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In this work, the least squares weighted residual method (LSWRM) was used to solve the 

generalised elastic column buckling problem for the case of pinned ends. Mathematically, 

the problem solved was a boundary value problem (BVP) represented by a system of three 

coupled linear ordinary differential equations (ODEs) in terms of three unknown 

displacement functions and subject to boundary conditions. The least squares residual 

method used formulated the problem as a variational problem, and reduced it to an algebraic 

eigenvalue problem which was solved to obtain the characteristic buckling equation. The 

characteristic stability equation was found to be a cubic polynomial for the general 

asymmetric sectioned column. The buckling modes were found as coupled flexural – 

torsional buckling modes. Two special cases of the problem were studied namely: doubly 

symmetric and singly symmetric sections. For doubly symmetric sections, the buckling 

loads and the buckling mode were found to be decoupled and the buckling mode could be 

flexural or flexural – torsional. For singly symmetric section columns, one of the bucking 

modes becomes decoupled while the others are coupled. The buckling equation showed the 

column could fail by either pure flexure or coupled flexural – torsional buckling mode. The 

results of the present work agree with Timoshenko’s results, and other results from the 

technical literature.  
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1. INTRODUCTION

1.1 Background 

Thin walled structural members with open cross-sections 

which could be singly symmetric (mono-symmetric), bi-

symmetric (doubly symmetric) or asymmetric and which 

could be made of isotropic, anisotropic, homogeneous or non-

homogeneous materials are often encountered in engineering 

[1-5]. They could be used as beams, columns, or beam 

columns in buildings, machines, bridges, spacecraft, aerospace, 

aeronautics, naval and marine structures. Such structures are 

prone to failures by buckling under compression due to their 

thin-walled open cross-sections [6-7]. The general elastic thin-

walled column buckling problem is governed by systems of 

complex, non-linear differential equations subject to boundary 

conditions. They demand formidable mathematical analysis 

and are difficult to solve. Closed form solutions don’t exist for 

many of such problems. 

Euler [8] was one of the pioneers in the research on the 

determination of the buckling loads and modal shapes of thin 

(slender) columns. He derived the equation of column 

buckling from equilibrium considerations, as an ordinary 

differential equation and solved it in closed form to obtain the 

buckling loads and buckling mode shapes. Saint Venant [9] 

studied the torsional behaviour of structures and presented 

buckling load and modal shape solutions for torsional buckling. 

Michell [10] and Prandtl [11] also formulated the 

mathematical problems describing the lateral stability of 

beams and derived solutions for flexural – torsional buckling 

for beams, columns and beam – columns. Timoshenko [5, 10-

12] presented the stability problem to incorporate warping

torsion. The derivations and formulations of the mathematical

equations to describe the flexural – torsional buckling of

structures were accomplished by the research works due to

Wagner [15], Timoshenko [5, 12-14], Vlasov [16],

Timoshenko and Gere [5] Alsayed [17], Zlatko [18], Al –

Sheik [6], Trahair [19-20], Allen and Bulson [21] and Chajes

[22]. Ike et al. [4] solved the generalised elastic column

buckling problem using the Galerkin variational method for

the case of column with pinned supports at the ends x=0, and

x=l. They considered the case of an axial compressive load

acting through the centroid, and such that the bimoment is zero

and found that the Galerkin method simplified the problem to

an algebraic eigenvalue eigenvector problem that was solved

to obtain the characteristic buckling equation, with the roots as

the buckling loads.

Mama et al. [3] used the finite Fourier sine transform 

method to solve the flexural – torsional buckling problem of 

thin-walled columns with pinned ends represented by the 

generalised elastic column buckling equations. They found 

that the finite Fourier sine transformation when applied to the 

system of governing linear ordinary differential equations 

transformed the problem to an algebraic eigenvalue 

eigenvector problem. They obtained non-trivial solutions to 

the homogeneous characteristic buckling equation in the form 
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of a third order polynomial whose zeros are the buckling loads. 

Onah et al. [2] used the Fourier series method to solve the BVP 

of column buckling given by a system of governing linear 

ordinary differential equations. They solved the buckling 

problem of column with pinned ends, and found that the 

Fourier sine series method used transformed the Dirichlet 

boundary value problem to a system of algebraic 

homogeneous equations, representing an eigenvalue 

eigenvector problem. For nontrivial solutions, they obtained 

the characteristic buckling equation as a cubic polynomial in 

terms of the axial compressive load. They found the buckling 

loads as the three roots of the characteristic buckling equation. 

Other researchers who have worked on buckling include: 

Mehmet [23], Nwakali [24], Howlett [25], Wang et al. [26], 

Det [27] and Zhu [28]. 

 

1.2 Research aim and objectives 

 

The general aim of the study is to use the least squares 

weighted residual method to solve the generalised elastic 

column buckling problem, for an elastic column with pinned 

supports at the ends x=0, and x=l where l is the length of the 

column. The specific objectives are: 

i. to formulate the boundary value problem (BVP) of elastic 

column buckling represented by a system of linear 

ordinary differential equations (ODE) in variational form 

using the least squares weighted residual method. 

ii. to express the BVP as a least squares weighted residual 

problem using the least squares weighted residual 

variational statements for the BVP. 

iii. to show that the least squares weighted residual 

variational statements simplify to an algebraic eigenvalue 

eigenvector problem, and solve the resulting algebraic 

eigenvalue problem to determine the characteristic 

buckling equation. 

iv. to derive and solve expressions for the characteristic 

buckling equations for two cases, namely columns with 

doubly symmetric cross-sections and columns with singly 

symmetric cross-sections.  

