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In this study, the Timoshenko first order shear deformation beam theory for the flexural 

behaviour of moderately thick beams of rectangular cross-section is formulated from 

vartiational principles, and applied to obtain closed form solutions to the flexural problem 

of moderately thick rectangular beams. The total potential energy functional for the 

moderately thick beam flexure problem was formulated by considering the contribution of 

shearing deformation to the strain energy. Euler-Lagrange conditions were then applied to 

obtain the system of two coupled ordinary differential equations of equilibrium. The 

problem of moderately thick beam with simply supported ends subject to uniformly 

distributed transverse load on the entire span was solved in closed form to obtain the 

transverse deflection as the sum of the flexural and shear components. Another problem of 

moderately thick cantilever beam under point load at the free end was solved in closed form 

to illustrate the solution of the governing equations. The transverse deflection was similarly 

obtained as the sum of shear and bending components. The bending component of 

deflection was found to be identical with the Euler-Bernoulli results while the shear 

component was found to be dependent on the square of the ratio of the beam thickness, t, to 

the span, l. It was found that as t/l<0.02, the contribution of shear to the overall deflection 

is insignificant; but becomes significant for t/l>0.10. The findings are in excellent 

agreement with the technical literature.  
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1. INTRODUCTION

The classical theory of beam flexure, also called the Euler-

Bernoulli beam theory (EBT) neglects the effects of the 

transverse shear strains and deformation, and stress 

concentration [1-5]. The theory is built on the Euler-Bernoulli 

hypothesis which assumes that the transverse normal to the 

neutral axis remains normal (orthogonal) to the vertical axis 

during and after flexural deformation; and this implies that 

there are no transverse shear stresses. The disregarding of 

transverse shear deformation in the formulation of the 

governing equations make EBT suitable for thin (slender) 

beams, but unsuitable for moderately thick (deep) beams and 

thick beams where shear deformation plays a significant role 

in the flexural behaviour [6-8]. EBT thus underestimates the 

deflections of moderately thick and thick beams where shear 

deformation effects significantly contribute to their behaviours. 

Timoshenko [9] presented a first order shear deformation 

theory for the flexural behaviour of moderately thick and thick 

beams that accounts for the effects of shear deformation and 

rotatory inertia. The major drawback of his theory is the 

assumption of the transverse shear strain distribution to be 

uniform across the beam cross-section at any point, thus 

requiring problem dependent shear modification factors to 

accurately represent the strain energy of deformation. 

Cowper [10] presented mathematical expressions for the 

shear correction/modification factors of beams in terms of the 

Poisson’s ratio and geometrical properties of different cross-

sectional shapes such as inner and outer radii. 

The need to overcome the limitations of the EBT and the 

Timoshenko first order shear deformation theory motivated 

research in the formulation of first, second, third order and 

higher order shear deformation theories for beams by 

Levinson, Reddy, Mindlin, Vlasov and Leontiev, Stein, 

Touratier, Shimpi, Ghugal, Sayyad etc. [11-14]. Levinson [15], 

Krishna Murty [16], Baluch et al. [17], Bhimaraddi and 

Chandrashekhara [18], Brickford [19] presented parabolic 

shear deformation theories of beams by assuming a higher 

variation of axial (longitudinal) displacement field in terms of 

the thickness coordinate variable, z. Their parabolic shear 

deformation beam theories were formulated to apriori satisfy 

the shear stress free boundary conditions of the top and bottom 

surfaces of the beam, and thus remove the necessity of shear 

correction/modification factor. Trigonometric shear 

deformation theories of beams were formulated and developed 

by Touratier [20], Vlasov and Leontiev [21], Stein [22] for 

thick beams. Their formulations however violated the shear 

stress free boundary conditions at the top and bottom surfaces 

of the beam. Ghugal and Kapdis et al. [23] and Ghugal [24] 

improved the earlier formulations of trigonometric shear 

deformation beam theories by presenting shear deformation 

beam theories that satisfy the shear stress free boundary 

conditions at the top and bottom surfaces of the beam. 

In the present study, the Timoshenko first order shear 

deformation beam theory is derived from fundamental 

principles, using the method of variational calculus. The 

governing system of two ordinary differential equations of 

equilibrium obtained are then solved in closed form for the 
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specific cases of moderately thick rectangular beams, subject 

to uniformly distributed transverse load and moderately thick 

rectangular cantilever beam with a point load at the free end. 

 

Research aim and objectives 

 

The general aim of this study is to present a general 

formulation of the Timoshenko beam theory and then apply it 

to the flexural analysis of moderately thick beams. The 

specific objectives include: 

(i) to formulate the governing partial differential equations of 

equilibrium of Timoshenko beams using variational 

calculus methods. 

(ii) to solve the governing system of ordinary differential 

equations of the Timoshenko beam for the specific cases 

of: (a) simply supported moderately thick beams subject to 

uniformly distributed transverse load p0 over the entire 

beam span; (b) moderately thick cantilever beams subject 

to point load P at the free end.  

 

 

2. THEORETICAL FRAMEWORK 

 

The study considered a thick beam of width b, thickness, t 

and span l with a longitudinal axis coincident with the x-

coordinate direction. The origin of the three dimentional (3D) 

Cartesian coordinate axis used is defined at the left end of the 

beam. The beam thus occupies the 3D region defined as: 0 ≤

𝑥 ≤ 𝑙, −
𝑏

2
≤ 𝑦 ≤

𝑏

2
, −

𝑡

2
≤ 𝑧 ≤

𝑡

2
  

 

Variational formulation of the Timoshenko beam theory 

 

The assumptions of the formulation are: 

(i) The longitudinal axis of the unloaded undeformed beam 

is straight. 

