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Once installed, the electricity meters will face a huge variation in operating conditions, which 

exerts a major influence on the measuring accuracy. Thus, it is imperative to develop an 

effective way to estimate the errors of electricity meters in varied operating conditions. 

Considering the limited sample size, this paper develops a semi-supervised sparse 

representation (SSR) algorithm for error estimation of electricity meters with insufficient 

tagged samples. Each sample was considered a combination of two sub-signals, namely, the 

prototype dictionary P and the variation dictionary V. The prototype errors of electricity meters 

were taken as the P, using the Gaussian mixture model (GMM). The linear noises were sparsely 

characterized by the V. On this basis, the mixed tagged and untagged samples were processed 

in a semi-supervised manner, to obtain the nonlinear variations between the two types of 

samples. To verify its effectiveness, the proposed SSR algorithm was compared with other 

error prediction methods through four experiments on actual datasets of different sizes. The 

results show that our algorithm greatly outperformed the other methods in the accurate 

estimation of the errors of electricity meters in operating conditions. The research results 

provide an innovative way to onsite calibration of electricity meters. 
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1. INTRODUCTION

In the field of metrology, it is a research hotspot to calibrate 

electricity meters in an effective manner. Many different 

strategies have been adopted to address this concern. The 

necessity of accurate calibration of electricity meters is 

highlighted by new international guides, which call for strong 

applicability of measuring instruments and high traceability of 

the measuring methods [1-4]. With the advent of smart grids, 

more and more attention has been paid to the state estimation 

of electricity meters via distributed management systems [5]. 

Against this backdrop, it is imperative to develop new ways to 

guarantee the accuracy of electricity meters [6].  

The existing approaches mainly focus on improving the 

measuring accuracy of electricity meters in actual operations 

[7]. There is no report on how to estimate the error of these 

instruments. The error estimation is essentially a regression 

and prediction problem [8]. Various techniques can be 

introduced to solve this problem, many of which are related to 

artificial intelligence (AI) [9, 10]. In fact, the emergence of the 

AI has brought about many effective forecast models [11, 12]. 

For error estimation of electric meters in actual operations, 

there is a particular advantage with deep learning: the 

algorithms are trained with real-world data, and the error is 

predicted by machine learning, when enough data has been 

obtained. In this way, it is easy to acquire useful data, and 

manage possible errors, which are diverse and complex [13-

16].  

Through the above analysis, this paper firstly investigates 

how changing operating conditions influence the errors of 

electricity meters. Next, a special artificial neural network 

(ANN) was designed, and used to set up an error estimation 

method. The contributions of this research can be summarized 

as follows:  

(1) This paper presents a novel semi-supervised sparse

representation (SSSR) algorithm to estimate the errors of 

electricity meters in actual operations. With known 

environmental parameters and certain constraints, the 

proposed algorithm can ascertain the measuring accuracy of 

electricity meters under each environment. To the best of our 

knowledge, this is the first attempt to apply machine learning 

to estimate the errors of electricity meters. 

(2) The SSSR algorithm was compared with several

machine learning strategies through the accuracy analysis of 

initial measured data. The results confirm that our algorithm 

can effectively estimate the errors of electricity meters in 

actual operations.  

(3) Our algorithm enjoys great application prospect in the

verification of electricity meter measurements in actual 

operations. 

2. SSSR NEURAL NETWORK

2.1 The prototype plus variation framework 

Inspired by the linear addition model, each sample was 

considered a combination of two sub-signals, namely, the 

prototype dictionary P and the variation dictionary V [17-19]: 

y  = + +P V e  (1) 

where, α and β are sparse vectors that select a finite number of 

bases from P and V, respectively; e is a small noise. The 
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estimation of the two sparse vectors is equivalent to solving 

the ι1 minimization problem: 
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where, λ is the regularization parameter; y is a test sample. 

Then, the reconstruction residuals of each class can be 

calculated, using ̂  and ̂ , and the test sample y can be 

allocated to the class with the smallest residual [20].  

In addition, the prototype dictionary P can be expressed as: 

 

P=A                                          (3) 

 

 1, , Kc c=P                                   (4) 

 

The above formulas of P and V work well, when many tags 

are available. In real-world scenarios, however, the tagged 

training data often have a limited size, and differ greatly from 

the untagged testing data [21]. Therefore, it is very difficult to 

produce a good prototype image that distinguishes between the 

tagged training data and the untagged testing data.  