 

 

2. THEORETICAL FRAMEWORK 

 

2.1 Governing equations 

 

The generalised elastic column buckling problem 

formulated as a boundary value problem (BVP) in terms of the 

displaced configuration is represented mathematically by the 

following complex set of three coupled ordinary differential 

equations (ODEs) which are non-linear and obtained from an 

equilibrium analysis that disregards non-linear terms [1-5]: 

 

𝐸(𝐼𝑦𝑦𝐼𝑧𝑧 − 𝐼𝑦𝑧
2 )

𝑑4𝑣(𝑥)

𝑑𝑥4
− 𝐼𝑦𝑦𝑁𝑥

𝑑2𝑣(𝑥)

𝑑𝑥2
+ 𝐼𝑦𝑧𝑁𝑥

𝑑2𝑤(𝑥)

𝑑𝑥2
+

[𝐼𝑦𝑦𝑀𝑙𝑦 + 𝐼𝑦𝑧𝑀𝑙𝑧 −  

𝑁𝑥(𝑒𝑧𝐼𝑦𝑦 + 𝑒𝑦𝐼𝑦𝑧)]
𝑑2𝜃(𝑥)

𝑑𝑥2
+ (𝐼𝑦𝑦𝑉𝑧 + 𝐼𝑦𝑧𝑉𝑦)

𝑑𝜃(𝑥)

𝑑𝑥
= 𝑞𝑦𝐼𝑦𝑦 −

𝑞𝑧𝐼𝑦𝑧                                                                                     (1) 

 

𝐸(𝐼𝑦𝑦𝐼𝑧𝑧 − 𝐼𝑦𝑧
2 )

𝑑4𝑤(𝑥)

𝑑𝑥4
− 𝐼𝑧𝑧𝑁𝑦

𝑑2𝑤(𝑥)

𝑑𝑥2
+ 𝐼𝑦𝑧𝑁𝑥

𝑑2𝑣(𝑥)

𝑑𝑥2
+

[−𝐼𝑧𝑧𝑀𝑙𝑧 − 𝐼𝑦𝑧𝑀𝑙𝑧 +  

𝑁𝑥(𝑒𝑦𝐼𝑧𝑧 + 𝑒𝑧𝐼𝑦𝑧)]
𝑑2𝜃(𝑥)

𝑑𝑥2
− (𝐼𝑧𝑧𝑉𝑦 − 𝐼𝑦𝑧𝑉𝑧)

𝑑𝜃(𝑥)

𝑑𝑥
= 𝑞𝑧𝐼𝑧𝑧 −

𝑞𝑦𝐼𝑦𝑧      …     (2) 

𝐸𝐶𝑤
𝑑4𝜃(𝑥)

𝑑𝑥4
− (𝐺𝐽 +

𝐼𝐸𝑁𝑥

𝐴
+ 𝐶𝑧𝑀𝑙𝑧 + 𝐶𝑦𝑀𝑙𝑦 +

𝐻𝑤𝑊𝑤

𝐶𝑤
)
𝑑2𝜃(𝑥)

𝑑𝑥2
+

(𝑀𝑙𝑦 − 𝑒𝑧𝑁𝑥)
𝑑2𝑣(𝑥)

𝑑𝑥2
− (𝑀𝑙𝑧 − 𝑒𝑦𝑁𝑥)

𝑑2𝑤(𝑥)

𝑑𝑥2
+ 𝑉𝑧

𝑑𝑣(𝑥)

𝑑𝑥
−

𝑉𝑦
𝑑𝑤(𝑥)

𝑑𝑥
− (𝐶𝑧𝑉𝑦 + 𝐶𝑦𝑉𝑧 +

𝐻𝑤𝑉𝑤

𝐶𝑤
)
𝑑𝜃(𝑥)

𝑑𝑥
= 𝑡𝑥  …     (3) 

 

where 𝐼𝐸 = 𝐼𝑦𝑦 + 𝐼𝑧𝑧 + (𝑒𝑦
2 + 𝑒𝑧

2)𝐴            (4) 

 

𝐻𝑦 = ∬ 𝑧(𝑦2 + 𝑧2)𝑑𝐴
𝐴

              (5) 

 

𝐻𝑧 = ∬ 𝑦(𝑦2 + 𝑧2)𝑑𝐴
𝐴

              (6) 

 

𝐻𝑤 = ∬ 2(𝑤0 − 𝑤)(𝑦2 + 𝑧2)𝑑𝐴
𝐴

             (7) 

 

𝐶𝑦 =
𝐼𝑧𝑧𝐻𝑦−𝐼𝑦𝑧𝐻𝑧

𝐼𝑦𝑦𝐼𝑧𝑧−𝐼𝑦𝑧
2 − 2𝑒𝑧                           (8) 

 

𝐶𝑧 =
𝐼𝑦𝑦𝐻𝑧−𝐼𝑦𝑧𝐻𝑦

𝐼𝑦𝑦𝐼𝑧𝑧−𝐼𝑦𝑧
2 − 2𝑒𝑦                           (9) 

 

𝐼𝑦𝑦 = ∬ 𝑧2𝑑𝐴
𝐴

             (10) 

 

𝐼𝑧𝑧 = ∬ 𝑦2𝑑𝐴
𝐴

             (11) 

 

𝐼𝑦𝑧 = ∬ 𝑦𝑧𝑑𝐴
𝐴

             (12) 

 

where Mlz, Mly are moments due to transverse loads only 

J is the Saint Venant torsional stiffness of the cross-section 

E is the Young’s modulus of elasticity of the column material 

G is the shear modulus or modulus of rigidity 

Iyy, Izz are moments of inertia about the yy and zz axes 

Cw is the warping constant 

IE is the polar moment of inertia about the shear centre 

Iyz, is the product of inertia 

ey, ez are coordinates of the shear centre 

Vy, Vz are shear forces 

qy, qz are transverse loads 

Nx is the axial force 

v(x), w(x) are transverse displacement components in the y and 

z coordinate directions. 