(ii) All loads applied to the beam act transverse to the 

longitudinal axis. 

(iii)  Line elements that are normal to the middle line of the 

beam in the undeformed configuration will deform only 

in the vertical direction, and will also remain vertical 

during deformation. Plane cross-sections of the beam 

which are initially orthogonal to the longitudinal axis will 

remain plane after deformation. 

(iv) Line elements that are tangential to the middle line (center 

line) will undergo a rotation 𝜑(𝑥)  which would 

correspond to the shear angle 𝛾𝑥𝑧  at an arbitrary point 

along the centerline. 

(v) The total slope of the centerline results from the effects of 

bending deformation and shear deformation and can be 

expressed as the sum of the rotations due to shear 

deformation 𝜑(𝑥)  and the rotation due to bending 

deformation 𝛼(𝑥). Thus 

 

( ) ( )
w

x x
x


=  + 


              (1) 

 

(vi) The transverse shear strain 𝛾𝑥𝑧  is constant at all points 

over a given cross-section of the beam. This implies the 

shear stress distribution is constant or uniform over the 

cross-section at any point on the longitudinal axis. A 

constant distribution of shear stress over the cross-

section at any point on the longitudinal axis for applied 

transverse load distribution on the upper surface 𝑧 = −
𝑡

2
, 

and no traction on the lower surface 𝑧 =
𝑡

2
 violates the 

theory of elasticity solutions of the problem. The 

assumption of constant transverse shear strain is however 

used to minimize computational and analytical rigours 

and any resulting errors introduced are accounted for by 

the introduction of shear correction factors, k. 

(vii) The beam material is linear elastic, homogeneous and 

isotropic. Hence, the generalised Hooke’s stress-strain 

laws are valid. Thus: 

 

( )
1

xx xx yy zz
E

 =  − −              (2) 

 

( )
1

yy yy xx zz
E

 =  − −              (3) 

 

( )
1

zz zz xx yy
E

 =  − −              (4) 

 

xy

xy
G


 =                (5) 

 

yz

yz
G


 =                (6) 

 

zx
zx

G


 =                (7) 

 

where 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧  are normal stresses 𝜏𝑥𝑧 , 𝜏𝑦𝑧  and 𝜏𝑥𝑦  are 

shear stresses, 𝜀𝑥𝑥, 𝜀𝑦𝑦 , 𝜀𝑧𝑧  are normal strains, while 𝛾𝑥𝑧 , 𝛾𝑦𝑧 

and 𝛾𝑥𝑦  are shear strains, E is the Young’s modulus of 

elasticity, G is the shear modulus, 𝜇 is the Poisson’s ratio. 

 

2(1 )

E
G =

+
              (8) 

 

(vii) The deformations and strains are considered so small, 

and the strain-displacement equations of infinitesimal 

elasticity are used. 

Thus, the kinematic equations are: 

 

xx

u

x


 =


               (9) 

yy

v

y


 =


             (10) 

zz

w

z


 =


             (11) 

xy

u v

y x

 
 = +

 
             (12) 

xz

u w

z x

 
 = +

 
             (13) 

yz

v w

z y

 
 = +

 
             (14) 

 

Displacement field 

 

The displacement field components about the x, y, and z 
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coordinate axis given respectively by u(x, y, z), v(x, y, z) and 

w(x, y, z) are given by: 

 

( , , ) ( ) ( )
dw

u x y z z x z x
dx

 
= −  = − − 

 
          (15) 

 

( , , ) 0v x y z =              (16) 

 

( , , ) ( , 0, 0) ( )w x y z w x y z w x= = = =           (17) 

 

It is noted that the displacement component in the 

longitudinal direction (x-coordinate) is caused solely by 

bending deformation. 

 

Strain fields 

 

Applying the strain-displacement relations, the strain fields 

are obtained as: 

 

( )( ) ( )xx

dw
z x z x

x dx x

    
 = − −  = −   

   
         (18) 

 
2

2

( )
xx

d w d d x
z z

dx dxdx

  
 = − − = − 

 
           (19) 

 

( )( ) ( )xx z w x x  = − −             (20) 

 

0yy

v

y


 = =


             (21) 

 

0zz

w

z


 = =


             (22) 

 

0xy

u v

y x

 
 = + =

 
            (23) 

 

0yz

v w

z y

 
 = + =

 
            (24) 

 

( )xz

dw w
z x

z dx x

    
 = − −  +  

   
  

( ) ( )xz

dw w
x x

dx x

 
 = − − + =  

 
          (25) 

 

Stress fields 

 

The stress fields are obtained from the stress-strain laws as: 

 
2

2

( )
xx xx

d w d d x
E Ez Ez

dx dxdx

  
 =  = − − = − 

 
         (26) 

 

0yy =              (27) 

 

0zz =              (28) 

 

( )xz xzG G x =  =              (29) 

0yz =               (30) 

 

0xy =               (31) 

 

Introduction of the shear correction (modification) factor, k 

yields: 

 

( )c
xz kG x =                (32) 

 

where the superscript c refers to corrected (modified) shear 

stress distribution. 