 

2.2 Class centroid estimation  

 

Considering the nonlinear variation between tagged and 

untagged samples, the centroid estimation of tagged and 

untagged data for each topic was performed to learn the 

prototype of each class [22]. 

First, the data were cleaned to eliminate the linear variation 

in each sample. Meanwhile, one data entry from the same 

model to be tested was assumed to obey Gaussian distribution. 

The data cleaning was completed by solving (1) by (5) or (6) 

for the P, and solving (1) by (3) or (4) for the V: 

 
ˆ ˆˆ  = − = +y y V P e                              (5) 

 

where, �̂� is the rectified untagged image without linear 

variation; ̂ and ̂  can be initialized by (2). Then, the problem 

is converted to finding the relationship between the rectified 

untagged data �̂� and the centroid of its class. 

The sparsity coefficient α is so sparse that each class is 

usually represented by only one P. For untagged sample y, the 

most important entry for P was selected by P̂, i.e. the centroid 

of the closest class to �̂� . However, the class centroid thus 

selected cannot be directly used as the initial class centroid of 

the Gaussian distribution [23]. This is because the largest 

element of α rarely equals one. In other words, the P̂ often 

produces an extra small noise-like class centroid. Suppose the 

most important entry of α is associated with class i, we have: 
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where, the sparsity coefficient ̂ =[,…,s(ith entry),…,]T 

consists of the small value and the effective values the scale 

parameter s in the i-th entry; ai
∗ is the i-th column of P; e= P̂i 

is the sum of all noise-like class centroids selected by ̂ i, 

which contains only small values that complement the ̂. 

In the preceding subsection, the prototype dictionary P has 

been normalized by (2) into a second-order norm. Similarly, 

the scale parameter s can be eliminated by normalizing y-V̂ 

into a second-order norm: 

 

( ) ( )* * *ˆˆ norm

inorm norm s = − = + +  +y y V e e ea a    (7) 

 

where, e ∗  is a small noise obeying zero-mean Gaussian 

distribution. Because of the small sample size from each class, 

the Gaussian noise was assigned differently to each class, i.e. 

ei
∗=N (0, i), aiming to improve the estimation accuracy of the 

P. The normalized yˆ obeys the following distribution: 

 

( )* * *ˆ ,norm

i i i iN +  ey a a                  (8) 

 

2.3 Algorithm design 

 

The SSSR algorithm was summarized as Algorithm 1 below. 

Besides the regularization parameter λ, the inputs of the 

algorithm fall into the following categories: 

(1) Considering the small size of training samples, a set of 

tagged and untagged images D={(y1, l1) ..., (yn, ln), yn+1, ..., 

yN}, where yi∈RD, i=1, …, N are image vectors, and li, 

i=1, …, n are the tags, and the number of tagged images in 

each class ni were inputted to the algorithm. 

(2) Considering the sparse least-squares prediction problem 

(SLSPP), a set of prototype and testing images D={(y1, 1), ..., 

(yK, K), yK+1, ..., yN }, where T={y1, ..., yK} is the prototype 

set with SLSPP, and 1, …, K are the tags, and a tagged generic 

dataset with N g samples from K g subjects, G={G1, ..., GN g } 

were inputted to the algorithm. 

 

 

3. PREDICTION EXPERIMENTS 

 

This section attempts to compare the performance of the 

proposed method with other error prediction methods. Several 

experiments were carried out on Google’s TensorFlow 

framework, using Python codes and actual measured datasets. 

The dataset size varies from experiment to experiment. 

 

Algorithm 1 The SSSR algorithm 

1 
Compute the prototype matrix, P, by (6) to overcome 

the limited sample size. 

2 
Compute the universal linear variation matrix, V, by 

(4) to overcome the limited sample size.  

3 

Perform dimensional reduction (e.g. principal 

component analysis) on the whole dataset as well as P 

and V, and then normalize them into second-order  
2

 

norm. 

4 
Solve the sparse representation problem to estimate α̂  

and ̂ for all the untagged y by (2). 