(x) is the twist or rotational displacement, x represents the 

longitudinal axial coordinate variable 

yz is the plane of the cross-section of the column 

A is the area of the cross-section of the column 

t(x) is the applied torque. 

The governing equations of equilibrium for the generalized 

elastic column buckling problem (non-prismatic cross-section 

and heterogeneous materials) is thus given by a system of three 

coupled simultaneous ordinary nonlinear differential 

equations with variable coefficients in terms of three unknown 

displacement functions v(x), w(x) and (x). This system of 

governing equations is subject to the conditions imposed by 

the type of supports at the column ends. In column buckling 

problems involving columns with prismatic cross-sections and 

homogeneous materials, the elasticity properties (G, J and E) 

as well as the inertial and geometrical properties become 

constants, but the load parameters (Mly, Mlz, Vy, Vz, Ww, Vw) are 

variables which are functions of axial longitudinal coordinate 

variable, x. The system of governing ordinary differential 

equations even for columns with prismatic cross-sections and 

homogeneous materials thus have variable coefficients, 

rendering them difficult to solve in closed-form. 

Simplified forms of the system of governing ordinary 
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differential equations of equilibrium are obtained by 

considering special characteristics of the different types of 

elastic column buckling problem. A simplified form of the 

system of governing equilibrium equations is obtained if the 

yz coordinates of the cross-sectional plane are principal 

coordinates. Then, 𝐼𝑦𝑧 = 0  and vanish from the governing 

equations of equilibrium yielding the simplified systems: [1-

5]. 

 

𝐸𝐼𝑧𝑧
𝑑4𝑣(𝑥)

𝑑𝑥4
− 𝑁𝑥

𝑑2𝑣(𝑥)

𝑑𝑥2
+ (𝑀𝑙𝑦 − 𝑁𝑥𝑒𝑧)

𝑑2𝜃(𝑥)

𝑑𝑥2
+ 𝑉𝑧

𝑑𝜃(𝑥)

𝑑𝑥
= 𝑞𝑦 

             (13) 

 

𝐸𝐼𝑦𝑦
𝑑4𝑤(𝑥)

𝑑𝑥4
− 𝑁𝑥

𝑑2𝑤(𝑥)

𝑑𝑥2
+ (𝑁𝑥𝑒𝑦 −𝑀𝑙𝑧)

𝑑2𝜃(𝑥)

𝑑𝑥2
− 𝑉𝑦

𝑑𝜃(𝑥)

𝑑𝑥
=

𝑞𝑧              (14) 

 
4 2 2

4 2 2

( ) ( ) ( )
( )

w wE x
w z lz y ly ly z x

w

H WI Nd w x d x d v x
EC GJ C M C M M e N

A Cdx dx dx

  
− + + + + + − − 
 

  

2

2

( ) ( ) ( ) ( )
( ) ( )w w

lz y x z y z y y z

w

H Vd w x dv x dw x d x
M e N V V C V C V t x

dx dx C dxdx

 
− + − − + + = 

 

 

             (15) 

 

If the column is not subject to transverse loads, qy, qz 

become zero; and the transverse moments are constants, then 

the shear forces Vy, Vz also become zero. For columns 

subjected only to axially compressive force Nx applied through 

the centroid of the cross-section, the moments due to the 

transverse loads would vanish and the applied torque also 

vanishes; and if the load is applied such that the bimoment is 

zero, the system of governing ordinary differential equations 

of equilibrium simplify further to become [1-5]. 

 
4 2 2

4 2 2
0

( ) ( ) ( )
zz x x z

d v x d v x d x
EI N N e

dx dx dx


+ + =          (16) 

 
4 2 2

4 2 2
0

( ) ( ) ( )
yy x x y

d w x d w x d x
EI N N e

dx dx dx


+ − =          (17) 

 

𝐸𝐶𝑤
𝑑4𝜃(𝑥)

𝑑𝑥4
− (𝐺𝐽 −

𝐼𝐸𝑁𝑥

𝐴
)
𝑑2𝜃(𝑥)

𝑑𝑥2
+𝑁𝑥𝑒𝑧

𝑑2𝑣(𝑥)

𝑑𝑥2
−

𝑁𝑥𝑒𝑦
𝑑2𝑤(𝑥)

𝑑𝑥2
= 0             (18) 

 

The system of governing ordinary differential equations of 

equilibrium given by Equations (16-18) represent a 

simplification of the generalized elastic column buckling 

problem presented by Equations (1-3) when 𝐼𝑦𝑧 = 0,  𝑞𝑦 =

𝑞𝑧 = 0, 𝑉𝑦 = 𝑉𝑧 = 0, 𝑀𝑙𝑦 = 𝑀𝑙𝑧 = 0, 𝑊𝑤 = 0, 𝑡(𝑥) = 0  

Let us define linear ordinary differential operators, L1 and 

L2 as: 

 

𝐿1 =
𝑑4

𝑑𝑥4
              (19) 

 

𝐿2 =
𝑑2

𝑑𝑥2
              (20) 

 

Then the system of ordinary differential equations 

(Equations (16-18)) can be expressed in operator form as  

 

𝐸𝐼𝑧𝑧𝐿1𝑣(𝑥) + 𝑁𝑥𝐿2𝑣(𝑥) + 𝑁𝑥𝑒𝑧𝐿1𝜃(𝑥) = 0        (21) 

 

𝐸𝐼𝑦𝑦𝐿1𝑤(𝑥) + 𝑁𝑥𝐿2𝑤(𝑥) − 𝑁𝑥𝑒𝑦𝐿2𝜃(𝑥) = 0        (22) 

 

𝐸𝐶𝑤𝐿1𝜃(𝑥) − (𝐺𝐽 −
𝐼𝐸𝑁𝑥

𝐴
) 𝐿2𝜃(𝑥) + 𝑁𝑥𝑒𝑧𝐿2𝑣(𝑥) −

𝑁𝑥𝑒𝑦𝐿2𝑤(𝑥) = 0            (23) 

 

where for a column of length, l, 0 x l   if one end of the 

column is considered as the origin of the longitudinal axial 

coordinate system. If the column material is homogeneous, the 

elastic properties E and G are constants, the system of 

governing equations. Equations (21-23) will be a linear system 

of ordinary differential equations with constant parameters. 