 

Internal stress resultants 

 

2 2

2 2

b t

xx

b t

M z dzdy

− −

=               (33) 

 

2 2 2

2 2 2

b t t

xx xx

b t t

M dy z dz bzdz

− − −

=  =               (34) 

 

2
2

2

t

t

d
M E bz dz

dx
−


= −              (35) 

 

2
2

2

t

t

d
M E bz dz

dx
−


= −              (36) 

 
/2

3

/2
3

t

t

bz d d
M E EI

dx dx
−

   
= − = − 

 
           (37) 

 

2 2

2 2

( )

b t

xz

b t

Q x dzdy

− −

=               (38) 

 

2 2 2

2 2 2

b t t

xz xz

b t t

Q dy dz b dz

− − −

=  =               (39) 

 

( )xz xzQ bt A GA x=  =  =      

( ) ( )TQ x kQ kGA x= =              (40) 

 

Total potential energy functional   

 

The total potential energy functional  for the moderately 

thick beam is given by the sum of the strain energy U and the 

potential of the external load V as: 

 

U V = +              (41) 

 

3

1
(

2
xx xx yy yy zz zz

R

U =   +   +     

  )xy xy yz yz xz xz dxdydz+  +   +           (42) 
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where R3 is 0 ,x l   2 2,b by−    2 2
t tz−      

 

0

( ) ( )

l

V p x w x dx= −             (43) 

 

2 2

0
2 2

1
( )

2

t b
l

xx xx xz xz

t b

U dxdydz

− −

=   +               (44) 

 

2 2
2 2

0
2 2

1
( )

2

t b
l

xx xz

t b

U E kG dxdydz

− −

=  +              (45) 

 

2 2

3 3

1 1

2 2
xx xz

R R

U E dxdydz kG dxdydz=  +            (46) 

 

22 2

0
2 2

1

2

b t
l

b t

d
U dy E z dxdz

dx
− −

 
= − 

 
     

 
2 2

2

0
2 2

1
( ( ))

2

b t
l

b s

b t

k dy G x dxdz U U

− −

+   = +           (47) 
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0
2

1

2

t
l

b

t

d
U bE z dz dx

dx
−

 
=  

 
             (48) 

 
2

0

1

2

l

b

d
U EI dx

dx

 
=  

 
             (49) 

 

2
2

0
2

1
( ( ))

2

t
l

s

t

U kbG dz x dx

−

=              (50) 

 

2

0

1
( ( ))

2

l

sU bGt x dx=              (51) 

 
2

0

1

2

l
d

EI dx
dx

 
 =  

 
    

 2

0 0

1
( ( )) ( ) ( )

2

l l

GA k x dx p x w x dx+  −          (52) 

 
2

0

1

2

l
d

EI dx
dx

 
 =  

 
    

 
2

0 0

1
( ) ( ) ( )

2

l l
dw

GA k x dx p x w x dx
dx

 
+ −  − 

 
          (53) 

 
2

0

1

2

l
d

EI
dx

   
 =   

 
   

 

2
1

( ) ( ) ( )
2

dw
GAk x p x w x dx

dx

 
+ − −  

  

        (54) 

0

( , ( ), ( ), ( ))

l

F x w x x w x dx =             (55) 

 

21
( , ( ), ( ), ( )) ( ( ))

2
F x w x x w x EI x  =     

 21
( ( ) ( )) ( ) ( )

2
GAk w x x p x w x+ −  −         (56) 

 

The integrand F is seen to be a function of two unknown 

functions, ( )x  and w(x). 

 

(2 21
( ( )) ( ( )) 2 ( ) ( )

2 2

GAk
F EI x w x w x x  =  + −    

 )2( ( )) ( ) ( )x p x w x+  −           (57) 

 

Differential Equations of Equilibrium 

 

The differential equations of equilibrium are the equations 

corresponding to the minimization of the total potential energy 

functional  and are obtained by applying the Euler-Lagrange 

conditions for the extremum of . Thus, the Euler-Lagrange 

conditions are the system of differential equations: 

 

0
F d F

w dx w

  
− =   

            (58) 

 

0
F d F

dx

  
− =   

            (59) 

 

( )2 ( ) 2 ( )
2

F GAk
x w x


=  −


   

( )( ) ( )
F

GAk x w x


=  −


           (60) 

 

1
2 ( ) ( )

2

F
EI x EI x


 =   = 


           (61) 

 

( )
F

p x
w


= −


             (62) 

 

( ) ( )2 ( ) 2 ( ) ( ) ( )
2

F GAk
w x x GAk w x x

w


 = −  = − 


         (63) 

 

Thus, 

 

( )( ) ( ) ( ) 0
d

GAk x w x EI x
dx

  − −  =           (64) 

 

( )( ) ( ) ( ) 0GAk x w x EI x  − −  =           (65) 

 

( )( ) ( ) ( ) 0GAk w x x EI x − − −  =           (66) 

 
2

2
( ) 0

d dw
EI GAk x

dxdx

  
+ −  = 

 
           (67) 
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( )( ) ( ) ( ) 0
d

p x GAk w x x
dx

− − −  =           (68) 

 

( ) ( ) 0
d dw

p x GAk x
dx dx

 
− − − = 

 
           (69) 

 

( ) ( ) 0
d dw

GAk x p x
dx dx

  
−  + =  

  
          (70) 

 

or, 

 

