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ABSTRACT
This study explores whether participation in the US Federal Emergency Management Agency’s Com-
munity Rating System (CRS), a voluntary community flood risk management program, is a function 
of policy diffusion or an act of free-riding. Policy diffusion would suggest that, all else being equal, 
once a community has joined the CRS, neighboring communities will be more likely to follow their 
lead and participate in the CRS. Free-riding would imply that neighboring communities might choose 
not to participate in the CRS because they perceive that their community benefits from surrounding 
communities’ participation. Results indicate that a community’s decision to participate in the CRS is 
not influenced by the characteristics of or the behavior of their neighbors. The results of this study do, 
however, show that population density, aggregate housing values, rentership rate, and flat topography 
are significant predictors of CRS participation.
Keywords: Community Rating System, community flood risk management, free-riding policy diffusion.

1 INTRODUCTION
Flooding remains the most destructive natural hazard in the United States (US) and around 
the world. In fact, a 2013 report indicates that 53 percent of those that died from natural dis-
asters in 2012 died as a result of flooding [1]. Data from the US National Weather Service 
(NWS) show that, on average, 116 individuals died annually as a result of flooding between 
2008 and 2017 [2]. In light of recent flood disasters and predictions of increased flood risks 
fueled by global climate change, there is a need for greater flood risk management at the com-
munity level.

The US Federal Emergency Management Agency (FEMA) established the Community 
Rating System (CRS) program to reduce future flood losses and improve community flood 
resilience. The CRS is a federal, voluntary community flood risk management program. 
Communities that participate in the CRS are required to adopt additional floodplain manage-
ment activities and, in return, community members receive reductions in their flood insurance 
premiums. Studies examining the CRS have shown that a number of factors influence CRS 
participation such as local flood risks, fiscal capacity, and socioeconomic characteristics [3], 
[4]. This study builds on this work and explores whether CRS participation is a function of 
policy diffusion or an act of free-riding. Policy diffusion would suggest that, all else being 
equal, once a community has joined the CRS, neighboring communities will be more likely 
to follow their lead and participate in the CRS. Stated differently, neighboring communities 
might realize the benefits of participation in the CRS in terms of reduced flood losses and 
discounts in flood insurance premiums and decide to participate in the CRS program. Con-
versely, neighboring communities might choose not to participate in the CRS because they 
perceive that their community benefits from surrounding communities participating in the 
CRS, thus, exhibiting free-riding behavior. In other words, the neighbor’s risk mitigation 
efforts could reduce potential damage from floods for the nearby communities who do not 
participate in the CRS. The authors test these competing hypotheses using secondary data 
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from US government organizations such as FEMA, US Department of Transportation 
(USDOT), and US Census Bureau.

The remainder of this paper is organized as follows. The next section reviews relevant lit-
erature and provides a background on the CRS program. The third section discusses the 
research design while the fourth and fifth sections present the data and results, respectively. 
This paper concludes with a discussion of study findings.

2 LITERATURE REVIEW

2.1 Background on the community rating system program

The US Congress passed the National Flood Insurance Program (NFIP) in 1968. This pro-
gram provides federally backed flood insurance for properties in floodplains where the 
local community has passed and enforced certain measures that regulate development in 
floodplains and mitigate the damage once a flood has occurred. Homeowners in NFIP par-
ticipating communities can purchase flood insurance and, in exchange, their state and local 
governments enact and enforce floodplain management ordinances [5]. Over 22,000 com-
munities participated in the NFIP as of October 2016, and over five million residential and 
commercial properties in those eligible communities had flood insurance coverage. From 
1978 to 2016, over 2.2 million flood insurance claims were filed, and the claimed losses 
exceeded $54 billion. In 2016, over $1.25 trillion in property value were covered by flood 
insurance, and those property owners were paying premiums of about $3.6 billion for that 
coverage [6].

The NFIP is a flood mitigation management initiative that shares risks and burdens among 
the federal government, state and local governments, and private insurance companies [7]. 
The NFIP is fraught with problems such as low insurance premium rates and increased devel-
opment in floodplains [7]. As a result of these and other programmatic issues, flood losses are 
substantial and increasing annually [6], [7]. Consequently, Congress gave FEMA the man-
date to establish the CRS with the National Flood Insurance Reform Act of 1994 with a view 
to providing additional incentives to communities already participating in the NFIP to reduce 
their flood risks [6].