 

 

3. METHODOLOGY 

 

The least squares weighted residual methodology is based 

on seeking to obtain the minimum of the squares of the 

residual functions over the problem domain with respect to the 

unknown generalised displacement parameters. The three 

functionals to be minimized in this case become F1, F2, F3 

where 

 

2
1 1 2 1

0

( ( ) ( ) ( ))

l

zz x x zF EI L v x N L v x N e L x dx= + +            (24) 

 

2
2 1 2 2

0

( ( ) ( ) ( ))

l

yy x x yF EI L w x N L w x N e L x dx= + −          (25) 

 

𝐹3 = ∫ (𝐸𝐶𝑤𝐿1�̄�(𝑥) − (𝐺𝐽 −
𝐼𝐸𝑁𝑥

𝐴
) 𝐿2�̄�(𝑥) +

𝑙

0

𝑁𝑥𝑒𝑧𝐿2�̄�(𝑥) − 𝑁𝑥𝑒𝑦𝐿2𝑤(𝑥))
2

𝑑𝑥           (26) 

 

and �̄�(𝑥), �̄�(𝑥) and �̄�(𝑥) are the approximate solutions to the 

three unknown functions. 

If the approximations to the solutions are considered in the 

form 

 

�̄�(𝑥) = ∑ 𝐴𝑛𝜑𝑛(𝑥)
∞
𝑛=1             (27) 

 

�̄�(𝑥) = ∑ 𝐵𝑛𝜑𝑛(𝑥)
∞
𝑛=1             (28) 

 

�̄�(𝑥) = ∑ 𝜃𝑛𝜑𝑛(𝑥)
∞
𝑛=1             (29) 

 

where An, Bn, and n are the generalised displacement 

parameters for the appropriate displacement functions, �̄�(𝑥), 
�̄�(𝑥) and �̄�(𝑥) for the nth buckling mode, and n(x) are the 

buckling shape functions which are constructed to satisfy all 

the end boundary conditions (geometric and force boundary 

conditions), then, the least squares weighted residual 

variational equations become the system of three equations: 

 

∫
𝜕

𝜕𝐴𝑛
(𝐸𝐼𝑧𝑧𝐿1�̄�(𝑥) + 𝑁𝑥𝐿2�̄�(𝑥) + 𝑁𝑥𝑒𝑧𝐿1�̄�(𝑥))

2𝑙

0
𝑑𝑥 = 0  

(30) 

 

∫
𝜕

𝜕𝐵𝑛
(𝐸𝐼𝑦𝑦𝐿1�̄�(𝑥) + 𝑁𝑥𝐿2�̄�(𝑥) − 𝑁𝑥𝑒𝑦𝐿2�̄�(𝑥))

2𝑙

0
𝑑𝑥 = 0                                                     

(31) 

 

∫
𝜕

𝜕𝜃𝑛
(𝐸𝐶𝑤𝐿1�̄�(𝑥) − (𝐺𝐽 −

𝐼𝐸𝑁𝑥

𝐴
) 𝐿2�̄�(𝑥) + 𝑁𝑥𝑒𝑧𝐿2�̄�(𝑥) −

𝑙

0

𝑁𝑥𝑒𝑦𝐿2�̄�(𝑥))
2

𝑑𝑥 = 0            (32) 
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Simplifying, it is obtained that: 

 

∑ ∫ (𝐸𝐼𝑧𝑧𝐿1𝐴𝑛𝜑𝑛(𝑥) + 𝑁𝑥𝐿2𝐴𝑛𝜑𝑛(𝑥) +
𝑙

0
∞
𝑛=1

𝑁𝑥𝑒𝑧𝐿1𝜃𝑛𝜑𝑛(𝑥))𝜑𝑛(𝑥)𝑑𝑥 = 0           (33) 

 

∑ ∫ (𝐸𝐼𝑦𝑦𝐿1𝐵𝑛𝜑𝑛(𝑥) + 𝑁𝑥𝐿2𝐵𝑛𝜑𝑛(𝑥) −
𝑙

0
∞
𝑛=1

𝑁𝑥𝑒𝑦𝐿2𝜃𝑛𝜑𝑛(𝑥))𝜑𝑛(𝑥)𝑑𝑥 = 0           (34) 

 

∑∫ (𝐸𝐶𝑤𝐿1𝜃𝑛𝜑𝑛(𝑥) − (𝐺𝐽 −
𝐼𝐸𝑁𝑥
𝐴

) 𝐿2𝜃𝑛𝜑𝑛(𝑥)
𝑙

0

∞

𝑛=1

+ 𝑁𝑥𝑒𝑧𝐿2𝐴𝑛𝜑𝑛(𝑥) − 

)2 ( )x y nN e L x 0( )n x dx =                        (35) 

 

 

4. RESULTS 

 

4.1 Application of the least squares weighted residual 

method to the general elastic column buckling problem 

with pinned supported ends at x=0 and x=l 

 

For the generalised elastic column buckling problem where 

the ends x=0 and x=l are on pinned supports the deflection 

(geometric) and force boundary conditions are: 

 