( )
d dw

GAk x p
dx dx

 
 − = 
 

           (71) 

 
2

2

d d w
GAk p

dx dx

 
− = 

 
            (72) 

 

Decoupling the differential equations of equilibrium 

 

From, 

 

( )
dM

Q x
dx

=              (73) 

 

( )
( )

dQ x
p x

dx
= −              (74) 

 

Thus, 

 
2

2
( )

d d d
EI Q x EI

dx dx dx

  
− = = − 
 

           (75) 

 

Differentiating again, 

 
2

2
( )

d d
EI p x

dx dx

 
− = − 
 

           (76) 

 
3

3
( )

d
EI p x

dx


− = −             (77) 

 
3

3
( )

d
EI p x

dx


=              (78) 

 

Differentiating Equation (72) twice, we have 

 
2 2 2

2 2 2

d d d w d p
kGA

dxdx dx dx

 
− = 

 
           (79) 

 
3 4 2

3 4 2

d d w d p
kGA

dx dx dx

 
− = 

 
           (80) 

 
4 2

4 2

( )p x d w d p
kGA

EI dx dx

 
− = 

 
           (81) 

 

Multiplying by EI, 

4 2

4 2
( )

d w d p
kGA p x EI EI

dx dx

 
− = 

 
           (82) 

 
4 2

4 2
( )

d w EI d p
p x EI

kGAdx dx

 
− = 

 
           (83) 

 
4 2

4 2
( )

d w EI d p
EI p x

kGAdx dx
= −            (84) 

 

For the case of simply supported Timoshenko beam subject 

to a uniformly distributed transverse load of intensity p0, the 

differential equations of equilibrium simplify to the following 

system of two equations in ( )x  and w(x): 

 
3

03

( )d x
EI p

dx


=              (85) 

 
24

0
0 04 2

d pd w EI
EI p p

kGAdx dx
= − =            (86) 

 

Summary 

 

The equations of Timoshenko beam theory are: 

 

( )
( ) ( )

dQ x
Q x w x

dx
= =             (87) 

 

( )
( ) ( )

dM x
M x Q x

dx
= =             (88) 

 

( ) ( )
( )

d x M x
x

dx EI


=  =             (89) 

 

( ) ( )
( ) ( )

du x Q x
u x x

dx kGA
= =  −            (90) 

 

 

3. RESULTS 

 

Illustrative Problem 

 

The work considered as a specific application, a moderately 

thick beam simply supported at the ends x=0 and x=l modelled 

as a Timoshenko beam, carrying a uniformly distributed 

transverse load of intensity p0 over the entire span as shown in 

Figure 1. 

 

 
 

Figure 1. Moderately thick rectangular beam under 

uniformly distributed transverse load 

 

The boundary conditions are: 

 

( 0) 0M x = =              (91) 
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or, ( 0) 0
d

x
dx


= =             (92) 

 

( ) 0M x l= =              (93) 

 

or, ( ) 0
d

x l
dx


= =             (94) 

 

The origin is chosen at the center of the simply supported 

beam to take advantage of the symmetrical nature of the beam 

and the loading. The boundary conditions become: 

 

( ) 0
2

lM x = =              (95) 

 

or, ( ) 0
2

d lx
dx


= =             (96) 

 

( ) 0
2

lM x = − =             (97) 

 

or, ( ) 0
2

d lx
dx


= − =             (98) 

 

Integration of Equation (85) yields: 

 
2

0 12

d
EI p x c

dx


= +             (99) 

 

Integration of Equation (90) yields: 

 
2

0
1 2

2

p xd
EI c x c

dx

 
= + + 

 
         (100) 

 

Integration of Equation (100) yields: 

 
2 2

0 1 2 3( )
6 2

x x
EI x p c c x c = + + +         (101) 

 

where c1, c2, and c3 are constants of integration. 

The symmetrical nature of the problem demands (requires) 

that ( )x  should be an odd function. Thus 

 

( ) ( )x x − = −             (102) 

 

For 𝛼(𝑥) to be an odd function, 

 

c1 = 0           (103) 

 

c3 = 0           (104) 

 

and  

 
3

0
2( )

6

p x
EI x c x = +           (105) 

 
2

0
2

1

2

p xd
c

dx EI

 
= +  

 
          (106) 

For ( )
2

0
2

1
0

2 2 2

pd llx c
dx EI

   
=  = + =     

      (107) 

 
𝑝0𝑙

2

8
+ 𝑐2 = 0            (108) 

 

𝑐2 = −
𝑝0𝑙

2

8
            (109) 

 

Hence 

 

𝛼(𝑥) =
1

𝐸𝐼
(
𝑝0𝑥

3

6
−

𝑝0𝑙
2

8
𝑥)                       (110) 

 

Then 

 

𝐺𝐴𝑘
𝑑

𝑑𝑥
(𝛼(𝑥) −

𝑑𝑤

𝑑𝑥
) = 𝑝(𝑥) = 𝑝0          (111) 

 

Integration yields 

 

0( )
dw

GAk x p x
dx

 
 − = 
 

           (112) 

 

0( )
p xdw

x
dx kGA

 − =            (113) 

 

0( )
p xdw

x
dx kGA

=  −            (114) 

 
3 2

0 0 01

6 8

p x p l x p xdw

dx EI kGA

 
= − −  

 
          (115) 

 

Integration yields 

 