FEMA developed the CRS program, a voluntary program that provides a point system for 
a set of community actions and policies that reduce flooding hazards and mitigate damages 
from flooding, to encourage communities to exceed the minimal regulatory standards set by 
the NFIP. As a reward, property owners in covered floodplains within communities may 
receive discounted flood insurance premiums with larger premium discounts available for 
those communities who rate better on the CRS.

FEMA established a set of CRS levels that range from ten (the worst rating) to one (the best 
rating). The discounts in flood insurance premiums start at level nine with a five percent 
greater reduction for each level on the scale until a community reaches a class one and 
receives a 45% discount. Communities interested in joining the CRS must participate in the 
NFIP and can apply each year to FEMA for evaluation. Furthermore, participating CRS com-
munities are required to recertify annually. Communities can improve their CRS rankings if 
they have implemented additional creditable activities, thus causing residential and commer-
cial property owners to experience an additional reduction in their flood insurance premiums. 
If a community is not in compliance or fully implementing the credited activities, however, 
their CRS classification might be revised [6].
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Several of the CRS components relate to information needed for improved hazard plan-
ning, and the foundational information for much of this works is the Flood Insurance Rate 
Map (FIRM). Similarly, the first component, elevation certificates (code 310), is required for 
anyone wanting to qualify under the CRS as a level nine community (which is the start of the 
flood insurance discount levels). The optional Map Information Services component (#320) 
is primarily about foundational information needed for enhanced hazard planning. A further 
component that is primarily about the creation of data for planning purposes is flood data 
maintenance (#440), which rewards digital storage for new and old FIRM records, GPS data 
and digitized maps. Overall, these informational components are necessary for a community 
or property owners to engage in the other CRS activities, but they do not directly affect the 
reduction of flooding or mitigation of the damage after a flood.

2.2 Predictors of CRS participation

Studies examining the CRS have largely focused on the determinants of community partici-
pation [3], [8], the use of the CRS as a measure of adaptive capacity of municipal leaders to 
engage in collective action [9], and policy learning [10]. Others have investigated the charac-
teristics of communities that are behaving strategically to take advantage of the incentive 
structure of the CRS [4], and CRS effects on flood insurance demand [5], [11]. More recently, 
scholars have examined the unintended consequences of the CRS such as the effects of the 
CRS on migration and development [12] and income inequality [13]. Extant research shows 
that CRS participation is more prevalent in communities with higher flood risks, population 
sizes, incomes, owner occupied housing, educational attainment levels, and proportions of 
senior citizens [3], [8], [9], [14]–[16]. Results also demonstrate that CRS participation is 
lower in places with higher unemployment, poverty, crime, and minority populations [8], [9], 
[16]. Furthermore, both [3] and [8] identified local capacity of a government (e.g. payroll, 
property tax revenue, and capital outlay) to implement programs as important to the decision 
to participate in the CRS program. Higher adaptive capacity in a community could lead to 
higher collective action to engage in community flood risk management programs [9], which 
is consistent with finding that places with stronger institutions suffer less natural disaster 
damages [17]. Of particular interest to the present study is the findings that CRS participating 
communities in North Carolina tend to nest together [8]. The current study expands on this 
work using national level data and by providing a better indication of whether this nesting is 
a function of policy diffusion or an act of free-riding.

3 RESEARCH DESIGN
This study explores whether CRS participation is more of a function of policy diffusion or an 
act of free-riding. The dependent variable, CRS participation, is a binary variable that is 
measured as whether or not a community participates in the CRS as of the year 2013.

The base model explores the factors that motivate communities to implement flood hazard 
mitigation activities and follows with the diffusion aspects in italics:

Mitigation Activity = f (community flood risk, community characteristics, neighbor 
mitigation activities, neighbor characteristics) + ε.  (1)

The dependent variable, mitigation activity, is any activity a community implements to 
reduce or eliminate the impacts of flooding. As represented by the equation above, mitigation 
activity is a function of community’s flood risk, community characteristics, neighbor mitigation 
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activities, and neighbor characteristics. Community flood risk is determined by factors such as 
topography, proximity to water, population density in flood plain, weather patterns, etc. Com-
munity characteristics include factors such as poverty rates, housing value, resident education 
levels, real personal income, etc. The neighbor mitigation activities and characteristics are the 
same set of variables, but moderated through the lens of diffusion and free-rider incentives.