𝑣(𝑥 = 0) = 0             (36) 

 

𝑤(𝑥 = 0) = 0             (37) 

 

𝜃(𝑥 = 0) = 0             (38) 

 

𝑣(𝑥 = 𝑙) = 0             (39) 

 

𝑤(𝑥 = 𝑙) = 0             (40) 

 

𝜃(𝑥 = 𝑙) = 0             (41) 

 

𝑣″(𝑥 = 0) = 0             (42) 

 

𝑤″(𝑥 = 0) = 0             (43) 

 

𝜃″(𝑥 = 𝑙) = 0             (44) 

 

𝑣″(𝑥 = 𝑙) = 0             (45) 

 

𝑤″(𝑥 = 𝑙) = 0             (46) 

 

𝜃″(𝑥 = 𝑙) = 0             (47) 

 

Suitable displacement functions that satisfy these boundary 

conditions are taken as the infinite series: 

 

1

( ) sinn

n

n x
v x A

l



=


=             (48) 

 

1

( ) sinn

n

n x
w x B

l



=


=             (49) 

 

�̄�(𝑥) = ∑ 𝜃𝑛 𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙

∞
𝑛=1             (50) 

 

It is thus observed that the displacement shape functions 

that satisfy the boundary conditions of pinned supports at the 

ends x=0, and x=l for the three displacement functions can be 

given for all possible buckling modes, n, by: 

 

𝜑𝑛(𝑥) = 𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
                          (51) 

 

where, n=1, 2, 3, 4, 5, 6, 7, 8, 9, … 

Application of the linear differential operators yield: 

 

𝐿1𝜑𝑛(𝑥) =
𝑑4

𝑑𝑥4
𝑠𝑖𝑛

𝑛𝜋𝑥

𝑙
= (

𝑛𝜋

𝑙
)
4

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
          (52) 

 

𝐿1𝜑𝑛(𝑥) = (
𝑛𝜋

𝑙
)
4

𝜑𝑛(𝑥)            (53) 

 

𝐿2𝜑𝑛(𝑥) =
𝑑2

𝑑𝑥2
𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
) = −(

𝑛𝜋

𝑙
)
2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
         (54) 

 

𝐿2𝜑𝑛(𝑥) = −(
𝑛𝜋

𝑙
)
2

𝜑𝑛(𝑥)           (55) 

 

By substitution into Equations (33-35), the least squares 

weighted residual variational integrals become the system: 

 

∑ ∫ (𝐸𝐼𝑧𝑧𝐴𝑛 (
𝑛𝜋

𝑙
)
4

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
− 𝑁𝑥𝐴𝑛 (

𝑛𝜋

𝑙
)
2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
−

𝑙

0
∞
𝑛=1

𝑁𝑥𝑒𝑧𝜃𝑛 (
𝑛𝜋

𝑙
)
2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
) ×  

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
𝑑𝑥 = 0                          (56) 

 

∑ ∫ (𝐸𝐼𝑦𝑦𝐵𝑛 (
𝑛𝜋

𝑙
)
4

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
− 𝑁𝑥𝐵𝑛 (

𝑛𝜋

𝑙
)
2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
+

𝑙

0
∞
𝑛=1

𝑁𝑥𝑒𝑦𝜃𝑛 (
𝑛𝜋

𝑙
)
2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
) ×  

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
𝑑𝑥 = 0                          (57) 

 

∑ ∫ (𝐸𝐶𝑤𝜃𝑛 (
𝑛𝜋

𝑙
)
4

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
+ (𝐺𝐽 −

𝑙

0
∞
𝑛=1

𝐼𝐸𝑁𝑥

𝐴
) 𝜃𝑛 (

𝑛𝜋

𝑙
)
2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
− 𝑁𝑥𝑒𝑧𝐴𝑛 (

𝑛𝜋

𝑙
)
2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑙
+  

2

0sin sinx y n

n n x n x
N e B dx

l l l

   
=  

  
                       (58) 

 

Simplifying, 

 

∑ (𝐸𝐼𝑧𝑧𝐴𝑛 (
𝑛𝜋

𝑙
)
4

− 𝑁𝑥𝐴𝑛 (
𝑛𝜋

𝑙
)
2

−∞
𝑛=1

𝑁𝑥𝑒𝑧𝜃𝑛 (
𝑛𝜋

𝑙
)
2

) ∫ 𝑠𝑖𝑛2
𝑛𝜋𝑥

𝑙

𝑙

0
𝑑𝑥 = 0                        (59) 

 

∑ (𝐸𝐼𝑦𝑦𝐵𝑛 (
𝑛𝜋

𝑙
)
4

−𝑁𝑥𝐵𝑛 (
𝑛𝜋

𝑙
)
2

+∞
𝑛=1

𝑁𝑥𝑒𝑦𝜃𝑛 (
𝑛𝜋

𝑙
)
2

)∫ 𝑠𝑖𝑛2
𝑛𝜋𝑥

𝑙

𝑙

0
𝑑𝑥 = 0           (60) 

 

∑ (𝐸𝐶𝑤𝜃𝑛 (
𝑛𝜋

𝑙
)
4

+ (𝐺𝐽 −
𝐼𝐸𝑁𝑥

𝐴
) 𝜃𝑛 (

𝑛𝜋

𝑙
)
2

−∞
𝑛=1

𝑁𝑥𝑒𝑧𝐴𝑛 (
𝑛𝜋

𝑙
)
2

+ 𝑁𝑥𝑒𝑦𝐵𝑛 (
𝑛𝜋

𝑙
)
2

) ×  

∫ 𝑠𝑖𝑛2
𝑛𝜋𝑥

𝑙

𝑙

0
𝑑𝑥 = 0                         (61) 

 

