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 In coalmines, gas disaster is a complex uncertain process influenced by multiple factors. It is 

difficult to predict gas disaster in an accurate manner. The traditional methods for gas disaster 

prediction face several common problems, such as the inaccuracy of gas monitoring data, and 

the unreliable evaluation of gas safety. To solve the problems, this paper proposes a gas 

monitoring and prewarning method based on fuzzy fusion of multi-sensor data. To realize data 

fusion and decision-making, the field parameters like wind speed, gas content and temperature, 

which are monitored by multiple sensors in the coalmine, were allocated to the set of factors, 

while the decisions on gas state were allocated to the set of remarks. Then, the data collected 

by the sensors were fuzzified by the fuzzy set theory, creating a fuzzy membership matrix. The 

fuzzy Cauchy-Riemann equations were introduced to establish the membership function. 

Furthermore, the coalmine gas state was evaluated and determined in the fusion center under 

decision-making rules through compositional operation. Based on local decisions, a data fusion 

decision-making model for coalmine gas disaster was established to make the global decision. 

The proposed method was applied to analyze the temperature, gas content and wind speed of 

tunnel face monitored by multiple sensors at three different time points in a coalmine of Shanxi 

Province, China. The results show that the gas states at all time points were evaluated 

accurately, without any false or missed alarm, and the prediction based on multi-sensor data 

fusion was 34% more accurate than that based on single-sensor data. The research findings 

provide an effective way to monitor and prewarn the coalmine gas state. 
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1. INTRODUCTION 

 

In recent years, coal mining is getting deeper and more 

intense. More and more coalmines now face the risk of gas 

outburst. Statistics show that 1,620 coalmines in China have a 

high gas content, about 29% of all coalmines in the country. In 

coalmines, gas hazards mainly include gas outburst and gas 

explosion. The former refers to the sudden and violent ejection 

of coal and gas from the coal wall to the mining space. This 

dynamic disaster is essentially the loss of stability of the coal 

rock, which contains high-pressure gas, when its energy and 

damage accumulate to a critical level. This process involves 

complex nonlinear dynamics [1]. The gas outburst releases a 

huge amount of energy, causing the roadway to collapse, and 

brings heavy casualties and property losses. The disaster may 

also induce secondary incidents like fire and gas explosion [2, 

3]. 

According to the National Coal Mine Safety Administration 

of China, the number of safety accidents and the total number 

of deaths in coalmines are decreasing steadily from 2006 to 

2017; however, gas accidents still take up about 10% of all 

coalmine accidents, and the proportion of deaths from gas 

accidents in the death toll of all coalmine accidents is growing 

annually [2]. Against this backdrop, it is particularly important 

to develop an effective prewarning method for gas disaster, 

which can accurately prewarn the high gas content and risk of 

gas accidents in accident-prone areas in the coalmine (e.g. the 

mine face, the tunnel face and the return airway), assess the 

risk of gas accidents in advance, and thus reduce the 

probability of gas accidents.  

Many scholars and technicians have probed into gas 

outburst through field observation, theoretical analysis, 

physical modelling and numerical simulation. Many different 

views and hypotheses have been developed, concerning the 

formation mechanism of gas outburst. The multi-factor 

hypothesis is the most widely accepted explanation of how gas 

outburst comes into being [3]. The hypothesis holds that gas 

outburst is the joint result of the deformation potential of the 

coal and the internal energy of the gas: When the stress state 

of the coal changes abruptly, the elastic potential accumulated 

in the coal is suddenly released; then, the coal is broken into 

fragments, and thrown out under the pressure of the gas. The 

gas outburst is attributable to the combined effects of multiple 

factors, including the stress as well as the physical-mechanical 

properties of the gas and the coal.  

