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 The motion control of robot manipulator is inseparable from the manipulator dynamics. 

However, the relevant literature often discusses dynamics model and control method 

separately. This paper attempts to design a good and feasible dynamics model to enhance the 

motion control of manipulator. Firstly, a dynamics model of the flexible manipulator was 

proposed through finite matrix analysis, based on the Lagrange’s dynamics equations under 

different control conditions. Based on the flexible dynamics model, two adaptive control 

systems were designed based on whether the interaction force is known. In the control stage, 

a separated controller was developed by applying the adaptive model and sliding mode 

principle. The stability and robustness of our control strategy were proved through Lyapunov’s 

method. Finally, several numerical tests were carried out the verify the feasibility and 

superiority of our control strategy. The research results provide new insights into the dynamic 

control of robots with varied load constraints and any degree of freedom (DOF). 
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1. INTRODUCTION 

 

The robot, coupled by a mechanical system and a control 

system, exhibits a high nonlinearity [1]. During operation, the 

maximum acceleration of the robot is up to 3-5g, calling for a 

high precision in trajectory tracking [2]. For robot with a 

flexible structure, the excessive deformation of the 

manipulator, if not considered in the mathematical model, will 

have a great impact on the dynamic performance [3]. The 

flexible dynamics of the manipulator may cause errors in the 

interaction torque of the motor and the positioning of the end 

effector. For precision work, the positioning of the end effector 

should vibrate within a very small amplitude, ideally with no 

vibration at all [4]. To achieve precision control of robotic 

motions, the deformation of the flexible manipulator must be 

considered in the mathematical model and subjected to precise 

dynamics analysis [5, 6]. Traditionally, the dynamics of the 

connecting rod-type manipulator are described by partial 

differential equations in an infinite dimensional space, which 

is difficult to apply in system analysis and control design [7]. 

Therefore, this paper establishes the dynamics equation 

through the finite matrix analysis in the Lagrange’s equations. 

In the dynamics equation, the manipulator is simultaneously 

constrained by the interaction force and the motion trajectory 

[8]. The two constraints exist in the cartesian space and the 

configuration space, respectively. Thus, it is not easy to design 

a force-displacement control for robot dynamics, which is not 

subjected to both constraints at the same time [9]. To solve the 

problem, various control methods have been developed, 

including position control, speed control, force and 

displacement hybrid control [10]. These methods can be 

roughly divided into classic control and modern control. The 

modern control approaches are extended from classic ones to 

further address the nonlinearity and uncertainty of the robot 

[11, 12]. 

In this paper, the Jacobian matrix is adopted to assign the 

force in cartesian space to the joint in configuration space. For 

the flexible manipulator, a dynamic control method was 

designed to ensure the stability of the interaction force control 

loop, whether in a known or unknown mode. The method can 

provide appropriate feedback for the precise control of the 

interaction force [13], and effectively guarantee the control 

quality without the measured interaction force. 

 

 

2. DYNAMICS MODELLING 

 

This paper models the dynamics of a five degree-of-

freedom (5DOF) flexible manipulator through finite matrix 

analysis. Firstly, the displacement of each joint of the 

manipulator was calculated through finite matrix analysis. 

Secondly, the dynamics model of the manipulator was 

established based on nodal displacement, according to the 

Euler–Bernoulli beam theory. Finally, the author obtained the 

Lagrange’s dynamics equation of the flexible manipulator. 

The flexible manipulator is equivalent to an inhomogeneous 

cylindrical member of constant cross-section, which satisfies 

the small deformation hypothesis of the Euler–Bernoulli beam 

theory. Figure 1 presents the deformation of the flexible 

manipulator and the joint equivalent model.  

The center of the shoulder joint was taken as the origin of 

the fixed coordinate system xoyozo. In the moving coordinate 

system, the positions of the left end u before and after the 

manipulator deformation are denoted as u0  and u1 , 

respectively. Let ∆p⃗⃗ ⃗⃗  be the projection of u in the fixed 

coordinate system, and u⃗ = [xu, yu, zu]
T be the displacement 

vector of u, with xu be the x-axis coordinate of u in the fixed 
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coordinate system. The symbols for the right end v are defined 

in the same manner (e.g. v⃗  is the displacement vector of v). 