Division by (
𝑛𝜋

𝑙
)
2

 yields: 
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∑ ((𝐸𝐼𝑧𝑧 (
𝑛𝜋

𝑙
)
2

− 𝑁𝑥)𝐴𝑛 −𝑁𝑥𝑒𝑧𝜃𝑛)
∞
𝑛=1 𝐼𝑛 = 0         (62) 

 

∑ ((𝐸𝐼𝑦𝑦 (
𝑛𝜋

𝑙
)
2

−𝑁𝑥)𝐵𝑛 + 𝑁𝑥𝑒𝑦𝜃𝑛)
∞
𝑛=1 𝐼𝑛 = 0         (63) 

 

∑ ((𝐸𝐶𝑤 (
𝑛𝜋

𝑙
)
2

+ (𝐺𝐽 −
𝐼𝐸𝑁𝑥

𝐴
))𝜃𝑛 − 𝑁𝑥𝑒𝑧𝐴𝑛 +

∞
𝑛=1

𝑁𝑥𝑒𝑦𝐵𝑛) 𝐼𝑛 = 0                                                                 (64) 

 

where 𝐼𝑛 = ∫ 𝑠𝑖𝑛2
𝑛𝜋𝑥

𝑙

𝑙

0
𝑑𝑥           (65) 

 

For any arbitrary buckling mode, the problem reduces to the 

following system of algebraic homogeneous equations in 

terms of the displacement modal amplitudes An, Bn and n: 

 
2

0zz x n x z n

n
EI N A N e

l

  
− −  =   

   
           (66) 

 
2

0yy x n x y n

n
EI N B N e

l

  
− +  =   

   
           (67) 

 
2

0E x
w n x z n x y n

I Nn
EC GJ N e A N e B

l A

    
+ −  − + =    
    

  (68) 

 

In matrix form, we obtain the homogeneous equation: 

 
2

2

2

0

0

0 0

0

zz x x z

n

yy x x y n

n

E x
z x y x w

n
EI N N e

l
A

n
EI N N e B

l

I Nn
e N e N EC GJ

l A

   
− −    

    
   

       − =                     
− + −    

    

  (69) 

 

For non trivial solutions, the determinant of the coefficient 

matrix in Equation (69) is required to vanish yielding the 

stability equation as follows: 

 
2

2

2

0

0 0

zz x x z

yy x x y

E x
x z x y w

n
EI N N e

l

n
EI N N e

l

I Nn
N e N e EC GJ

l A

  
− −   

   

  
− =   

   

  
− + −   

   

  (70) 

 

Let 

2

zz zz

n
Q EI

l

 
=  

 
            (71) 

 
2

yy yy

n
Q EI

l

 
=  

 
           (72) 

 
2

w

E

A n
Q EC GJ

I l


  
= +   

   
          (73) 

 

Then, 

2
E

w

Q In
EC GJ

l A

 
+ = 

 
           (74) 

 

where, Qzz is the Euler flexural buckling load about the zz axis, 

Qyy is the Euler flexural buckling load about the yy axis and Q 

is the torsional buckling load. 

The stability (buckling) equation then becomes: 

 

0

0 0

( )

( )

zz x x z

yy x x y

E x E
x z x y

Q N N e

Q N N e

Q I N I
N e N e

A A



− −

− =

 
− − 

 

        (75) 

 

Expansion of the stability equations gives: 

 

0
0

( )
( )

( )

yy x x y
yy x

zz x x zE
x z x yx y x

Q N N e
Q N

Q N N eI
N e N eN e Q N

A


−
−

− − =
−−

  (76) 

 

Further expansion yields: 

 
2 0 0( ) ( )( ) ( ) ( ( ))E

zz x yy x x x y x z x z yy x

I
Q N Q N Q N N e N e N e Q N

A


 
− − − − − + − =  

  (77) 

 
2 2 0( )( )( ) ( ) ( ) ( ) ( )E

zz x yy x x x y zz x x z yy x

I
Q N Q N Q N N e Q N N e Q N

A
− − − − − − − =   (78) 

 

2 2 2 2 0( )( )( ) ( ) ( )zz x yy x x x y zz x x z yy x

E E

A A
Q N Q N Q N N e Q N N e Q N

I I
− − − − − − − =

  (79) 

 

But 𝑟0
2 = 𝑒𝑦

2 + 𝑒𝑧
2 + (

𝐼𝑥𝑥+𝐼𝑦𝑦

𝐴
)           (80) 

 

From Equation (4), 

 
𝐼𝐸

𝐴
=

𝐼𝑥𝑥+𝐼𝑦𝑦+(𝑒𝑥
2+𝑒𝑦

2)𝐴

𝐴
=

𝐼𝑥𝑥+𝐼𝑦𝑦

𝐴
+ 𝑒𝑥

2 + 𝑒𝑦
2 = 𝑟0

2                (81) 

 

Hence, 

 
2 2 2

2

2 2
0 0

0( )( )( ) ( ) ( )
x y z

zz x yy x x zz x x yy x

N e e
Q N Q N Q N Q N N Q N

r r
− − − − − − − =

  (82) 

 

Simplifying, 

 
2 2

2 2

2 2
0 0

0( ) ( )( ) ( )
y z

zz x yy x x x x yy x

e e
Q N Q N Q N N N Q N

r r


 
− − − − − − = 

 

  (83) 

 

or, (𝑄𝑦𝑦 −𝑁𝑥) [(𝑄𝑧𝑧 − 𝑁𝑥)(𝑄𝜙 − 𝑁𝑥) − 𝑁𝑥
2 𝑒𝑧

2

𝑟0
2] −

𝑁𝑥
2 𝑒𝑦

2

𝑟0
2 (𝑄𝑧𝑧 − 𝑁𝑥) = 0                                                        (84) 

 

Equation (82) is the characteristic buckling equation for 

finding the buckling loads of a generalized elastic column with 

an asymmetric cross-section and pinned supported ends at x=0 

and x=l. The equation is a third order polynomial in Nx with 

three roots. The three roots of the characteristic buckling 

equation are determined using the methods of solving 

polynomial equations. The smallest of the three buckling loads 

will govern the buckling behaviour of the column. 