Based on the multi-factor hypothesis, three types of gas 

outburst prediction methods have emerged, namely, the simple 

index method, sensitivity threshold method and multi-index 

method. The simple index method performs static 

discontinuous prediction or dynamic continuous prediction of 

gas outburst, based on indies like coal quality, gas pressure and 

gas content. This approach consumes a huge amount of 

manpower and materials, yet failing to achieve a high safety. 

The sensitivity threshold method computes the sensitivity of 
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each index by the probability theory, determines the initial 

threshold for each sensitive index based on the computed 

index dispersion, and then forecasts the gas outburst. The 

multi-index method introduces various advanced 

mathematical strategies to gas outburst prediction, such as 

information fusion, artificial neural network (ANN), fuzzy 

mathematical theory and comprehensive attribute evaluation. 

This method can achieve efficient and accuracy prediction of 

gas outburst [4].  

 

 

2. LITERATURE REVIEW 

 

Recent years has seen much attention being paid to 

prediction and prewarning of gas disaster. A variety of relevant 

methods have been developed at scholars at home and abroad 

[5-10]. An et al. [5] established a set of prewarning criteria for 

electromagnetic (EM) radiation of gas outburst, after 

analyzing multiple factors: the features and laws of EM 

radiation in coal rock damages, as well as the change laws of 

and correlations between EM radiation and common 

prewarning indices in gas outburst. Based on the Hadoop 

platform, Hao and Zhang [6] puts forward a gas outburst 

prediction and prewarning method in the following steps: the 

real-time monitored data of gas volume fraction were 

preprocessed through Holt’s exponential smoothing, the 

characteristic parameters of the preprocessed data were 

extracted by backpropagation neural network (BPNN), and 

then the gas outburst prediction and prewarning model was 

established, coupling the parameters of manual outburst 

detection. Kursunoglu and Onder [7] screened the prewarning 

indies for gas outburst, determined the weight of each 

prewarning index through the analytic hierarchy process 

(AHP), and constructed a gas outburst prewarning model 

based on extension theory. Li et al. [8] set up an intelligent 

discriminant model for gas outburst hazard, which integrates 

advanced techniques and theories like artificial neural network 

(ANN), multi-factor pattern recognition, and the theories on 

mine pressure and gas drainage. Zhang et a. [9] studied the 

input and output ends of the grey correlation model, using 

network analysis and multi-class distance discrimination, and 

then created a multi-index coupling prediction model for gas 

outburst. 

The development of computer technology and information 

fusion has provided new technical means for gas disaster 

prediction and prewarning in coalmines. A typical example is 

multi-sensor data fusion. With the aid of computer technology, 

this technique fuses the data from multiple sources (sensors) 

into redundant and complementary information of various 

homogeneous or heterogeneous sensors. In this way, the 

monitored object can be evaluated more accurately, laying the 

basis for correct judgement and decision [10]. Recently, many 

scholars have successfully applied multi-sensor data fusion in 

many fields, such as image analysis and processing, robot 

systems, industrial field parameter detection, and automatic 

target recognition. The popular ways to fuse multi-sensor data 

include the neural network (NN), Kalman filtering, Bayesian 

estimation, and Dempster-Shafer (D-S) theory of evidence 

[11]. Traditionally, gas outburst is mostly predicted and 

prewarning based on single-sensor data. Compared with the 

traditional method, the multi-sensor data fusion boasts many 

advantages: the real-time data measured by multiple sensors, 

the data of geological surveys and the empirical data from 

relevant experts can be fully utilized to identify the key factors 

affecting the gas state, giving full play to the merits of multi-

sensor configuration.  

