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damage is slightly smaller in slab S6, in which steel fibres were used, in comparison with 
slabs at the same scaled distance (S5, and S7). Results from numerical simulation are consist-
ent with those observed in the field; as a matter of example, numerical model for slab S7 had 
high plastic strain deformation following the length of its vertical axis, which is in accord-
ance with surface damage of the test (Fig. 6). The numerical surface damage for slabs S6 and 
S7 is also smaller than that in S5, with a relative error ranged from 7 to 15%, with S6 as the 
slab with minor damage. Again when comparing the results of the contour damage map, they 
are able to reproduce the damage pattern found in the tests and the pattern found in the 
numerical models.

It can be seen that the steel reinforcement determines in some way the overall crack pat-
tern, and the numerical model is able to reproduce this feature. Also, the model is sensible to 
changes in explosive charge or distance that is why it can be used with confidence in future 
simulations.

6  conclusions
Several slabs has been tested against explosive charges to investigate its resistance, to cali-
brate and validate numerical models and to use a developed non-destructive technique to 
evaluate the superficial damage.

It is well-known that the close-in blast are difficult to modelize, however as it has been 
demonstrated here a full-scale 3D model can be used with confidence. The model includes 

Figure 5:	Results from testing slab S6. The contour damage is shown with his damage scale. 
The numerical modelling scale shows plastic strain.
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the use of CSCM material with some minor modifications (to replicate the addition of fibres) 
and the CONWEP module to reproduce the explosive charge. The mean damage error of the 
numerical simulation is 13.81% being a good value for engineering purposes.

The combination of the global damage value (d200) and the damage maps, show that the 
rebound hammer can be used to quantify blasting effects over different constructive solu-
tions. This feature is especially important when the structural damage is not critical and the 
human eye cannot evaluate the damage with a mere visual inspection. In addition, the 
global damage value responses well to differences in scaled distance as happens in real 
tests, so it can be used with confidence to quantify post-blasting effects at different 
situations

A future work (and actually present work) is to explicitly correlate the damage values 
obtained in the contour damage maps with the numerical simulations to get a double check to 
validate the models, especially when the damage is not full (only superficial damage) that 
otherwise is impossible to validate.
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Figure 6:	Testing slab S7. The contour damage is shown with his damage scale. The numerical 
modelling scale shows plastic strain.
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