the place where impacts are revealed [8].
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With respect to coastal waters, pollution phenomena are often revealed indirectly. This is 
why several recent publications suggest the use of specific bioindicators, such as mussels, 
diatoms and cyanobacteria for such a purpose [9]–[15]. Often, detailed analyses revealed 
both the presence of high concentrations of organic nutrients or a combination of high inor-
ganic nutrients concentrations with low concentrations of dissolved oxygen [16]–[18] also 
generated by groundwater and direct human waste discharges [20]–[21]. However, without 
site-specific analyses, aimed at identifying pollution sources, transport and fate (i.e. target), 
no remediation action can be developed. In the next section, a new framework is described to 
improve the effectiveness of environmental impact assessment.

2 MUM3 FRAMEWORK
Here, a multi-disciplinary, multi-scale and multi-parametric framework is outlined, which 
generates connections among several data sets, to address environmental impact assessment. 
This novel new framework is called MuM3, as abbreviated form of ‘Multi-disciplinary, multi-
scale and multi-parametric Monitoring’. The number 3, used in MuM3, represents the fact 
that monitoring occurs in the three-dimensional physical space.

What drives the assessment? The top level is remotely sensed data that needs to be vali-
dated by in situ measurements. The surface level is typically a survey of what can and what 
needs to be done.

2.1 Infrastructure of the framework

The core structure of the framework is multi-level that is defined by the platform at each 
level. Data is acquired using sensors on different platforms that inherently define a spatial 
scale depending on the altitude of the measurement. The levels are: satellite, aircraft, 
 helicopter, UAV, and surface (e.g. ship, mobile lab, tower). There is the potential for multiple 
sensors at each level. Some examples are: visible near infrared (VNIR) and thermal infrared 
(TIR) imaging on satellites, aircraft, helicopters, UAV and at the surface; atmospheric sam-
pling from aircraft, helicopters, UAV and at the surface; physical, chemical, and biological 
analyses, etc. at the surface and in fast response in the mobile lab. This view of the framework 
is shown in Fig. 1 and the spatial scales are outlined in Table 1. Spatial scales for each level 

Figure 1: Hierarchical monitoring – Levels/Platforms, sensor, and raw data.
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are three-fold: sensor resolution, swath extent, and path reach. For example, the satellite sen-
sor resolution ranges from 10’s of meters to kilometers, the swath extent is up to 100’s to 
1000’s of kilometers, with a path that covers globally every 1–16 days.

2.2 Data processing

Processing of the raw input data for each sensor that is transformed into information at an 
intermediate step to generate output products and indicators for all levels/scales. For instance, 
the MODIS sensor on the Aqua/Terra satellite is used to generate chlorophyll-a maps using a 
multi-band visible spectrum reflectance algorithm. This is shown in Fig. 2.

2.3 Multi-level Multi-parameter connections

Determine connections of this information between levels (or scale) for environmental impact 
assessment. The goal is to examine components and their interactions between large, and 
small scales and refine these connections. For example, a region of high chlorophyll-a is 
detected using satellite data and observe the existence of cyanobacteria at the same location 
sampled in situ and analyzed in the mobile lab. Remote sensing data/information can be 

Table 1: Levels, reference altitude, sensors, sensors resolution, sensors swath, path length/
duration. Note that these are the possible ranges for each specification that can be 
applied generally to coastal water monitoring. Here, only Small UAVs are described 
specifically according to the DoD standard classification. Additional UAV catego-
ries cover a broad range of size, normal operating altitude, and gross takeoff weight.

Level Altitude Sensor
Sensor 
resolution Swath

Path length/
duration

Satellite (e.g. 
Aqua, Terra, 
Landsat, 
Sentinel)

705 km 
–713 km

VNIR, TIR, 
microwave

15 m–1 km 100 km–1000 km 
(cross track) by 
10 km (along 
track at nadir)

Complete 
Earth 
coverage: 
12–16 days 

Airplane 1 km–10 
km

VNIR, TIR, 
microwave, 
atmospheric 

0.1 m–100 m 100 m–1 km 2–15 hours

Helicopter 0.1 km–6 
km

VNIR, TIR, 
microwave, 
atmospheric 

0.1 m–10 m 100 m–1 km 1–3 hours

Small UAV 1 m–500 m VNIR, TIR, 
meteorologi-
cal 

0.01 m–1 m 1 m–100 m 30 min–2 
hours

Surface (e.g. 
boat, tower, 
mobile lab)

0 km–0.01 
km

VNIR, TIR, 
microwave, 
meteoro-
logical, water 
quality, etc.

1 to 10 cm From point to area, 
depending on sen-
sor FOV/resolution

Local footprint
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strategically combined with other data layers in geographic information systems (GIS) [22], 
creating a unique virtual environment that makes the assessment easier. Figure 3 shows a 
schematic of the Flow chart that describes the approach to developing these multi-level, 
multi-parameter connections.

3 FRAMEWORK IMPLEMENTATION
The key point is to identify the location and time to define the starting point. This can be 
done from either a Bottom-Up or Top-Down approach. For instance, in the Bottom-Up 

Figure 3: Schematic flow chart that describes the approach to developing multi-level, multi-
parameter connections.

Figure 2: Data processing and reduction from raw data.
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approach as shown in Fig. 4, the governing body identified pollution target and requests an 
environmental impact assessment. One, therefore, begins at the surface level and scale up to 
determine the extent of as well as the source of the pollution. On the other hand, the Top-
Down approach as shown in Fig. 5 the governing body requests to know if any and where the 
problem exists. The Top-Down approach would help to determine if there is any pollution 
without any prior knowledge. Using the satellite data products, hotspots or anomalies for 
indicators of pollution would target regions to sample in situ for actual existence of pollu-
tion. However, the implementation of the Framework can begin at any level/scale, from 
satellite to in situ, to characterize the environmental complexities at each scale. Finally, as 
shown in Fig. 6, one iterates between levels to: (i) determine, refine and optimize intercon-
nections and (ii) come to an understanding of what levels and products are most important to 
the particular problem.

Figure 4: Framework implementation from the bottom up. EPA provides the problem.

Figure 5: Framework implementation from the top down. EPA asks where the problem exists. 
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4 CONCLUDING REMARKS
This new novel framework can be applied to all phases of environmental impact assessment, 
including scoping, baseline data collection, impact assessment, and mitigation. Several sen-
sors can be used for such a purpose, as reported by the literature (e.g. [23]–[25]). Besides 
coastal areas, this framework can be applied to other critical locations, identified by the inter-
national Environmental Impact Assessment regulations, such as: (i) Wetlands, riparian areas, 
river mouths; (ii) Mountain and forest areas; (iii) Nature reserves and parks; (iv) Densely 
populated areas; (v) Landscapes and sites of historical, cultural or archaeological signifi-
cance. MuM3 framework application can integrate the process of raw data transformation 
into information through environmental accounting techniques, as recently discussed by Liu 
et al. [26]. The same framework can be extended to gather the necessary data for defining the 
effects of extended and multi-scale pollution episodes [27]–[29], as well as for ecological 
security [30] and sustainability assessment [31] purposes.
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Figure 6: Framework implementation connectivity between levels.
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