Mitigation Activities is measured using a community’s adoption of CRS components. CRS 
was passed in 1998, and we have the list of communities that joined the CRS on a yearly basis 
until 2013. Among the over 22,000 communities participating in the NFIP and therefore eli-
gible for CRS, less than 1,300 communities were in the CRS in 2013, and there are 
approximately 2,100 communities who are neighbors of a community that was in the first 
cohort of communities to adopt CRS in 1998. We refer to this first cohort of communities to 
join the CRS from 1998 to 2013 as early leaders, and their neighbor communities as potential 
followers. We coded CRS implementation as a dummy variable for CRS eligible or not at any 
point in the time series, and the model could be a hazard model for adoption in a given year. 
Additional to this cross-sectional model, we estimated a dynamic model that predicts only 
changes in CRS adoption from 1998-2013, to take advantage of the time series component of 
the data. Both models look at joining the CRS and not the intensity of participation, and show 
the drivers and the spatial diffusion process (SMM model’s lag), both cross-sectionally 
(CRS13) and as a change (ΔCRS). We then use these models to examine which of the neigh-
boring communities’ attributes drive joining.

There are several ways to code neighbor mitigation activities and neighbor community 
characteristics to test for diffusion and free-rider aspects of CRS. The simplest form is as a 
dummy variable for any neighbor adoption of CRS such as community B or C implementing 
CRS after leading adopter community A. An alternative would be the percent of community 
neighbors adopting CRS. Neighbor Mitigation Activity tests for the hazard mitigation imple-
mentation activities of community A’s neighbors. Neighbor characteristics include flood risk 
and demographics for those adjacent communities bordering a community. It is measured as 
an average of all neighboring communities.

So, the variations of the model are as follows:

 y = ρWy + bX + δE + γR + θ.  (2)

where,
y = CRS participant in 2013 (0,1)
y = dummy for whether community joined CRS after 1998 (0,1)
X = a vector of demographics from the Census (aggregated up to county/place level from 
tracts), typically measured in 2000 or 1990, and a few are included as % changes from 1990 
to 2000
E = vector of ‘environmental’ or geographic factors such as topography, water cover, humid-
ity, or ruralness
R = flood risk measured from the USDOT raster map, population-weighted aggregated from 
the tract level. (Alternates such as area-weighted flood risk and official flood plain designa-
tions were also used.)

The ρWy is a ‘spatial lag’ term, based on a spatial weights matrix W (in our case, an NxN 
matrix indicating whether observation i and j are ‘neighbors’ with a 1 and a 0 otherwise). As 
W is ‘row-standardized’ (i.e. each row in the vector adds up to 1), this ‘Wy’ basically amounts 
to an average value of y among all of community i’s adjacent communities. (If you had 2 out 
of your 4 neighbors with CRS = 1, then Wy = 0.5 for you. If it was 1 out of 5 neighbors, then 
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Wy = 0.2.) The parameter ρ is thus a spatial lag parameter that shows essentially the direct 
spillover influence of neighbors’ y values on one’s own y value. A significant and positive ρ 
is what we are expecting and testing. Wy is endogenous, so the estimator will rely on a set of 
valid instrumental variables based on the spatial lags of all the other regressors.

The error term θ can be estimated with a spatial error component: θ = λWε + ε … where 
the λ is the spatial autocorrelation parameter and the nuisance or ‘error’ term is allowed to 
correlate among neighbors. This will allow us to test for some omitted variables that tend to 
cluster spatially, which is very likely in this context. We estimate spatial models after the OLS 
versions of each (estimated with White-corrected standard errors in the presence of hetero-
skedasticity) by using Spatial Mixed Models (SMM). All the variables and their descriptions 
are provided in Table 1.