( )
dw

w x dx
dx

=     

 

3 2
0 0 01

6 8

p x p l x p x
dx

EI kGA

   
= − −   

   
        (116) 

 
4 2 2 2

0 0 0
4

1
( )

24 16 2

p x p l x p x
w x c

EI kGA

 
= − − +  

 
         (117) 

 

Applying the boundary conditions,  

 

( ) 0
2

lw x = =             (118) 

 

( ) 0
2

lw x = − =            (119) 

 

We have, 

 

( )
4 22

0 01
0

2 24 2 16 2

p p ll llw x
EI

    
= = = −         

  

  

2

0
4

2 2

p l
c

kGA

 
− + 

 
        (120) 
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4 4 2
0 0 0

4

1
0

384 64 8

p l p l p l
c

EI kGA

 
− − + =  

 
         (121) 

 
2 4

0 0
4

51

8 384

p l p l
c

kGA EI

 −
= −   

 
          (122) 

 
2 4

0 0
4

5

8 384

p l p l
c

kGA EI
= +            (123) 

 

Hence, 

 
2 2 44 2 2

0 0 0 05
( )

24 16 2 8 384

p p x p l p lx l x
w x

EI kGA kGA EI

 
= − − + +  

 

        (124) 

 
4 2 2 4 2

20 05
( )

24 16 384 2 4

p px l x l l
w x x

EI kGA

   
= − + + −      

   

        (125) 

 

( )2 2
4 2 2 4

0 0 45
( )

24 16 384 2
2(1 )

l x
p px l x l

w x
EEI kbt

 
−   

= − + +    
   + 
 

       (126) 

 
4 24

0 3 5
( )

24 2 16

p l x x
w x

EI l l

    
= − +    

     

   

  
( )

2
2

0
1

4

2
2(1 )

xp l
l

Ek bt

 
− 

 
−

 
+   

        (127) 

 
4 24

0 3 5
( )

24 2 16

p l x x
w x

EI l l

     
= − +     

     

  

  

2 2
2(1 ) 1

4

t x

l k l

 +     
− −          

 

( ) ( ) ( )f sw x w x w x= +            (128) 

 

For a rectangular cross-section, 5
6k =  for 0. =   

 

10(1 )

12 11
k

+ 
=

+ 
            (129) 

 

k = 0.847457627 

5.08475

6
k  for 0.25 =   

5.098

6
k =  for 0.30 =  

 

For a circular cross-section, 

 

6(1 )

7 6
k

+ 
=

+ 
            (130) 

 

For a semi-circular cross-section 

 

1

1.305 1.273
k

+
=

+ 
          (131) 

 

For a hollow cylinder of outer radius, r0 and inner radius, ri, 

 
2

2 2

6(1 )(1 )

(7 6 )(1 ) (20 12 )

m
k

m m

+  +
=

+  + + + 
        (132) 

 

where bm
a

=            (133) 

 

where 0a r=            (134) 

 

and r0 is the outer radius, and  

 

b = ri           (135) 

 

ri is the inner radius. 

For a thin-walled tube, 

 

2(1 )

4
k

+ 
=

+ 
           (136) 

 

Maximum deflection 

 

The maximum deflection occurs at the center, and is: 

 
24

0 5 2(1 ) 1
(0)

24 16 4

p l t
w

EI l k

 +       
= +      

       

        (137) 

 
24

0 5 1
(0)

24 16 2

p l t
w

EI l k

 +     
= +    

     

        (138) 

 

For 0.25, =   

 

( )

24
0 5 1.25

(0)
5.0847524 16 2

6

p l t
w

EI l

 
  = +     

 

        (139) 

 
24

0 5
(0) 0.7375

24 16

p l t
w

EI l

  
= +     

         (140) 

 
24 4

20 05
(0) 3.0729166 10

384

p l p l t
w

EI EI l

−  
= +   

 
       (141) 

 

(0) (0) (0)T
f sw w w= +           (142) 

 
4

05
(0)

384
f

p l
w

EI
=            (143) 

 
2 4

2 0(0) 3.0721966 10s

p lt
w

l EI

−  
=   

 
        (144) 
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Table 1. Variation of maximum deflection with ratios of t/l 

in Timoshenko beams with simply supported ends (case of 

uniform loads) for 𝜇 = 0.25 

 

t
l

 4
0p l

EI
  

ws(0) 

4
0p l

EI
  

ws(0) 

4
0p l

EI
  

wT(0) 

0.005 21.302083 10−  77.68229 10−  21.30216 10−  

0.01 21.302083 10−  63.0729166 10−  21.30239 10−  

0.02 21.302083 10−  51.2291626 10−  21.3033121 10−  

0.05 21.302083 10−  57.68229 10−  21.3097652 10−  

0.08 21.302083 10−  20.01966 10−  21.32175 10−  

0.10 21.302083 10−  43.0729166 10−  21.332812 10−  

0.15 21.302083 10−  20.0691406 10−  21.3712236 10−  

0.20 21.302083 10−  20.12291666 10−  21.425 10−  

0.40 21.302083 10−  20.491666 10−  21.79375 10−  

0.60 21.302083 10−  21.10625 10−  22.408333 10−  

0.80 21.302083 10−  21.96666 10−  23.26875 10−  

1.0 21.302083 10−  23.0729166 10−  24.375 10−  

 

For 𝜇 = 0.30  

 
24

0

5.098
6

5 1.3
(0)