 

 
 

Figure 1. The deformation of the flexible manipulator and 

the joint equivalent model 

 

As shown in Figure 2, the manipulator mainly includes 

components like shoulder (L1), elbow (L2), arm (L3), hand (L4), 

and pedestal (O0) [4].  
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Figure 2. The mechanical model of the manipulator 

 

Table 1. Parameters of the 5DOF manipulator 

 
Name Twist angle 𝐭𝐰𝐢𝐬𝐭𝐢−𝟏 Link length 𝐚𝐢−𝟏 Link offset 𝐝𝐢 Joint angle 𝛉𝐢 Moment of inertia 𝐈𝐢 

1 0 0 L1 θ1 I1 

2 
π

2
  0 0 θ2 0 

3 0 L2 0 θ3 I2 

4 0 L3 0 θ4 I3 

5 −
π

2
  0 L4 θ5 I4 

 

The parameters of the 5DOF flexible manipulator are listed 

in Table 1, where twisti−1 is the coordinate array on the twist 

angle of the hinge point. 

The mapping T0
5  from the cartesian space to the 

configuration space can be expressed as a Denavit-Hartenber 

(D-H) matrix: 

 

T0
5 = [

R P
0 1

] = [

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

]             (1) 

 

{

α = atan⁡ 2(r32, r33)

β = atan⁡ 2(−r31, √r32
2 + r33

2 )

γ = atan⁡ 2(r21, r11)

               (2) 

 

[
 
 
 
 
θ1
θ2
θ3
θ4
θ5]
 
 
 
 

T0
5

→

[
 
 
 
 
x
y
z
α
β
γ]
 
 
 
 

                                    (3) 

 

Formula (2) describes the relationship between Euler angle 

and parameters in the D-H matrix. 

 

2.1 Nodal displacement equation based on finite matrix 

analysis 

 

The dynamics of the manipulator were analyzed through 

finite matrix analysis. The dynamic motions of the robot were 

transformed into the instantaneous static structure for 

mechanical analysis. In this way, the nodal displacement of the 

robot in each state was acquired, laying the basis for setting up 

the flexible dynamic equation. 

Unlike the rigid mechanical strategy, the finite matrix 

analysis considers the elastic deformation, and converts the 

simple rigid multi-body dynamics model into an elastic model. 

In the new model, the manipulator at each moment can be 

viewed as a static structure with instantaneous motions. The 

stiffness of the manipulator can be described by an elastomeric 

equation that defines the linear relationship between the 

external force applied by a wrench w and the corresponding 

deflection ∆t . The elastomeric equation at an end can be 

expressed as: 

 

W = K ∙ ∆t                                      (4) 

 

where, K  is a 6×6 stiffness matrix; ∆t is a 6-dimensional 

deflection vector (including translation ∆p = [∆x, ∆y, ∆z] and 

rotation ∆φ = [∆α, ∆β, ∆γ]  components). Similarly, the 

external force W  is also a 6-dimensional component 

(containing forces F = [Fx, Fy, Fz]  and moments M =

[Mx, My, Mz]). 

The elastomeric equation W can converts the inertial force 

and the external force on the truss into an equivalent nodal 

force on each node. This process is called the equivalent nodal 

force transform.  

Substituting the equivalent nodal force and the stiffness 

matrix into formula (4), the nodal displacement ∆t  can be 

derived from the nodal displacement and the constitutive 

relation of the material. The axial force and shear force of each 

member can be respectively obtained as: 

 
W1

W2

W3

W4

W5

= K

∆t1
∆t2
∆t3
∆t4
∆t5

                                   (5) 

 

s.t. 
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{
 
 

 
 Ωr ∙ (∆ti − ∆tj) = 0

Wi +Wj = 0

Ωe ∙ Wj = kq ∙ Ω
e ∙ (∆ti − ∆tj)

Ωe ∙ (∆ti − ∆tj) = ξ

            (6) 

 

where, ξ is the amount of joint spring deformation; Ω⁡is the 

geometric matrix of the manipulator; e is the elastic joint; r is 

the non-elastic joint;⁡kq is stiffness matrix. 