Variable name Description

CRS13 Dummy variable: 1 if community joined the CRS by 2013, 0 
otherwise

ΔCRS Dummy variable: 1 if community joined the CRS between 1998 
and 2013, 0 otherwise

popdens98 Community population per area in 1998
srwht00 % white in 2000
adult00 % adults (age 18 and older) in 2000
kids00 % children (under age 5) in 2000
BAshare00 % with college degree (or more) in 2000
smcnty00 % living in same county 5 years prior, in 2000
unemprt00 % unemployed in 2000
povrat00 % under poverty line in 2000
lnrmdfamInc00 ln(family income) in 2000, inflation adjusted to 2010 (Popula-

tion-weighted average of tracts’ median family incomes) 
lnrmdvalhs00 ln(median housing value) in 2000, inflation adjusted to 2010 

(Population-weighted average of tracts’ median housing value)
lnraggval00 ln(aggregate housing value) in 2000, inflation adjusted to 2010
rentshare00 % of housing units that are renter-occupied in 2000
popgro9000 Population growth rate from 1990 to 2000
d10BAshare %BAshare10/%BAshare00
d10rmdfamInc rmdfamInc10/rmdfamInc00 
d10rmdvalhs rmdvalhs10/rmdvalhs00 
d10raggval raggval10/raggval00 
rururb Rural-urban influence code (0–9, with 9 being more rural), 

county-level
JulHumid July humidity, county-level
watershare % (0–100) of county covered in water, county-level
flat Dummy indicating flat topography, county-level

Table 1: Variable descriptions.
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FloodDamMA98 Total property damage per capita from major flood events in 
county 1994–1998

FloodDam98 Total property damage per capita from major flood events in 
county in 1998

noFIRM Dummy indicating community does not have a flood plain map 
variable defined

RiskshareC Flood risk (0–99) as an area-weighted average of (average) tract 
flood risk in community 

RisksharePWC98 Flood risk (0–99) as population-weighted average of (average) 
tract flood risk in community in 1998

d98FloodDamMA FloodDam598 / FloodDam590

d98RisksharePWC RiskshareP98 / RiskshareP90
CRS98_W Spatial lag (based on contiguity matrix) of dummy variable for 

whether community joined CRS by 1998 
CTotal98_W Spatial lag (based on contiguity matrix) of community total CRS 

points in 1998 
FloodDamMA98_W Spatial lag (based on contiguity matrix) of FloodDamMA98 
Watershare_W Spatial lag (based on contiguity matrix) of watershare
PopGro (predicted)_W Spatial lag (based on contiguity matrix) of predicted population 

growth rate (linear prediction based on 1990 and 2000 Census 
demographics and climate variables)

4 DATA
The data for this study come from five different secondary data sources (see Table 2). These 
data sources include: CRS participation data as of 2013, Geolytics’ Neighborhood Change 
Database (tract-level Census data, 1970–2010), the Spatial Hazard Events and Loss Database 
for the United States (SHELDUS) (1960–2013), FEMA’s latest Digital Flood Insurance Rate 
Maps, and flood risk data (1996) from USDOT.

The dependent variables shape the type of method possible as well as the subsample of the 
overall data set that can be assessed in each case. The first dependent variable, CRS13, is a 
dummy variable representing whether a community was in CRS in 2013. The second depen-
dent variable, ΔCRS, is a variable representing whether any eligible community (city or 
county) adopted CRS after the 1998 cohort (and is therefore a dummy variable). We use a 
linear probability model to estimate both models. The independent variables include demo-
graphic variables (e.g. population density, percent college educated, poverty rate, housing 
values), environmental variables (e.g. humidity, water share, topography), and flood risk vari-
ables (e.g. floodplain share, Raster Map–1km grid cell, flood damage). The demographic 
controls include initial level measures (circa 2000) as well as percent changes from 2000 to 
2010 to capture recent trends. Using flood risk data from the raster maps in the 1990s has the 
advantage of mitigating potential endogeneity in official flood insurance rate maps, but still 
requires aggregating up from the 1km grid cell to the community level. Thus, we measure 
community flood risk using the weighted average of tract-level flood risks, with weights 
defined by tracts’ area and population. Trends in flood risk in terms of recent flood event dam-
age and changing population flood risk are also included in the model.
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By including measurements from different years, we may introduce some measurement 
error in the independent variables, assuming that the years being measured are not the ‘cor-
rect’ years, which is not obvious in this case. A resulting attenuation bias allows us to err on 
the conservative side with our effect estimation, which is preferable to introducing more 
assumptions or modeling complexity. Also, we estimate the OLS models with robust stand-
ard errors, which account for heteroscedasticity that might result from measurement error in 
variables. Our model in equation (1) allows for substantial flexibility in which time periods 
are most relevant for measuring community characteristics and flood risks, as lag times for 
mitigation responses may vary widely in practice and theory offers little guidance to specify 
exactly which years must be measured. Thus, our estimates of cross-sectional and change 
models (Table 4) use past measures of flooding and census data (from 1998-2000) as proxies 
for prior or pre-existing conditions that might influence community mitigation. Identifying 
more precise lag structures is beyond the scope of this sort of analysis.