24 16 2

p l t
w

EI l

   
= +          

         (145) 

 
24

0 5
(0) 0.765

24 16

p l t
w

EI l

  
= +     

          (146) 

 
24 4

20 0(0) 3.1875 10
384

p l p lt
w

EI l EI

−  
= +   

 
   

0 0(0) ( ) ( )w w f w s= +            (147) 

 

Table 2. Variation of maximum deflection with ratios of t/l 

in Timoshenko beams with simply supported ends (case of 

uniformly distributed load over the entire beam span l), for 

𝜇 = 0.30 

 

t
l

 4
0p l

EI
  

w0(f) 

4
0p l

EI
  

w0(s) 

4
0p l

EI
  

wT(0) 

0.005 21.302083 10−  77.96875 10−  21.3021626 10−  

0.01 21.302083 10−  63.1875 10−  21.3024017 10−  

0.02 21.302083 10−  51.275 10−  21.303358 10−  

0.05 21.302083 10−  57.96875 10−  21.3100517 10−  

0.08 21.302083 10−  42.04 10−  21.322483 10−  

0.10 21.302083 10−  43.1875 10−  21.333958 10−  

0.15 21.302083 10−  47.171875 10−  21.3738017 10−  

0.20 21.302083 10−  20.1275 10−  21.429583 10−  

0.40 21.302083 10−  20.51 10−  21.812083 10−  

0.60 21.302083 10−  21.1475 10−  22.449583 10−  

0.80 21.302083 10−  22.04 10−  23.342083 10−  

1.0 21.302083 10−  23.1875 10−  24.489583 10−  

 

 

Illustrative problem 

 

A moderately thick rectangular cantilever beam of width b 

and thickness t, with a span l carries a point load P at the free 

end x = 0 and is fixed at the end x = l, as shown in Figure 2. 

 

 
 

Figure 2. Moderately thick cantilever beam with a 

rectangular cross-section under point load 

 

Considering an imaginary section x from the fee end, the 

bending moment and shear force at the section is found from 

equilibrium considerations as  

 

( )M x Px= −            (148) 

 

( )Q x P= −            (149) 

 

The differential equation of equilibrium is  

 

( )
d

EI M x Px
dx


− = = −           (150) 

 

d
EI Px

dx


=            (151) 

 

Integrating, 

 

( )
d

EI dx EI x Px dx
dx


=  =           (152) 

 
2

1( )
2

Px
EI x a = +           (153) 

 

where a1 is an integration constant. 

Using the boundary condition at the clamped end, 

 

( ) 0x l = =            (154) 

 

We have  

 
2

1( ) 0
2

Pl
EI x l a = = + =           (155) 

 
2

1
2

Pl
a = −             (156) 

 
2 2 2 2( )

( )
2 2 2

Px Pl P x l
EI x

−
 = − =          (157) 

 
2 2( )

( )
2

P x l
x

EI

−
 =            (158) 

 

This yields 
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xx

Pxz

I
 =            (159) 

 

This result for 𝜎𝑥𝑥  is the same result obtained using the 

Euler-Bernoulli beam theory. 

From the second differential equation of equilibrium, 

 

( )
( ) 0

d dw p x
x

dx dx kGA

 
−  + = 

 
         (160) 

 

Integration yields 

 

( )
( ) 0

dx p x dx
x

dx kGA
−  + =          (161) 

 

( )
( ) 0

dw Q x
x

dx kGA
−  + =           (162) 

 

( )
( )

dw Q x
x

dx kGA
−  = −           (163) 

 
2 2( ) ( )

( )
2

dw Q x P P x l
x

dx kGA kGA EI

−
= − +  = − +        (164) 

 

Integrating, 

 
2 2( )

( )
2

dw P P x l
dx dw w x dx

dx kGA EI

 − − 
= = = + 

  
          (165) 

 
3

2
2( )

2 3

Px P x
w x l x a

kGA EI

 −
= + − + 

 
        (166) 

 

where a2 is the constant of integration. 

Using the boundary conditions at the fixed end, 

 

( ) 0w x l= =            (167) 

 

We have 

 
3

3
2( ) 0

2 3

Pl P l
w x l l a

kGA EI

 −
= = = + − + 

 
        (168) 

 
3

2

2

2 3

Pl P l
a

kGA EI

 
= − − 

 
    

3 3

2

2

6 3

Pl Pl Pl Pl
a

kGA EI kGA EI
= + = +          (169) 

 

Thus, 

 
3 3

2( )
2 3 3

P x Px Pl Pl
w x l x

EI kGA EI kGA

 
= − − + + 

 
       (170) 

 
3 2 3

( ) ( )
6 2 3

P x l l P
w x x l x

EI kGA

 
= − + + − 

 
  

( ) ( ) ( )f sw x w x w x= +           (171) 

3

(0) ( 0)
3

Pl Pl
w w x

EI kGA
= = = +          (172) 

 
3

2

3
(0) 1

3

Pl E I
w

EI kG Al

 
= + 

 
         (173) 

 
23 3 1

(0) 1
3 12

Pl E t
w

EI kG l

  
= +     

         (174) 

 
23

(0) 1
3 4

Pl E t
w

EI Gk l

  
= +     

         (175) 

 

From Equation (8), 

 

2(1 )
E

G
= +             (176) 

 
23 2(1 )