The multi-sensor data fusion has already been implemented 

to predict the gas state. For instance, Fan et al. [12] suggested 

judging the safety level of coalmines by Bayes’ theorem and 

grey correlation analysis. Kuang et al. [13] fused the 

parameters affecting gas state with the improved BPNN, set up 

a NN model for gas prediction, and evaluated the gas hazard 

in a comprehensive manner. Liu et al. [14] combined the NN 

and the D-S theory of evidence to determine the gas safety of 

coalmines. Yan et al. [15] collected gas content, ventilation, 

coal rock dynamics, and parameters of gas disaster (e.g. 

temperature and coal dust) by multiple types of sensors, 

integrated the collected data on an expert system, and assigned 

the confidence to each prediction outcome. Liang et al. [16] 

analyzed the general framework of multi-sensor data fusion, 

designed the structure of a gas outburst prewarning system 

based on multi-sensor data fusion, built up a data fusion model 

with a feature layer and a decision layer, and realized 

feedbacks through a multi-sensor management subsystem, 

achieving closed-loop control of the prediction system. He et 

al. [17] proposed a systematic gas outburst prewarning model 

that integrates multi-sensor data, in the light of the hierarchical 

fusion principle.  

The above research methods have greatly enhanced the 

accuracy of gas state prediction. However, each type of 

methods has its own limitations: the Bayesian estimation has 

difficulty in determining the prior probability, the BPNN faces 

problems like limited learning samples, black box structure 

and initial weighting of parameters, while the D-S theory of 

evidence cannot easily yield a reasonable distribution of basic 

probabilities for specific situations. Therefore, a high-quality 

gas outburst prewarning system should overcome the defects 

of different data fusion methods, while making the best use of 

their respective merits. Through the literature review, it is also 

learned that multi-sensor data fusion can improve the accuracy 

and reliability of gas disaster prewarning, and effectively 

enhance the work safety of coalmines. Of course, there is still 

ample room to improve the existing methods for gas outburst 

prediction: the outburst indices should be more diversified, the 

thresholds should be more objective, and the nonlinearity 

between indices should be clarified. 

Through the above analysis, this paper presents a novel gas 

outburst prediction method called fuzzy fusion of multi-sensor 

data, which combines the fuzzy set theory and information 

fusion technology. In this method, the data collected by 

multiple types of sensors are subject to comprehensive 

decision-making by the fuzzy set theory, and feature extraction 

and fusion; The comprehensive decision-making of the 

monitored object is achieved through composition operation 

and the fusion of local decisions from different monitoring 

points. As such, the proposed method greatly improves the 

performance of gas monitoring and prewarning system in 

coalmines. 

 

 

3. METHODOLOGY 

 

3.1 Fuzzy comprehensive evaluation (FCE) of multi-sensor 

data 

 

The FCE is an important evaluation method inspired by the 

fuzzy set theory. It is a specific application of fuzzy 

mathematics in risk evaluation. If applied to coalmine gas 
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monitoring system, the FCE can make a comprehensive 

decision of the multi-sensor data.  

The basic idea of fuzzy set theory is to make memberships 

in general sets more flexible, and thus extend the membership 

of an element for a set to any number in the interval [0, 1], 

rather than 0 or 1. Hence, the FCE is a suitable method to 

describe and process the uncertainty of sensor data [16]. 

 Based on multi-sensor data fusion, the comprehensive 

decision-making can be explained as follows: First, the multi-

sensor data were considered a set of factors V=(v1,v2,…,vm). 

Suppose there are n possible gas states judged by the coalmine 

gas monitoring and prewarning system. Then, the remark set 

of the decisions can be expressed as U=(u1,u2,…,un). During 

the FCE, the concept of “factor weight vector” was introduced 

to prevent the decision from being affected by the difference 

in sensor performance and the signal strength between 

measuring points. Let ai=(i=1,2,…,m) be the factor weight of 

each sensor, where ai is a fuzzy subset of the factor set V, and 

A=(a1,a2,…,am) be the fuzzy vector. In the coalmine gas 

monitoring and prewarning system, the factor weight ai that 

satisfies 

1

1, ( 0, 1,2, , )
m

i i

i

a a i m
=

=  =   is defined as a factor 

weight vector. According to the level indices of the remark set, 

each factor in the factor set V was judged, creating the fuzzy 

membership matrix: 

 

 ij m n
R r


=                              (1) 

 

where, rij is the membership of vi for uj, i.e. the probability to 

judge state j in U based on a single factor i in V. 