5 RESULTS
Table 3 shows the summary statistics for all of the variables. According to Table 3, approxi-
mately five percent of the communities participated in the CRS in 2013. This is because many of 
the early adopters in the 1998 cohort remained in the program. About two percent of the eligible 
communities adopted CRS after 1998, as indicated by the second dependent variable, ΔCRS.

The results in Table 4 show that a diverse set of control variables are important for both 
binary indicators of CRS participation (i.e. CRS13 and ΔCRS). Four independent variables 
are significant across all four models. Specifically, CRS participating communities generally 
have lower population densities, higher aggregate housing values, higher rentership rates, and 
flat topography.

Focusing on the results of the two OLS models (Models 1 and 3) in Table 4, we see that 
there is a consistent positive and significant relationship between CRS participation and the 

Table 2. Data sources.

Data Source Unit Year Sample Variables

CRS Participation from FEMA Community 
(Place/County)

1993–2013 Name of participating 
community, CRS class, 

credits earned, etc.
US Census: Neighborhood 
Change Database (NCDB) from 
Geolytics, Inc.

Census Place, 
tracts 

1970–2010 Mean housing values, 
vacant housing, renters, 
time in residence, demo-

graphics, etc.
The Spatial Hazard Events and 
Loss Database for the United 
States (SHELDUS)

County 1960–2013 Hazard type, damages, 
injuries, fatalities, etc.

Flood Insurance Rate Maps 
(FIRMs) from FEMA 

Local flood 
zones

 Current Base flood elevations, 
flood zones, floodplain 

boundaries, etc.
Flood risk data (Raster) from 
USDOT

1 km grid cell 1996 Topography, climate, 
water coverage, etc.
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Variables Mean Std. Dev. Min  Max

CRS13 0.05 0.22 0 1

ΔCRS 0.02 0.13 0 1

popdens98 3.1E-04 7.2E-04 8.16E-08 0.03

srwht00 0.87 0.17 0.002 1

adult00 0.74 0.04 0.44 1

kids00 0.06 0.01 0 0.20

BAshare00 0.13 0.09 0.003 0.64

smcnty00 0.80 0.09 0.02 0.99

unemprt00 0.05 0.03 0 0.46

povrat00 0.12 0.07 0 0.68

lnrmdfamInc00 10.98 0.32 9.63 12.44

lnrmdvalhs00 11.69 0.56 2.94 14.05

lnraggval00 19.21 1.48 9.63 26.87

rentshare00 0.28 0.11 0.01 0.99

popgro9000 1.15 0.42 0.24 32.86

d10BAshare 1.22 0.32 0 9.92

d10rmdfamInc 1.01 0.13 0 3.15

d10rmdvalhs 1.28 2.83 0 337.79

d10raggval 2.22 2.80 0 185.42

rururb 3.73 2.91 0 9

JulHumid 57.57 13.22 14 80

watershare 7.02 14.03 0 75

flat 0.51 0.50 0 1

FloodDamMA98 129.09 1458.15 0 64975.34

FloodDam98 26.47 292.17 0 10193.89

noFIRM 0.16 0.36 0 1

RiskshareC 53.63 21.48 3.38 99

RisksharePWC98 36.03 26.78 0.004 99

d98FloodDamMA 5185.57 98124.41 0 2298142

d98RisksharePWC 1.01 0.08 0.42 7.28

CRS98_W 0.04 0.14 0 1

CTotal98_W 107.63 418.09 0 11714

FloodDamMA98_W 489.20 3113.87 0 90465.09

Watershare_W 28.08 51.22 0 1260.3

PopGro 
(predicted)_W

4.49 6.73 -0.57 188.57

Table 3. Summary statistics.
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Variable