Two particular cases of the generalized elastic column 

buckling problem, which are simplifications of the general 

flexural – torsional buckling problem are Case 1: the cross-

sections are doubly symmetric about the y and z coordinate 

axes. Case 2: the cross-section is singly symmetric (mono-

symmetric) about one coordinate axis. 
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4.2 Case 1: Buckling of columns with doubly 

symmetric cross-sections  

 

Typical examples of doubly symmetric cross-sections are 

symmetric  sections and cruciform sections. For generalized 

column buckling problems involving doubly symmetric cross-

sections, 𝑒𝑦 = 𝑒𝑧 = 0;  since the shear centre is coincident 

with the centroid. The stability equation simplifies to: 

 

0 0

0 0 0

0 0

( )

( )

( )

zz x

yy x

E
x

Q N

Q N

I
Q N

A


−

− =

−

         (85) 

 

The stability equation becomes, on expansion of Equation 

(85): 

 

0( )( )( ) E
zz x yy x x

I
Q N Q N Q N

A
− − − =           (86) 

 

The buckling modes are uncoupled (decoupled). 

The three roots (zeros) of the characteristic buckling 

equation become: 

 

𝑁𝑥 = 𝑄𝑧𝑧 = 𝐸𝐼𝑧𝑧 (
𝑛𝜋

𝑙
)
2

            (87) 

 

𝑁𝑥 = 𝑄𝑦𝑦 = 𝐸𝐼𝑦𝑦 (
𝑛𝜋

𝑙
)
2

            (88) 

 

𝑁𝑥 = 𝑄𝜙 =
𝐴

𝐼𝐸
(𝐸𝐶𝑤 (

𝑛𝜋

𝑙
)
2

+ 𝐺𝐽)                        (89) 

 

4.3 Case 2: Generalised elastic buckling of columns 

with monosymmetric cross-sections 

 

Typical example of column with monosymmetric cross-

section is column with channel section . If the zz axis is the 

axis of symmetry, then 𝑒𝑦 = 0,  𝑒𝑧 ≠ 0  and the buckling 

equation becomes: 

 

0

0 0 0

0

( )

( )

( )

zz x x z

yy x

E
x z x

Q N N e

Q N

I
N e Q N

A


− −

− =

− −

          (90) 

 

The characteristic buckling equation becomes from 

Equation (84), putting 𝑒𝑦 = 0,  

 

(𝑄𝑦𝑦 −𝑁𝑥) [(𝑄𝑧𝑧 − 𝑁𝑥)(𝑄𝜙 − 𝑁𝑥) − 𝑁𝑥
2 𝑒𝑧

2

𝑟0
2] = 0          (91) 

 

Solving, we have two possibilities for the roots of Equation 

(91): 

 

𝑁𝑥 = 𝑄𝑦𝑦 = 𝐸𝐼𝑦𝑦 (
𝑛𝜋

𝑙
)
2

             (92) 

 

or, (𝑄𝑧𝑧 − 𝑁𝑥)(𝑄𝜙 − 𝑁𝑥) − 𝑁𝑥
2 𝑒𝑧

2

𝑟0
2 = 0           (93) 

 

 

 

5. DISCUSSION 

 

The least squares weighted residual method has been 

successfully used in this work to solve the generalised elastic 

column buckling problem for the case of pinned supports at 

the ends. The generalized elastic column buckling problem is 

represented as a system of three coupled ordinary non-linear 

differential equations with variable coefficients given by 

Equations (1-3) in the most general problem. The buckling 

problem considered in this study assumed prismatic cross-

sections, homogeneous materials and further assumed that the 

yz coordinates are principal coordinates yielding 𝐼𝑧𝑧 = 0. It 
also assumed that the column is free form transverse loads and 

torques yielding a simplification of the governing ordinary 

differential equations to a system of three coupled linear ODEs 

with constant parameters given by Equations (16-18). The 

governing equations solved by the least squares weighted 

residual method were presented as a set of three functionals to 

be minimized as Equations (24)-(26). The least squares 

weighed residual variational statements of the problem were 

given as the Equations (30)-(32). In terms of the shape 

functions, the least squares weighted residual variational 

statements were given in general as Equations (33)-(35). 

For the elastic buckling problem where the ends x=0 and 

x=l are on pinned supports, the three suitable displacement 

functions that satisfied all the geometric and force boundary 

conditions (Equations (36)–(47)) were given as Equations 

(45)–(50). The displacement shape function was thus given by 

Equation (51) for all possible buckling modes. 

The substitution of the approximate displacement functions 

gave the least squares weighted residual variational integrals 

as the three equations, Equations (56-58). Further 

simplification of the least squares weighted residual 

variational integral statements reduced the BVP of generalized 

elastic column buckling to the algebraic eigenvalue 

eigenvector problem given by Equations (66)-(68); a system 

of homogeneous linear algebraic equations in terms of the 

modal displacement amplitudes. The homogeneous algebraic 

eigenvalue eigenvector problem was presented in matrix form 

as Equation (69). 