The probability B of each gas state can be obtained through 

fuzzy transform. The decision-making of gas state is 

essentially the composition operation between fuzzy vector A 

and the fuzzy membership matrix R. The two elements were 

integrated through generalized fuzzy operation, i.e. the larger 

element is selected in addition, and the smaller element is 

selected in multiplication. The FCE through fuzzy transform 

can be expressed as: 
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1 2 1 2
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 
 
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n

n
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mnm m

r r r

r r r
B A R a a a b b b

r r r

    (2) 

 

where, 
1

, 1, 2, ,
m

j i ij

i

b a r i n
=

= = , j=(1, 2, …, n) is the 

membership of the correlation between two elements for the 

state of the j-th remark. 

 

3.2 Structure of multi-sensor data fusion 

 

The fusion of coalmine gas monitoring data belongs to the 

decision-level, and targets the local decision at each sensor. 

First, the data of each sensor were transformed into an 

independent decision. Then, the decisions from different 

sensors were integrated in sequence. In other words, the global 

decision at the fusion center is based on the independent 

decision at each sensor.  

Figure 1 shows the structure of the FCE-based multi-sensor 

data fusion system. As shown in the figure, each sensor in the 

system extracts the features from its sensing data, and then 

complete local decision-making. The local decision is sent to 

the fusion center, where global decision-making is carried out 

based on the local decisions.  

 

 
 

Figure 1. The structure of the FCE-based multi-sensor data fusion system 

 

3.3 Data fusion algorithm 

 

In the multi-sensor data fusion system, the m sensors 

constitute the factor set V=(v1,v2,…,vm). The elements in the 

decision set D=(d1,d2,…,dm) are generally divided into several 

levels. The system extends the fusion rules of binary 

hypothesis testing problem to the case where local sensors are 

permitted to make a multi-level or soft decision [18].  

It is assumed that the sensing domain of each local decision 

maker can be divided into j nonoverlapping subdomains. If the 

observation of sensor i lies in the j-th subdomain, then 

ui=j(j=0,1,…,j-1). The local soft decision of each sensor was 

sent to the fusion center for global decision-making.  

Under this fusion structure, the confidence of each level on 

the decision set D was taken as the decision of each sensor. 

Taking sensor vi for example, the decision of this sensor 

ri=(ri1,ri2,…,rin) was normalized into the input vector to the 

fusion center r
' 

i=(r
' 

i1,r
' 

i2,…,r
' 

in). Then, the mn decision matrix R 

of vector r
' 

i  can be established [10]: 

' ' '

11 12 1

' ' '

21 22 2

' ' '

1 2

n

n

m m mn

r r r

r r r
R

r r r

 
 
 =
 
 
  

                            (3) 

 

Considering the varied roles of the sensors in the data fusion 

system, different weights (fuzzy subset of V) were assigned to 

different types of sensors, A=(a1,a2,…,am), where ai=(vi) and 

i=(1,2,...,m) simultaneously satisfy: 

 

1

1, 0, 1,2, ,
m

i i

i

a a i m
=

=  =               (4) 

 

The index weights were determined by the AHP. Firstly, the 

judgment matrix Q was constructed:  
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         (5) 

 

where, qij is the importance ratio between elements qj and 

element qj relative to the same superior element qk. This ratio 

was scored against a nine-point scale. Once the judgment 

matrix Q=(qij)n×n is obtained, matrix A was normalized column 

by column and summed up row by row: 

 

( )
1

, 1, 2, ,
n

ij ij ij

i

b u u i j n
=

= =                (6) 

 
i

i ij

j

v b=                                   (7) 

 

1

n

i i i

i

v v
=

=                                 (8) 

 

After obtaining the approximate value of the feature vector 

ωi, the accuracy and consistency of the judgment matrix were 

verified based on the difference between λmax and n. 