CRS13
(OLS Model 1) 

CRS13
(SMM Model 2)

ΔCRS
(OLS Model 3) 

ΔCRS
(SMM Model 4)

Coef. p Coef. p Coef. p Coef. p

popdens98 −18.946*** 0.000 −17.522*** 0.000 −7.442*** 0.000 −7.650*** 0.000

shrwht00 −0.029** 0.015 0.008 0.537 −0.006 0.391 0.008 0.187

adult00 0.026 0.699 0.115 0.106 −0.113*** 0.009 −0.067 0.108

kids00 −0.360** 0.039 −0.114 0.582 −0.316*** 0.005 −0.231* 0.057

BAshare00 0.229*** 0.000 0.213*** 0.000 0.018 0.469 0.023 0.270

smcnty00 −0.164*** 0.000 −0.098*** 0.000 −0.036** 0.022 −0.014 0.258

unemprt00 −0.114** 0.024 −0.080 0.221 −0.003 0.920 −0.001 0.973

povrat00 −0.024 0.563 0.004 0.922 −0.003 0.893 −0.003 0.902

lnrmdfamInc00 −0.114*** 0.000 −0.082*** 0.000 −0.014 0.149 −0.016* 0.093

lnrmdvalhs00 −0.021*** 0.001 −0.020*** 0.002 −0.005 0.242 0.001 0.845

lnraggval00 0.056*** 0.000 0.039*** 0.000 0.016*** 0.000 0.006*** 0.000

rentshare00 0.115*** 0.000 0.113*** 0.000 0.064*** 0.000 0.060*** 0.000

popgro9000 −0.007** 0.018 −0.010* 0.077 0.004 0.303 0.004 0.173

d10BAshare 0.014*** 0.000 0.013** 0.013 0.006** 0.012 0.005 0.115

d10rmdfamInc −0.004 0.749 −0.007 0.551 −0.004 0.497 −0.004 0.563

d10rmdvalhs 0.0003 0.124 −0.0003 0.813 3.1E-05 0.910 4.2E-05 0.954

d10raggval 0.004*** 0.001 0.003*** 0.000 0.001** 0.015 0.001 0.139

rururb −0.003*** 0.000 −0.001 0.157 −0.001** 0.015 −6.8E-05 0.868

JulHumid −0.0001 0.347 −0.0001 0.292 1.2E-04 0.217 1.1E-04* 0.084

watershare 0.001*** 0.000 0.001*** 0.000 6.8E-05 0.453 7.3E-06 0.899

flat 0.014*** 0.000 0.015*** 0.000 0.005** 0.026 0.005*** 0.004

FloodDamMA98 1.5E-06 0.274 1.2E-06 0.256 −1.6E-07 0.480 −1.6E-07 0.794

FloodDam98 −4.9E-06* 0.072 −3.7E-06 0.476 1.1E-06 0.575 9.2E-07 0.742

noFIRM −0.002 0.692 0.0003 0.941 −0.002 0.541 0.0004 0.856

RiskshareC −4.2E-04*** 0.005 −1.8E-04 0.100 2.0E-05 0.841 1.3E-04** 0.028

RisksharePWC98 6.7E-04*** 0.000 4.1E-04*** 0.000 3.4E-05 0.705 −1.0E-04 0.140

d98FloodDamMA 2.9E-08 0.100 1.8E-08 0.248 −9.6E-09*** 0.002 −3.9E-09 0.626

d98RisksharePWC 0.124*** 0.000 0.121*** 0.000 0.050 0.163 0.052*** 0.000

Neighborhood  
Attributes

CRS98_W −0.006 0.443

CTotal98_W 9.3E-06 0.267

FloodDamMA98_W −1.4E-07 0.523

Watershare_W −1.9E-05 0.569

PopGro 
(predicted)_W

6.1E-05 0.823

constant 0.457** 0.018 0.228 0.244 −0.019 0.877 0.035 0.757

Spatial lag: λ 0.049*** 0.000 0.074*** 0.000

Table 4: Cross-sectional (2013) and changes (1998-2013) results.
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Spatial error: ρ −0.006* 0.060 −0.075*** 0.000