(0) 1
3 4

Pl t
w

EI k l

 +   
= +     

         (177) 

 
23 1

(0) 1
3 2

Pl t
w

EI k l

 +   
= +     

         (178) 

 

For 0.25, =  
5.08475

6
k =   

23

5.08475
6

1.25
(0) 1

3 2

Pl t
w

EI l

  
= +      

         (179) 

 
23

(0) 1 0.7375
3

Pl t
w

EI l

  
= +     

  

(0) (0) (0)f sw w w= +           (180) 

 

Table 3. Variation of maximum deflection with ratios of t/l 

in cantilevered Timoshenko beams under point load P at the 

free end (for 𝜇 = 0.25) 
 

t
l

 3Pl

EI
  

wf(0) 

3Pl

EI
  

ws(0) 

3Pl

EI
  

w(0) 

0.005 0.333333 66.145833 10−  0.33333 

0.01 0.333333 52.45833 10−  0.333358 

0.02 0.333333 59.8333 10−  0.333432 

0.05 0.333333 46.14583 10−  0.333948 

0.08 0.333333 31.57333 10−  0.33491 

0.10 0.333333 32.45833 10−  0.335792 

0.15 0.333333 35.53125 10−  0.338865 

0.20 0.333333 39.8333 10−  0.343167 

0.40 0.333333 0.039333 0.372666 

0.60 0.333333 0.0885 0.421833 

0.80 0.333333 0.157333 0.490667 

1.0 0.333333 0.245833 0.5791666 
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For 0.3, =  
5.098

6
k =   

 
23

5.098
6

1.3
(0) 1

3 2

Pl t
w

EI l

  
= +      

         (181) 

 
23

(0) 1 0.765
3

Pl t
w

EI l

  
= +     

         (182) 

 

Table 4. Variation of maximum deflection with ratios of t/l 

in cantilevered Timoshenko beams under point load P at the 

free end (for 𝜇 = 0.30) 
 

t
l

 3Pl

EI
  

wf(0) 

3Pl

EI
  

ws(0) 

3Pl

EI
  

w(0) 

0.005 0.33333 66.375 10−   0.33334 

0.01 0.33333 52.55 10−   0.33336  

0.02 0.33333 41.02 10−   0.33344  

0.05 0.33333 46.375 10−   0.33397 

0.08 0.33333 31.632 10−   0.334965  

0.10 0.33333 32.55 10−   0.33588  

0.15 0.33333 35.7375 10−   0.339071  

0.20 0.33333 0.0102  0.34353  

0.40 0.33333 0.0408 0.374133  

0.60 0.33333 0.0918 0.425133  

0.80 0.33333 0.1632 0.49653  

1.0 0.33333 0.255 0.58833  

 

 

4. DISCUSSION 

 

This work has successfully presented a variational 

formulation of the Timoshenko theory for the static flexural 

analysis of moderately thick beams with rectangular cross-

sections.  

The formulation assumed a linear elastic, isotropic, 

homogenous beam material and accounted for the effect of 

transverse shear deformation. The displacement field 

components were assumed as Equations (15)-(17), and the 

kinematic relations for small displacement elasticity – 

Equations (9-14) – used to obtained the strain fields as 

Equations (18), (20), (21), (22), (23), (24) and (25). Hooke’s 

generalised stress-strain laws given as Equations (2)–(7) were 

used to obtain the stress fields as Equations (26)–(31). The 

internal stress resultants were obtained from the requirement 

of equilibrium of internal and external forces as Equations (37) 

and (40). The total potential energy functional   was 

obtained as the sum of the strain energy U and the potential of 

the external load V as Equation (54). The total potential energy 

functional   was observed to be a function of one 

independent variable, x, and two unknown functions w(x) and 

𝛼(𝑥)  and derivatives of the two unknown functions. The 

Euler-Lagrange conditions which are a system of two 

differential equations were used to obtain the differential 

equations of equilibrium of the Timoshenko beam under static 

flexure as a system of two coupled ordinary differential 

equations – Equations (64) and (70). The system of two 

coupled ordinary differential equations are expressed in 

decoupled form for homogeneous beams as Equations (78) 

and (84). Two specific illustrative cases of the closed form 

analytical solution of the Timoshenko beam equations were 

considered and solved. They were: 

(i) moderately thick beam of rectangular cross-section 

simply supported at 
2

lx =   and subject to a uniformly 

distributed load of intensity p0, and 

(ii) moderately thick rectangular cantilever beam of span l 

and beam b and thickness t with a point load P, applied at 

x=0, and fixed (clamped) at x=l. 

Successive integration of the governing ODE was used to 

obtain the general solution for the unknown rotation 𝛼(𝑥) in 

terms of three integration constants as Equation (101). The 

requirement that 𝛼(𝑥)  be an odd function, imposed by the 

symmetry of the problem was used to obtain two integration 

constants c1 and c3 as Equations (103) and (104). The third 

unknown integration constant c2 was obtained using the 

boundary conditions at the simply supported ends as Equation 

(109). The solution for 𝛼(𝑥)  was thus fully determined as 

Equation (110). Equation (110) was used to obtain the 

differential equation for w(x) as Equation (115). Integration of 

Equation (115) with respect to x gave the general solution for 

w(x) as Equation (117). Application of the boundary 

conditions Equations (118) and (119) gave the constant of 

integration c4 as Equation (123), yielding the solution for w(x) 