 

2.2 Dynamic equation of flexible manipulator 

 

During the movement, the manipulator witness changes in 

its spatial position and potential energy of elastic deformation 

[14]. The finite matrix analysis was performed on the four 

links of the manipulator to obtain the generalized coordinates 

of the potential energy. The lengths of the links are denoted as 

L1 ,L2 ,L3  and L4 , respectively. It is assumed that the elastic 

joint axis points to the Z-direction. Then, the angle between 

the adjacent links equals the rotation angle of the elastic joint 

θi. The manipulator was defined in the xy plane for the Euler-

Bernoulli beam model with a constant cross-section of A. To 

describe the potential energy of each Euler-Bernoulli link, the 

deflection control equation was solved as a differential 

equation, in the light of the load distributed on the link. 

(1) Link equation based on Euler-Bernoulli beam model 

 

 
 

Figure 3. Mechanical model of a link 

 

 
 

Figure 4. Deformation dynamics model of a link 

 

Note: The blue line represents the original link, and the red 

line stands for the deformed link. 

As shown in Figure 3, the Euler-Bernoulli beam theory 

assumes that the planar section remains through the 

deformation process. The displacement Δv at the distance n of 

the intermediate axis of the link can be given by: 

Δv = −n
dγdeflection

dl
                           (7) 

 

where, l and n are the coordinates in the axial direction and the 

normal direction, respectively. According to the deformation 

dynamics model in Figure 4, u1  is aligned to u0 , and the 

normal lines of u1  and v1  intersect each other at the center. 

Hence, the radius of curvature can be obtained. Since the 

curvature of arc u0v1 is unknown, the midpoint Mid of the line 

segment u0v1⁡can be used as the normal to intersect the normal 

of u0v1, where u0v1 = v0 + ∆p⃗⃗ ⃗⃗ : 
 

 

{

u0v0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ u0Center⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 0

u0v1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ CenterMid⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 0

Centeru0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ CenterMid⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = CenterMid⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ Centerv1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

    (8) 

 

It can be seen that r = ‖Centeru0‖, and the following can 

be obtained by approximating the differential equation of the 

deflection curve: 

 
∂2γdeflection

∂l2
=

1

r
                                 (9) 

 

where, γdeflection  is the deflection of the manipulator. The 

positive and shear strains of the link can be respectively 

defined as: 

 

ϵl =
∂v

∂l
= −n

∂2γdeflection

∂l2
; γln =

∂v

∂l
+

∂v

∂n
= 0. 

 

Then, the potential energy of elastic deformation of robotic 

links can be obtained as:  

 

Ep2 =
1

2
∫ σlϵldV =V

1

2
∫ Eϵl

2dV
V

                (10) 

 

Substituting dV = dAdl into formula (10) and integrating in 

the l direction, we have: 

 

Ep2 =
1

2
∫ EIi (

∂2γdeflection

∂l2
)
2

dl
a

0
                 (11) 

 

where, Ii = ∫ n2dAdl⁡
a

0
is the moment of inertia of the cross-

section A⁡ of the link; E  is the elastic modulus; EIi  is the 

bending stiffness. 

 

 
 

Figure 5. The dynamics model in the global coordinate 

system 

 

As shown in Figure 5, the axial displacement depends on 

the axial vector: 

 

l = ∆xi + ∆yj + ∆zk                         (12) 
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The norm of the axial vector can be described as: 

 

‖l ‖ = l = √∆x2 + ∆y2 + ∆z2                    (13) 

 

where, 

 

∆x = acos α, ∆y = acos β, ∆z = acos γ. 

 

The differential equation of the link can be defined as: 

 

dl = (
∂l

∂α

dα

dθ
+

∂l

∂β

dβ

dθ
+

∂l

∂γ

dγ

dθ
)dθdv                   (14) 

 

Thus, formula (11) can be rewritten as: 

 

Ep2 =
1

2
∫ EIi (

1

r
)
2

dl
a

0
                         (15) 

 

Besides that of the link, the potential energy of elastic 

deformation of the joint was also taken into account. 

Considering the joint as a torsion spring, the dynamics model 

of the flexible joint can be established as: 

 

Ep3 =
1

2
Im(θ̇ − ∆φ)

2
+

1

2
kξ2                   (16) 

 

where, Im  is the moment of inertia; θ  is the actual rotation 

angle of the joint; ξ is the deformation of the joint spring; kq 

is elastic stiffness coefficient of the flexible joint, which is 

equivalent to a nonlinear torsion spring. The energy equation 

of the elastic joint ensures the balance of all the components 

under rotation, and describes the laws of elasticity and inertia 

of the elastic joint. 