The next step is to determine the membership function of 

the eigenvalues observed by different sensors relative to each 

gas state in the coalmine. For this purpose, the gas situation 

was divided into three fuzzy states: safe H0, hazardous H1, and 

extremely hazardous H2, and the sensor type and gas state were 

number as i=1, 2, 3 and j=1, 2, 3, respectively. Based on the 

fuzzy Cauchy-Riemann equations, the membership function 

μij(x) (Figure 2) was defined as:  
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where, μiH0, μiH1 and μiH2 are the memberships of coalmine gas 

measured by sensor vi for safe, hazardous and extremely 

hazardous states, respectively; xi is the eigenvalue measured 

by the sensor measuring system; aiH0, aiH1 and aiH2 are the 

standard eigenvalues measured by sensor i for coalmine gas to 

belong to the three states, respectively; iH0, iH1 and iH2 are 

control coefficients (positive constants). 

The probability B of each gas state can be expressed as: 
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Figure 2. Membership function based on fuzzy Cauchy-

Riemann equations 

 

 

4. CASE STUDY AND RESULTS ANALYSIS 

 

The effective prewarning of gas disaster hinges on the safety 

assessment of the coalmine. Before making a comprehensive 

evaluation of the safety in the coalmine, multiple sensors need 

to be deployed rationally to monitor the field parameters of the 

mining area and the tunnel face in real time, including 

temperature, gas content, wind speed and carbon monoxide 

(CO) content [19-21]. According to the relevant provisions in 

the Application and Management Standard for Coal Mine 

Safety Monitoring System and Detector (AQ 1029-2007), the 

typical sensor layout for the mine face in high-gas content 

coalmines are shown in Figure 3. 

 

 
 

Figure 3. Sensor layout for the mine face 

 

As shown in Figure 3, the intake airway, the mine face and 

the return airway form a U-shaped ventilation path. A gas 

detector is deployed on the upper right corner of the path. Gas 

content sensors are installed on the mine face and the return 

airway. Other sensors are also provided, including temperature 

sensor, CO content sensor and wind speed sensor. In actual 

applications, each sensor could be replaced with a set of 

sensors. 

Targeting a coalmine in Shanxi Province, China, our 

analysis mainly focuses on three field parameters of the mine 

face and the tunnel face, namely, temperature, gas content and 

wind speed. The data from temperature sensor, wind speed 
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sensor and gas content sensor were collected to analyze the gas 

state of the coalmine. According to the Coal Mine Safety Rules 

and the intervals of characteristic parameters, the gas situation 

of the coalmine was divided into such three levels as safe, 

hazardous and extremely hazardous.  

Therefore, the sensor set can be expressed as 

V=(v1,v2,v3)={temperature sensor, wind speed sensor, gas 

content sensor}, and the gas state set can be expressed as 

U=(u1,u2,u3)= {safe, hazardous, extremely hazardous}. The 

weights were assigned empirically as A=(a1, a2, a3)=(0.106, 

0.260, 0.634). According to the survey data on the coalmine, 

three sets of data (Table 1), which were collected from a 

representative tunnel face at different time, were selected for 

analysis.  

Based on the received sample data, the fusion center makes 

local decisions for the data from each sensor, and determines 

the monitored state through normalization. Then, the 

normalized data formed a judgement matrix and the 

composition operation was performed. Finally, the global 

decision was made by the maximum membership method. The 

comprehensive evaluation results of the gas state are listed in 

Tables 2-4. 