as Equation (125). The solution for w(x) is observed to be 

expressed in terms of a flexural component wf(x) and a shear 

component ws(x). The maximum deflection was observed to 

occur at the center x = 0, and was found as Equation (138). For 

𝜇 = 0.25, the maximum deflection was obtained as Equation 

(141), which is decomposable into flexural and shear 

components. For 𝜇 = 0.30,  the maximum deflection was 

obtained as Equation (147) which is also expressible as shear 

component and flexural components. In general, the 

expression for wmax is observed to depend on the ratio of the 

beam thickness to the beam span l. Values of wf(0), ws(0) and 

w(0) for various values of t/l ranging from t/l =0.005 to t/l=1 

are tabulated for Poisson ratio values 𝜇 = 0.25 and 𝜇 = 0.30, 
and presented as Tables 1 and 2. Tables 1 and 2 show that for 

t/l <0.02 the contribution of shear to the overall deflection is 

insignificant being less than 0.1 %. At t/l =0.1 for 𝜇 = 0.25, 
the contribution of shear to the total deflection increases to 

2.305 %, and to 46 % for t/l =0.60 for 𝜇 = 0.25.  For the 

moderately thick cantilever beam, the unknown rotation 𝛼(𝑥) 
was obtained by integration and use of boundary conditions at 

the clamped end as Equation (158). The deflection w(x) was 

obtained using Equation (158) and the Timoshenko beam 

equation as the ODE Equation (164). The general solution by 

integration was found as Equation (166). Application of 

boundary conditions at the fixed end yielded the unknown 

constant of integration as Equation (169). The solution for w(x) 

was thus obtained as Equation (171), which is decomposable 

into flexural and shear components. The maximum deflection 

was observed to occur at the free end and is given by Equation 

(178). The maximum deflection was observed to depend upon 

the ratio t/l. For 𝜇 = 0.25,  maximum deflection expression 

was found as Equation (180); while for 𝜇 = 0.30,  the 

maximum deflection expression was obtained as Equation 

(182). Values of the maximum deflection for various values of 

the ratio t/l for Poisson’s ratio 𝜇 = 0.25,  and 𝜇 = 0.30  are 

presented in tabular form as Tables 3 and 4 respectively for the 

moderately thick rectangular cantilever beam problem. 
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5. CONCLUSIONS 

 

The following conclusions are drawn from this study: 

(i) the problem of flexure of moderately thick beams 

modelled and idealized using Timoshenko’s first order 

shear deformation theory can be presented in variational 

form as a problem of finding the unknown displacements 

w(x) and 𝛼(𝑥)  that minimize the total potential energy 

functional   or in differential form in terms of the 

system of two coupled ordinary differential equations 

obtained by use of the Euler-Lagrange conditions on the 

total potential energy functional. 

(ii) the Timoshenko beam flexure problem can be formulated 

and solved using variational calculus methods. 

(iii) mathematical solutions obtained show that the shear 

component of transverse deflections are expressed in 

terms of the square of the ratio of the beam thickness t to 

the span l. 

(iv) mathematical expressions obtained for the transverse 

deflection show the transverse deflection is decomposed 

into a shear component and a flexure component. 

(v) the analytical expression obtained for the flexure 

component of the transverse deflection are exactly the 

same as obtained by the Euler-Bernoulli theory. 

(vi) as the ratio of t/l becomes very small, t/l<0.02 the 

contribution of the shear deformation to the resultant 

(overall) deflection is insignificant, being less than 0.1 % 

and the solutions obtained become very close to the 

solutions obtained for the Euler-Bernoulli beam theory. 

(vii) the contribution of shear deformation to the overall 

deflection becomes significant as t/l >0.1 and increases to 

46 % for t/l=0.60 for the case of simply supported 

moderately thick beam for 𝜇 = 0.25.  
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NOMENCLATURE 

 

l  length of beam 

b  width of beam 

t  thickness of beam 

x, y, z   three dimensional Cartesian coordinate 

3D  three dimensional (three dimensions) 

( )x    rotation due to shear deformation 

xz    transverse shear angle 

( )x    rotation due to bending deformation 

x  longitudinal coordinate axis of beam 

w  transverse deflection 

, ,xx yy zz      normal strains 

, ,xy yz xz       shear strains 

, ,xx yy zz      normal stresses 

, ,xy yz xz        shear stresses 

G  shear modulus 

E  Young’s modulus of elasticity 

    Poisson’s ratio 

u, v, w displacement field components in the x, y, 

and z coordinate directions respectively 

k  shear correction (modification) factor 

M(x)  bending moment  

Q(x)  shear force 

U  strain energy functional 

V  potential of external load 

    total potential energy functional 

p(x)  applied load distribution 

A  area of cross-section 

I  moment of inertia 

F integrand in the total potential energy 

functional 

w




   partial derivative with respect to w 

( )w x    derivative of w(x) with respect to x 

1 2

1 2 3 4

a a

c c c c





constants of integration 

p0  intensity of uniformly distributed load 

P  point load 

    integral 

    double integral 

    triple integral or volume integral 

d

dx
   ordinary derivative with respect to x 

 

Subscripts 

 

f  flexural 

s  shear 

b  bending 

max  maximum 

 

Superscripts 

 

c  corrected 

T  Timoshenko 

 

Abbreviations 

 

EBT  Euler-Bernoulli beam theory 

R3   three dimensional region of integration 
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