(2) Lagrange’s energy dynamics equation 

The kinetic energy of the flexible link can be described as: 

 

Ek =
1

2
∫ ρ(l)l̇Tl̇dl
a

0
                            (17) 

 

where, ρ(l) is the axial density of the manipulator. 

The total potential energy of the manipulator includes the 

potential energy of elastic deformation Ep2 of the flexible joint, 

the torsion and the bending strain energy Ep3  of the joint 

spring, and the gravitational potential energy Ep1: 

 

Ep = Ep1 + Ep2 + Ep3                         (18) 

 

where, Ep1 = mzg; z = T0
5 (z)⁡is the mass concentration of the 

end. According to the structure of the manipulator, the 

generalized coordinate system is based on θ . Thus, the 

dynamics equation can be defined by the Lagrange equation: 

 

L = Ek − Ep,
d

dt
(
∂L

∂θ̇
) −

∂L

∂θ
= 0                   (19) 

 

The above formula combines the kinetic energy, potential 

energy, and gravitational potential energy of the manipulator 

to obtain the torque in the robotic configuration space. Hence, 

the dynamics equation can be rewritten as: 

 

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ                 (20) 

 

The dynamics equation considers a 5DOF manipulator 

operating in a rigid environment [14]. To control the dynamics 

adaptively, the control structure must be robust to the 

uncertainty in the model. Therefore, the model was further 

deduced as follows. When the manipulator is in contact with 

the environment, a contact force Fin is applied to the dynamics 

system [19]. Then, the dynamics equation of the manipulator 

in the configuration space can be expressed as: 

 

M(θ)θ̈ + C(θ, θ̇)θ̇ + F(θ̇) + G(θ) = τ + J(θ)Fin        (21) 

 

where, θ ∈ Rn  is the generalized coordinate vector; M(q) ∈

Rn×n is the inertia matrix of the manipulator; C(θ, θ̇) ∈ Rn is 

the centrifugal force and Coriolis forces/moments; G(θ) ∈ Rn 

is the gravity term; F(θ̇) ∈ Rn  are the viscosity force and 

friction terms; τ ∈ Rn is the control torque; J(θ) ∈ Rm×n is the 

Jacobian matrix; Fin ∈ R
m  is the interaction force in the 

cartesian space; n is the number of DOFs of the manipulator; 

m is the dimension in the cartesian space. 

 

 

3. FLEXIBLE DYNAMICS CONTROL MODEL 

 

The manipulator control aims to adjust the robot motions 

based on the position and force constraints acquired by the 

observer. Therefore, the assembly operation can conform to 

the contact constraints and gradually correct the motion errors. 

According to the above dynamics model, the control 

process faces severe time variation, coupling, nonlinearity and 

uncertainty. The influence of nonlinearity and uncertainty on 

control effect is particularly prominent under heavy load. To 

overcome the difficulties, the most suitable strategy is to 

implement control adaptively to the time-varying parameters 

[16]. 

 

3.1 Control plans 

 

The general methods to derive the adaptive control 

algorithms mainly target rigid manipulators. This paper 

mainly pursues the stable control of flexible manipulator under 

force and displacement constraints. Therefore, the traditional 

dynamics equation must be reformulated before being applied 

to our research [17-19]. 

According to the mechanics control equation, the path of the 

manipulator described in formula (21) can be called the 

generalized trajectory, which consists of the motion, velocity 

and acceleration trajectories in configuration space. To 

prevent the acceleration feedback and the dilemma of 

compensation, the generalized trajectory tracking error was 

introduced to the control system: 

 

e = θd − θ                                  (22) 

 

where, θd is the desired joint angle after nodal displacement. 