N 18165 18095 18095 18095

F 30.64 8.76

Prob > F 0 0

R-squared 0.112 0.032

Root MSE 0.205 0.133

Note: *p<.1, ** p<.05, *** p<.01

percentage of individuals with at least a college degree, aggregate housing value, rentership 
rate, change in housing value, and flat topography. In addition, there is a negative and signifi-
cant relationship between CRS participation and population density, the percentage of 
children under the age of five, the percentage of people living in same county 5 years prior, 
and ruralness. In Model 3, we add in some more ‘spatial lags of neighbor attribute’ measures 
to test whether neighboring flood experience and water coverage (both measures of potential 
spillover or adjacent flood risk) and neighboring population growth rates also predict more 
post-1998 participation.None of these additional neighborhood variables, based on the results 
of Model 3, suggest a significant effect.

The results of the two SMM models (Models 2 and 4) in Table 4 show a consistent positive 
and significant relationship between CRS participation and aggregate housing value, renter-
ship rate, flat topography, and population-weighted flood risk change from 1990–1998. 
Conversely, CRS participation is significant and negatively associated with population den-
sity and median family income.

Some environmental factors and flood-risk variables influence participation in the CRS, 
although not consistently throughout the four models. Regarding environmental factors, 
water share is a positive and significant predictor of CRS participation in two models. The 
following flood-risk variables are also significant predictors of CRS participation in at least 
two of the four models: area-weighted average flood risk, population-weighted average flood 
risk, and population-weighted flood risk change from 1990–1998.

6 CONCLUSION
Floods are considered the most destructive natural hazard in terms of lives lost, injuries, and 
economic losses. For example, the 30-year average for flood-related deaths and damages in the 
United States between 1982 and 2011 are 95 fatalities and $8.20 billion, respectively. Floods 
are likely to continue to wreak havoc on communities given existing and predicted climate 
change impacts such as increases in frequency and intensity of heavy precipitation events and 
the melting of glacier ice. The United States government created the CRS program to provide 
additional incentives to communities who are interested in voluntarily engaging in flood miti-
gation initiatives to stem the destruction engendered by floods. Although previous studies have 
examined the drivers of CRS adoption, no study has investigated whether CRS participation is 
a function of policy diffusion or an act of free-riding. Policy diffusion would suggest that, all 
else being equal, once a community has joined the CRS, neighboring communities will be 
more likely to follow their lead and participate in the CRS. Free-riding would imply that 
neighboring communities might choose not to participate in the CRS because they perceive 
that their community benefits from surrounding communities  participating in the CRS.

This study finds that CRS participation in 1998 by neighbors, points earned in 1998 by 
neighbors, neighboring flood experience, water coverage of neighbors, and neighboring 



 D. S. Noonan, et al., Int. J. Sus. Dev. Plann. Vol. 15, No. 1 (2020) 79

 population growth rates have no influence on CRS participation. This finding is important 
because it indicates that a community’s decision to participate in the CRS is not influenced 
by the characteristics of or the behavior their neighbors. In short, there is no evidence to sup-
port the hypothesis that neighboring communities of CRS participating communities are 
free-riders (benefit from the CRS program via their CRS participant neighbors).

However, the results of this study do show that population density, aggregate housing val-
ues, rentership rate, and flat topography are significant predictors of CRS participation both 
cross-sectionally (CRS13) and as a change (ΔCRS). CRS participating communities gener-
ally have lower population densities, higher aggregate housing values, higher rentership rates 
and their topographies are usually flat. Higher renter-occupancy rates and housing values 
among CRS participating communities perhaps suggest more local advocacy efforts by rent-
ers and homeowners to push politicians to participate in CRS with the potential benefit of 
having a larger property tax base to fund mitigation activities or the need to protect their high 
housing values.

This study also finds that environmental factors and flood-risk- related variables influence 
communities’ participation in CRS. These results are in line with previous studies which pro-
vided evidence that flood risk is an important predictor of community participation in the CRS 
[3], [8], [9], [18]. In conclusion, CRS participation is driven by demographic  characteristics, 
flood risks, and environmental/geographic factors.
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