 

Table 1. The data collected by different sensors from the 

tunnel face 

  
Time t1 t2 t3 

Temperature ℃ 20.3 23.2 23.8 

Wind speed m/s 1.45 2.9 2.78 

Gas content % 0.24 0.76 2.65 

Table 2. Fusion results of multi-sensor data collected at time t1 

 

State 

Sensor 
Safe Hazardous Extremely hazardous Result 

Temperature sensor v1 0.538 0.461 0 Unknown 

Wind speed sensor v2 0.832 0.183 0 Safe 

Gas content sensor v3 0.558 0.439 0 Safe 
Fusion result 0.630 0.368 0 Safe 

 

Table 3. Fusion results of multi-sensor data collected at time t2 

 
State 

Sensor 
Safe Hazardous Extremely hazardous Result 

Temperature sensor v1 0.129 0.871 0 Hazardous 

Wind speed sensor v2 0.390 0.608 0 Hazardous 

Gas content sensor v3 0.461 0.537 0 Unknown 
Fusion result 0.412 0.613 0 Hazardous 

 

Table 4. Fusion results of multi-sensor data collected at time t3 

 
State 

Sensor 
Safe Hazardous Extremely hazardous Result 

Temperature sensor v1 0.029 0.106 0.858 Hazardous 

Wind speed sensor v2 0.542 0.471 0 Unknown 

Gas content sensor v3 0.128 0.179 0.692 Extremely hazardous 
Fusion result 0.231 0.252 0.534 Extremely hazardous 

The experimental results show that, when the evaluation 

was based on the data collected by a single sensor, the gas state 

was sometimes unknown, i.e. it was impossible to tell if the 

gas state is safe or hazardous. After the fuzzy fusion of multi-

sensor data, it is confirmed that the gas state was safe, 

hazardous and extremely hazardous at t1, t2 and t3, respectively. 

The prediction based on multi-sensor data fusion was 34% 

more accurate than that based on single-sensor data. Compared 

with that based on single-sensor data, the membership based 

on fuzzy fusion of multi-sensor data gives full play to the 

merits of information fusion, enhances the accuracy of 

coalmine gas monitoring, reduces the probability of false 

alarm or missed alarm, mitigates the uncertainty of gas state 

evaluation, and improves the performance of the prewarning 

system. 

 

 

5. CONCLUSIONS 

 
The traditional methods for gas disaster prediction face 

several common problems, such as the inaccuracy of gas 

monitoring data, and the unreliable evaluation of gas safety. 

Moreover, the gas state evaluation based on single-sensor data 

often has a poor accuracy, which affects the reliability and 

stability of the prewarning system. Therefore, this paper fully 

combines the FCE and information fusion technology, and 

proposes a gas monitoring and prewarning method based on 

fuzzy fusion of multi-sensor data. The main conclusions are as 

follows: 

(1) Multiple sensors were adopted to monitor the field 

parameters of a coalmine in real time, including wind speed, 

gas content and temperature. The parameters were treated as 

the factors for decision-making based on fused data. The data 

collected by the sensors were fuzzified, a fuzzy membership 

matrix was constructed, and the membership function was set 

up based on fuzzy Cauchy-Riemann equations. Taking the 

decisions on gas state as the remarks, the authors created a 

fuzzy evaluation model for gas state, which can predict gas 

disaster accurately and reliably. In this way, the work safety of 

the coalmine can be improved effectively. 

(2) Under the general framework of multi-sensor data fusion, 

the coalmine gas state was evaluated and determined in the 

fusion center under decision-making rules through 

compositional operation. Based on local decisions, a data 

fusion decision-making model for coalmine gas disaster was 

established to make the global decision. The proposed method 
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was applied to analyze the data monitored by multiple sensors 

in a coalmine of Shanxi Province, China. The results show that 

the prediction based on multi-sensor data fusion was 34% 

more accurate than that based on single-sensor data, laying the 

basis for real-time decision-making. 

(3) The proposed method achieves fuzzy fusion of multi-

sensor data in coalmines, and provides an accurate way to 

estimate and determine the gas state. With the aid of our 

method, the operators can take proper measures in time to 

prevent gas disasters. 
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