The tracking error of the sliding surface can be described as: 

 

s = ė + Λe                                    (23) 

 

The derivative of the tracking error form the design matrix 

Λ = ΛT > 0,⁡Λ ∈ Rn. To reduce the dimension of the control 

object and avoid the acceleration feedback, formulas (22) and 

(23) can be combined into: 
 

θ̇ = v– s                                   (24) 

 

where, v = θ̇d + Λe, v is an auxiliary signal. From the above 

formula, we have: 
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θ̈ = v̇– ṡ                                (25) 

 

Substituting formulas (23) and (25) into formula (21), we 

have: 

 

M(θ)ṡ = 

−C(θ, θ̇)s + M(θ)v̇ + C(θ, θ̇)v + G(θ) − U − J(θ)Fin.  (26) 

 

For convenience, it is assumed that: 

 

M(θ)v̇ + C(θ, θ̇)v + G(θ) = f            (27) 

 

where, f⁡ ∈ ⁡Rm is the nonlinear function of the control system. 

The value of f̂(θ) is determined by the adaptive identification 

agency. For control design, the linear expression of the 

manipulator can be written as: 

 

f = Y(θ, θ̇, v, v̇)p                          (28) 

 

where, Y(θ, θ̇, v, v̇) is an adaptive regressor depending on the 

angular displacement and angular velocity of the manipulator; 

p is the vector of uncertain structural parameters. The form of 

Y(θ, θ̇, v, v̇)p changes with the manipulator structure, so does 

the form of p. Being a function vector for motion parameters 

and deterministic structural parameters, Y(θ, θ̇, v, v̇)  has a 

deterministic value that can be calculated online. Obviously, 

once Y(θ, θ̇, v, v̇)is written in linear form, then the problem is 

transformed into a computational problem. Then, the only task 

is to design an adaptive mechanism. The value of 

Y(θ, θ̇, v, v̇)⁡can be calculated after p is recognized. 

Let p̂ be the valuation of p. Then, f̂ can be written as: f̂ =

Y(θ, θ̇, v, v̇)p̂. 

Finally, the tracking error after wave filtering can be 

described as: 

 

M(θ)ṡ = −C(θ, θ̇)s + f − U − J(θ)Fin               (29) 

 

The function f depends on the model of the manipulator and 

the environment. The other influencing factors of this function 

include the inaccurate known parameters of the manipulator 

and the unknown stiffness of the environment. Hence, our 

control system should consider the traditional proportional-

derivative (PD) control, i.e. f̂ ∈ ⁡ Rm controls the nonlinearity 

of the compensated object, and the influence of the interaction 

force Fin. 

The adaptive position/force control for the flexible 

manipulator is illustrated in Figure 6 [20]. 

 

 
 

Figure 6. The adaptive position/force control 

 

3.2 Separated control strategy 

 

From the control plan, it can be seen that the interaction 

force is either unknown or known. If it is known, the interface 

force needs to be controlled precisely. Therefore, the control 

law must adapt to the type of the interaction force (Figure 7).  

 

 
 

Figure 7. The proposed separated control strategy 

 

Based on the dynamics model, the adaptive parameters were 

adopted to identify the control law. Taking the deviation from 

the desired interaction force as the main input, the control law 

of the known interaction force was designed based on the 

sliding mode structure, such that it is table under the 

Lyapunov’s method. Then, the parameters were estimated 

appropriately. 

(1) The case of known interaction force 

If the interaction force is known, the tracking error can be 

defined as: 

 

e = [θd − θ|Fd − Fin]                       (30) 

 

The adaptive control law can be defined as: 

 

U  = f̂ − J(θ)Fd + Kds                      (31) 

 

Thus, the system description can be rewritten as: 

 

M(θ)ṡ = −C(θ, θ̇)s − Kds + f̃ + eforce          (32) 

 

where, f̃ = Y(θ, θ̇, v, v̇)p̃ is the parameter estimation error; Fd 

is the desired interaction force;⁡eforce is the deviation from the 

desired interaction force, Fd − Fin. 

The above formula is a closed control loop for tacking error 

and parameter estimation error. To implement this adjustment 

law, p can be rewritten as: 
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p̂ = −η̂sgn(∑ sjYj(θ, θ̇, v, v̇)
m
j=1 )                  (33) 

 

η̇̂ =  Γ∑ sjYj(θ, θ̇, v, v̇)
m
j=1                          (34) 

 

where, Kd is a positive definite array; Γ > 0. 

If the adaptive control law is applied to formulas (31) and 

(32), the tracking error will converge to zero. 