The condition for non-trivial solution of homogeneous 

algebraic equations was applied to find the buckling (stability) 

equation as Equation (70). The characteristic buckling 

equation was further expressed in terms of the Euler buckling 

load expressions about the two axes (yy and zz axes) of the 

cross-section and pure torsional buckling load Q as Equation 

(75). Expansion of the stability equation and algebraic 

simplification yielded the characteristic buckling equation for 

the general asymmetric cross-section as the third order 

polynomial in terms of Nx given by Equation (82). The 

characteristic buckling equation for asymmetric section was 

further simplified as Equation (83) or (84). The determination 

of the three roots of the characteristic buckling equation yield 

the three possible buckling loads, with the least buckling load 

governing the behaviour. 

Two special cases were further considered for the 

generalised elastic column buckling problem involving doubly 

symmetric cross-sections and simply symmetric cross-

sections. The characteristic buckling equation for doubly 

symmetric cross-sections was obtained as Equation (86), a 

third order polynomial. Solution showed the roots and 

buckling modes are uncoupled, and the buckling could be by 

pure Euler flexural buckling about the zz axis or about the yy 
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axis or by pure torsional buckling as given by Equations (87)–

(89). 

The lowest value of the three buckling loads is the critical 

buckling load, and would determine how the elastic column 

with doubly symmetric cross-section would fail. 

For the generalized elastic column problem involving singly 

symmetric cross-section, the case where the column is 

symmetrical about the zz axis was considered. The 

characteristic buckling equation for this case was found as 

Equation (90). Expansion yielded the buckling equation as 

Equation (91), a third order polynomial equation in Nx with 

one flexural buckling mode uncoupled and the other flexural 

buckling mode coupled with the torsional buckling mode. This 

shows that such columns with singly symmetric sections can 

fail by either Euler flexural buckling mode in the yy direction 

(for the case of symmetry about the zz axis), and/or flexural 

torsional buckling mode. The roots of the polynomial which 

are the eigenvalues give the values of the buckling loads. The 

three zeros of the polynomial would give three values of the 

buckling load. Euler flexural buckling load about the yy axis 

given by Equation (92) and two coupled flexural – torsional 

buckling loads found by solving Equation (93). The 

expressions for the characteristic buckling loads obtained by 

the least squares weighted residual method agree excellently 

with solutions by Det [27], Wang et al. [26], Mama et al. [3] 

who used the finite Fourier sine transform method, Onah et al. 

[2] who used the Fourier series method and Ike et al. [4] who 

used the Galerkin variational method. 

 

 

6. CONCLUSION 

 

The conclusions of the study are as follows: 

i. The least squares weighted residual method can 

efficiently solve the BVP presented by the system of 

linear ordinary differential equations subject to the 

boundary conditions for the generalized elastic column 

buckling problem for pinned ends at x=0, and x=l. 

ii. The method simplified the problem from a BVP to an 

algebraic eigenvalue problem represented by a system of 

homogeneous algebraic equations. 

iii. The characteristic buckling equation was found as a third 

order polynomial in terms of Nx; whose three roots gave 

the three buckling loads. 

iv. In generalised elastic column buckling problems with 

doubly symmetric cross-sections, the resulting system of 

algebraic homogeneous equations are uncoupled yielding 

characteristic buckling equations with uncoupled 

buckling loads, and uncoupled buckling modes. 

v. In generalised elastic column buckling problems with 

singly symmetric cross-sections, with zz axis as the axis 

of symmetry, the flexural buckling mode about the yy axis 

is uncoupled, while the flexural buckling mode about the 

z axis, is coupled with torsional buckling. 

vi. In generalised elastic column buckling problems with 

asymmetric cross-sections, the three buckling modes are 

coupled and the two flexural buckling modes about the yy 

and zz axes interact with the torsional buckling mode. 

vii. The expressions obtained for the characteristic buckling 

equations were exact solutions since the exact 

displacement shape functions that satisfied all the 

geometric and force boundary conditions were used. 
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NOMENCLATURE 

 

x  longitudinal (axial) coordinate variable 

l  length of the column 

yz  plane of the cross-section of the column 

A  area of the cross-section 

t(x)  applied torque 

Mlz Mly  moments due to transverse loads 

J Saint Venant torsional stiffness of the cross-

section 

E Young’s modulus of elasticity of the column 

material 

G  shear modulus or modulus of rigidity 

Iyy Izz moments of inertia about the yy and zz 

coordinate axes 

Cw  warping constant 

n  buckling mode number 

IE polar moment of inertia about the shear 

centre 

Iyz  product of inertia 

ey, ez  coordinates of the shear centre 

Vy, Vz  shear forces 

qy, qz  transverse loads 

Nx  axial force 

v(x) w(x) transverse displacement components in the y 

and z coordinate directions 

(x)  twist or rotational displacement 

Hy, Hz, Hw, Cy, Cz, geometrical properties of the cross- 

         section 

F1, F2, F3    functionals to be minimized 

�̄�(𝑥), �̄�(𝑥), �̄�(𝑥)  approximations to the unknown 

 displacement functions 

n(x)  displacement functions for the nth buckling 

 mode 

Qzz Euler flexural buckling load about the zz axis 

Qyy Euler flexural buckling load about the yy 

axis 

Q  torsional buckling load 

r0  radius of gyration 

An, Bn, n  buckling modal amplitudes of the unknown 

displacement v(x), w(x) and (x) for the nth 

mode 
𝑑

𝑑𝑥
  first ordinary differential operator 

𝑑𝑛

𝑑𝑥𝑛
   nth ordinary differential operator 

4

1 4

d
L

dx
=   notation for the fourth ordinary differential 

operator 
2

2 2

d
L

dx
=   notation for the second ordinary differential 

operator 

A

   double integral over the domain of the cross 

sectional area, A 

0

l

    intergral over the length l of the column 

1n



=

    summation for n = 1, 2, 3, …,  

( )v x    second derivative of v(x) with respect to x 

( )w x    second derivative of w(x) with respect to x 

( )x    second derivative of (x) with respect to x 
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