5 
Rectify the samples to eliminate linear variation and 

normalize them as 
2

-norms. 

6 

Initialize each Gaussian distribution of the Gaussian 

mixture matrix (GMM) by N(pi,I) for i=1, ..., K, where 

pi is the i-th column of P. 

7 Initialize the prior of the GMM, i in n= . 

8 Repeat the following two steps 

9 E-Step: Calculate �̂�ij by (3) and (4). 

10 
M-Step: Optimize the model parameter 

 , , , for  1, ,j j j j K=  =     
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11 until satisfy (8). 

12 Let  1
ˆ ˆ* , , K=  P  and estimate ̂* and ̂* by (2). 

13 Compute the residual rk(y) by (8). 

14 Output: Tag(y)=arg minkrk(y). 

 

Three metrics, namely, the mean absolute error (MAE), the 

mean squared error (MSE) and the root mean square error 

(RMSE), were selected to evaluate the prediction results from 

different angles. The MAE is the most robust metric of the 

deviation between the real value and the predicted value [24], 

especially for large errors. The MSE and the RMSE can 

effectively characterize the dispersion of each method [25]. 

However, the squaring operation makes the two metrics more 

sensitive to large errors, which may lead to error magnification.  

The MAE, MSE and RMSE can be respectively calculated 

by: 

 

1
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i
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where, n is the sample size; yi is the real value; y'i is the 

predicted value. 

Using the most effective hyperparameters, the proposed 

SSSR algorithm was compared with the least squares support 

vector machine (LS-SVM), the fully-connected multi-layer 

perceptron (FCP) and the convolutional neural network 

(CNN). The same dataset was adopted to train the four 

methods. Figure 1 and Table 1 compare the prediction of each 

method with the actual value.  

 

 
 

Figure 1. Prediction errors of all four methods 

 

In general, the SSSR algorithm achieved the best 

performance in error prediction, judging by all three metrics. 

By contrast, the LS-SVM and the FCP were outperformed by 

a significant margin. The results prove that the SSSR 

algorithm can predict errors accurately based on the specific 

environmental parameters, and provide an excellent solution 

to error estimation despite the variation in environmental 

conditions.  

Table 1. Performance comparison of the four methods 

 
Method MSE MAE RMSE 

LS-SVM 0.175321 0.324835 0.418713 

FCP 0.167789 0.288262 0.409621 

CNN 0.00262098 0.0360277 0.0511955 

SSSR 0.00235818 0.0101225 0.0485611 

 

The error prediction effect can also be measured by the 

computing time in the training phase. Compared with the three 

contrastive methods, especially, the LS-SVM, the proposed 

SSSR algorithm consumed a very short amount of time in the 

training phase. Therefore, our algorithm outshines the other 

methods in the error estimation of electricity meters.  

Admittedly, any neural network faces a high initial 

overhead, due to necessity of repeated training. However, the 

experimental results demonstrate that the SSSR algorithm 

overcomes this defect and realizes a very high accuracy in the 

error estimation of electricity meters under varied conditions. 

As long as there are enough training data, a huge amount of 

time will be saved through machine learning. 

According to relevant standards on the calibration of 

electricity meters, the predicted error should be two orders of 

magnitude higher than the measured error. Therefore, 

prediction error in our experiments must fall within 1%. With 

a prediction error of only 0.002%, the proposed SSSR 

algorithm clearly satisfies this requirement, and applies to 

onsite calibration of electricity meters. 

 

 

4. CONCLUSIONS 

 

This paper applies deep learning to error prediction of 

electricity meters in operating conditions. The SSSR algorithm 

was developed to model the linear and nonlinear variations 

between tagged training samples and untagged testing samples. 

To improve the classification accuracy, a more precise 

prototype dictionary P was prepared to characterize the most 

prominent features of each topic. The proposed algorithm was 

compared through experiments on real-world datasets with 

several popular methods for error estimation. The comparison 

shows that: the proposed algorithm greatly improved the error 

prediction results, facing the limited number of training 

samples and the SLSPP problem. In future research, the SSSR 

algorithm will be combined with dictionary learning methods 

to further improve its performance, and improve the prototype 

dictionary by strategies other than the GMM. 
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