(2) The case of unknown interaction force 

If the interaction force is unknown, the interaction force was 

considered as an interference. Then, Fin  was assumed to be 

related to and bounded by system state: 

 

Fin ≤ d0 + d1e + d2ė                      (35) 

 

where, d0 > 0;⁡d1 > 0;⁡d2 > 0. 

To avoid the impact of external perturbation on the control 

system, the switch rate of the sliding mode  σ̂0s + σ̂1sgn(s) 
was introduced. As shown in Figure 8, the error curve of the 

sliding mode force appears on the hyperplane, such that the 

error converges exponentially.  

 

 
 

Figure 8. Sliding mode control 

 

Then, the sliding mode control law can be designed as: 

 

U  = f̂ − Fin + σ̂0s + σ̂1sgn(s)                  (36) 

 

The control model can be depicted as: 

 

M(θ)ṡ = −C(θ, θ̇)s − σ̂0s − σ̂1sgn(s) + f̃ − Fin      (37) 

 

Similarly, f̃ = Y(θ, θ̇, v, v̇)p̃ and p̃ = p − p̂, where 

 

p̂ = −η̂sgn(∑ sjYj(θ, θ̇, v, v̇)
m
j=1 )                (38) 

 

The adaptive law of the upper bound estimate η̇̂  can be 

expressed as: 

 

η̇̂ =  Γ|∑ sjYj(θ, θ̇, v, v̇)
m
j=1 |                      (39) 

 

σ̇̂0 = ς0‖s‖
2                                (40) 

 

σ̇̂1 = ς1‖s‖
2                                (41) 

 

where, Γ > 0;⁡ς0 > 0;⁡ς1 > 0. 

Following the above control law, the tracking error of the 

control system converges to zero. 

 

3.3 Asymptotic stability of the separated control  

 

The sliding surface can be designed as: s = ė + Λe, where 

Λ⁡ is the positive diagonal matrix, and Λ =
diag[c1, c2, … , cn], c1 > 0 . The design of manipulator 

controller is to identify the suitable form for the control torque 

of joint drive U. The actual motion tracking of the manipulator 

in the configuration space can be expressed as θ(t) → θd(t), 
where⁡θd(t) is the configuration space trajectory of the target. 

Taking θdas the command, the error contains the dynamic 

equation error and force control error. 

In the preceding subsection, the adaptive control was 

developed based on known or unknown interaction force and 

interference. The parameter adaptation law is critical to the 

stability of the control system, because the latter mainly hinges 

on the evaluation of the adaptive mechanism for p . The 

mechanism has nothing to do with the parameter adaptation 

law of the system. Therefore, the asymptotic stability of the 

adaptive control system was demonstrated in two cases. 

(1) The case of known interaction force 

If the interaction force is known, the parameter adaptation 

law adopts the following Lyapunov function: 

 

V(t) =
1

2
sTM(θ)s + p̃TΓ−1p̃                      (42) 

 

Then, the Lyapunov derivative function can be obtained as: 

 

V̇(t) =
1

2
sTṀ(θ)s + ⁡sTM(θ)ṡ + p̃TΓ−1p̃          (43) 

 

where, Γ > 0 is the designed gain matrix. 

Next, V̇(t)  Can be simplified by the control law and the 

adaptive law (36)  

 

V̇(t) = −sTKds ≤ 0                          (44) 

 

The classical Lyapunov stability theorem works in the sign-

definite mode. The asymptotic stability of the control system 

is proved from a sign positive definite function V(t) > ⁡0 to a 

sign negative definite derivative V̇(t) ⁡< ⁡0  of the function 

along the solution of the system. 

(2) The case of unknown interaction force 

If the interaction force is unknown, the parameter 

adaptation law treats the interaction force as an interference, 

and adopts the following Lyapunov function: 

 

V(t) =
1

2
sTM(θ)s +

1

2
∑

(ηi−η̂i)
2

Γi
+

1

2
∑

(σi−σ̂i)
2

ςI

n
i=1

n
i=1    (45) 

 

where, σi  and ηi  are estimated values; η̂  and σ̂i  are desired 

values. 

Then, the Lyapunov derivative function can be obtained as: 

 

V̇(t) ≤ −[‖s‖ ∙ ‖e‖]Q [
‖s‖
‖e‖

] − (σ1 − d0)‖s‖        (46) 

 

where,  

 

Q = [
σ0 − d1 −

ρ+λM(Λ)d1+d2

2

−
ρ+λM(Λ)d1+d2

2
ρλm(Λ)

]; 
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ρ > 0; λM(Λ) and⁡λm(Λ) are the maximum and minimum 

eigenvalues of Λ, respectively. 

Since σ1 ≥ d0 and the first item of the inequality is negative, 

we have V̇(t) ≤ 0. 

 

 

4. EXAMPLE ANALYSIS 

 

If the interaction force is known, it should be controlled by 

the strategy in Figure 9. 

As shown in Figure 9, the interaction force rises abruptly in 

the early stage of motions, and then slowly drops, ending up 

in a stable state. Thus, the evolution of the interaction force 

can be divided into three phases: the rising phase, the 

decreasing phase and the stabilization phase. The control 

effect gradually improves, thanks to the adaptability of the 

control system in each phase. 

As shown in Figure 9(b), the planned trajectory ensures the 

normal operation of the end effector, which outputs a 

relatively constant force as the manipulator moves. Therefore, 

the control process covers two aspects: the tracking of the 

angular displacement in the configuration space, and the 

tracking the force in cartesian space. 

 

 

 
 

Figure 9. The control strategy for the case of known interaction force 

 

4.1 Numerical tests 

 

The desired trajectory was derived from the control law (31) 

and the parameter adaptation law. The simulation parameters 

are provided in Table 1. In addition, the adaptive gain matrix 

Γ of the parameters can be set up as: 

 

Γ = [0.05 0.05 0.05 0.05 0.05 0.05]. 
 

Numerical tests were carried out under different scenarios, 

based on whether the interaction force is known and the 

modification of the control law. If the interaction force is 

known, the influence of the interaction force on the control 

system was assumed as  Fin . Then, the control law was 

modified to ensure that the displacement and force errors 

converge to the boundary. The matrix Γ⁡can be expressed as: 

 

Kd = diag[10 10 10 10 10], 
Λ = diag[5 5 5 5 5]. 

 

The initial values of the adaptive parameters can be 

presented as: 

 

ς0(0) = 0.015, 

ς1(0) = 0.015. 

 

If the interaction force is unknown, the force was taken as 

the interference Fin in the system description. Then, the matrix 

Γ⁡can be expressed as:  

 

Γ = diag[0.015 0.015 0.015 0.015 0.015 0.015], 

Λ = diag[5 5 5 5 5]. 
 

The initial values of the adaptive parameters can be 

presented as: 

 

ς0(0) = 0.015, 

ς1(0) = 0.015. 

 

In addition, η1(0) = 0.8 , η2(0) = 0.2 , ⁡η3(0) =
0.2,⁡η4(0) = 0.8, η5(0) = 0.8, η6(0) = 0.8, ⁡σ0(0) = 0 and 

σ1(0) = 0. 

 

4.2 Numerical results 

 

This subsection provides the numerical results in both cases 

of the interaction force. Each simulation test lasted 3s, during 

which the input force fluctuated greatly. 

The total control signal is controlled by the adaptive model 

(Figure 10). The adaptive controller starts the compensation 

control (Region 1) at around 0.1s. The control signal tended to 

be smooth due to the parameter adaptation and the effect of 

sliding mode control (Region 2). In the initial phase of the 

manipulator motion, the compensation control was 

mismatched because the precise control parameters were 

unknown. At the beginning, the signal generated by 

proportional module had the dominance. Soon, the dominance 

was gradually weakened, while the parameter adaptation 

compensated for the control (Region 3). 

The parameters were initially compensated by the 

proportional module, and the control parameters fluctuated 

about a certain value (Figure 11). 
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Figure 10. The total control signals in the case of known interaction force 

 

 
 

Figure 11. Parameter adaptation in the case of known interaction force 

 

Figure 12 presents the numerical results in the case that both 

interaction force and interference were unknown. For 

trajectory smoothness, the sliding mode adaptive control was 

implemented. The time lag induced by the sliding mode 

structure makes the controller impossible to eliminate 

nonlinear fluctuations. 

In the case of unknown interaction force, the sliding mode 

control σ̂0s + σ̂1sgn(s) was adopted to ensure the robustness 

of the control system. As shown in Figure 13, the error 

function converged on the sliding surface, providing a 

guarantee to the smoothness of the trajectory error in the 

configuration space. 
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In the case of unknown interaction force, the estimated 

parameters presented a worst-case scenario with significant 

fluctuations in parameter values. As shown in Figures 14 and 

15, the estimated system parameters were all bounded and 

eventually stabilized, indicating that our control system tended 

to be stable. 

 

 
 

Figure 12. Control input of unknown input force in cartesian space 

 

 
 

Figure 13. Control input of unknown input force in configuration space 

 

 
 

Figure 14. Parameter adaptation in the case of unknown interaction force in cartesian space 

 

In the case of unknown interaction force, the estimated 

parameters presented a worst-case scenario with significant 

fluctuations in parameter values. As shown in Figures 14 and 

15, the estimated system parameters were all bounded and 
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eventually stabilized, indicating that our control system tended 

to be stable. 

 

 
 

Figure 15. Parameter adaptation in the case of unknown 

interaction force in configuration space 

 

4.3 Discussion 

 

As shown in Figure 16(a), the error peak appeared in the 

initial phase, for the parameter adaptation law does not take 

effect. Then, the error plunged deeply over the time. Similarly, 

the force error curve (Figure 16(b)) was high at the beginning, 

because the adaptive law does not take effect, and later 

fluctuated and declined. 

 

 
(a) 

 
(b) 

 

Figure 16. The joint angular error and interaction force error 

in the case of known interaction force 

Figure 17 provides the interaction tracking error and the 

parameter estimation error in the case of unknown interaction 

force. It can be seen that both errors tended to land on the 

determined boundary. This confirms the stability of our 

control system.  

For the error in the case of unknown interaction force, since 

the estimated term σ̂0s + σ̂1sgn(s) begins to take effect, the 

error converged sharply, and slowly approached the 

equilibrium level. Thus, the adaptive control can clearly 

improve the control quality. 

For the error in the case of known interaction force, the 

proportional module improved the initial control quality. To 

eliminate the error of the force control and position control, 

the parameter adaptation helps to enhance the control quality 

in the initial phase. 

In both cases, the proportional module and the sliding mode 

module play a leading role in the early phase. In the later phase, 

the parameter adaptation evolves stably, improving the control 

quality. Finally, the adaptive control tracks the change 

trajectory of the force and position well, leading to the 

convergence of the force/position error. 

 

 
 

Figure 17. The error in the case of known interaction force 

 

 

5. CONCLUSIONS 

 

This paper proposes a control method applicable to robots 

with varied load constraints and any DOF. Firstly, the nodal 

displacement of the manipulator was calculated by a full rank 

or rank deficient cartesian stiffness matrix. Then, the dynamics 

model of the manipulator was presented as a set of matrix 

equations by the Lagrange’s method in high-dimensional 

configuration space. This approach has a unique advantage: 

the model can be generated directly by aggregating the joint 

energy equation, without needing the global stiffness matrix.  

Based on the dynamics model of flexible manipulator, a 

separate control strategy was developed to control the motions 

with known or unknown interaction force. After that, an 

adaptive controller was mathematically deduced, under the 

design principles of the control system under different 

conditions. The behavior of the control system was analyzed 

under the cases of known or unknown interaction force, and 

its stability was proved. The tracking error of the interaction 

force can converge through the parameter adaptation, under 

the Lyapunov’s principle. 

Several numerical tests were conducted under different 

conditions of the interaction force, aiming to verify the 
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effectiveness and superiority of our control strategy. The 

numerical results show that the sliding mode control is more 

stable and interference resistant than the adaptive control. 

However, due to the switching function, the sliding mode 

control cannot avoid the nonlinear fluctuations of the input, 

which undermines the motion control. Therefore, an accurate 

observer should be introduced to the control system to enhance 

the control effect for relatively stable input. In the case of 

known interaction force, the proportional module may 

compensate controlling quality in the initial phase of adaptive 

control. In the case of unknown interaction force, the position 

error will fluctuate during the convergence, but the control 

system remains stable. 
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