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In recent years, the time dimension of geographic objects has been introduced to the 

geographic information system (GIS), marking a great progress in geographic information 

science (GIScience). The mining and knowledge discovery of spatial pattern and 

spatiotemporal evolution of geographical elements and phenomena have become the hotspot 

of GIScience research. Based on graph theory, abstract definitions were given to geographical 

simple objects and composite objects, involving spatial relationships, morphological features 

and semantic features. These features, attributes and relationships were integrated into a novel 

relational attribute neighborhood graph (RANG) through the design of a series of algorithms. 

The RANG was successfully applied to the automatic classification of urban land use, 

providing a desirable tool for land use classification in the context of rapid urbanization. 

Keywords: 

geographic information system (GIS), 

relational attribute neighborhood graph 

(RANG), graph theory, classification, 

urban land use 

1. INTRODUCTION

Space, time and attribute are the three inherent features of 

any geographical element and phenomenon [1]. The three 

basic features evolve continuously with the constant changes 

in real-world geography. The dynamic variations of the three 

features must be considered in the geographic information 

system (GIS). 

Traditionally, the GIS is largely static, focusing only on the 

spatial features. In recent years, the time dimension has been 

gradually integrated in the GIS. In this way, the GIS can reflect 

the changes of geographical elements and phenomena over 

time, and provide high-quality spatiotemporal information and 

services, laying the basis for geographical analysis, simulation 

and prediction.  

The GIS integrated with the time dimension can be referred 

to as the temporal GIS. With the development of the temporal 

GIS, the spatial data has gradually evolved into spatiotemporal 

data. The information embedded in spatiotemporal data boasts 

great application potential in today’s world, as people long to 

observe, understand and describe geographical phenomena on 

different spatial and temporal scales. 

The temporal GIS and its spatiotemporal data provide a 

novel solution to many geographical problems, ranging from 

navigation, traffic control to land use planning. Among them, 

land use planning, especially in urban areas, is a common 

concern in many countries. The intensive urban growth in 

recent decades has brought various problems, calling for better 

classification of urban land use.  

This paper aims to accurately classify urban land use based 

on graph theory and the GIS. First, the spatiotemporal 

representation of geographic objects was discussed, revealing 

the hierarchical structure between composite objects and their 

lower-level simple objects. Then, the relational attribute 

neighborhood graph (RANG) was proposed based on the 

graph theory, involving the semantic, spatial, connectivity and 

morphological features of land cover elements. Taking land 

cover elements as simple objects and land use units as 

composite objects, the RANG and the random forest algorithm 

were adopted to classify the land use in an urban area. 

2. LITERATURE REVIEW

In geographic information science (GIScience), object-

based geospatial expression is a superior way to abstract 

features and describe semantic meaning of geographic entities 

and phenomena, thanks to its similarity to human thinking and 

behavioral patterns [2, 3]. Klien [4] suggested that, based on 

objects, entities in geo-space could be abstracted into different 

objects, each of which has its unique behaviors, attributes and 

rules. Baja et al. [5] held that multiscale features belong to 

such three levels as geometry, attribute and semantics; 

therefore, multiple geographic objects could be aggregated 

into a composite geographic object through different levels of 

abstraction, depending on their geometric, attribute and 

semantic features. Lü et al. [6] developed the data structures 

and models for organizing and expressing the multiscale 

features of geographic objects. 

Besides the GIScience, the object-based methods have also 

received much attention from scholars engaging in remote 

sensing. Wang et al. [7] segmented the remote sensing image 

into a series of objects, and analyzed the objects based on their 

semantics, spectra and context, revealing that object-based 

analysis facilitates the interpretation and perception of remote 

sensing images. Mimicking the image cognition of human 

brain, Pinheiro et al. [8] combined automatic computer 

classification with artificial information extraction to segment 

images of different scales, according to the object information 

(i.e. hue, shape, texture and level) and the inter-class 

information (i.e. the features of adjacent objects, sub-objects 

and parent objects). The combined strategy has been applied 

in various fields, ranging from urban built-up area extraction, 

building extraction, to land use classification [9-11]. 

During object-based image analysis, the target image carries 

geospatial connotation if its covers part of or all the object in 
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geo-space. Borna et al. [12] developed the geographic object-

based image analysis method, and determined the relationship 

between image objects and geographic objects in the geo-

space, in the light of the spatial, spectral and temporal 

information. Worboys [13] believed that objects have a series 

of spatial attributes and relationships that can be utilized in 

image analysis. Mo et al. [14] argued that the image objects 

should be replaced by the sub-objects, and proposed to 

establish the hierarchical relationship circularly in image 

segmentation and classification. 

To disclose the hierarchical relationship of objects, 

researchers have been integrating human cognition and 

thinking patterns into semantics and ontology in the context of 

GIScience. For instance, Yue et al. [15] discovered complex 

geospatial objects based on geospatial semantics and services. 

Barr and Barnsley [16] designed a region-based extended 

relational attribute graph structure, and used the structure to 

express the spatial and semantic relationships between image 

regions. Starting with the attributes of image objects, Belgiu 

and Drăguţ [17] identified urban structures with the aid of 

graph theory and random forest.  

The development of remote sensing makes it possible to 

acquire surface features quickly, giving birth to the concept of 

land use classification. Gao et al. [18] proposed a four-level 

land cover classification system, which relies on remote 

sensing to obtain the attributes of surface features. Wang et al. 

[19] classified the land cover in China into 22 types, using the 

SPOT VEGETATION (SPOT/VGT) data with the resolution 

of 1km. Jansen et al. [20] analyzed the data on land use/cover 

classification and social statistics, and constructed a land 

function classification system, which divides land functions 

into 21 subclasses in 6 classes.  
 

 

3. SPATIOTEMPORAL REPRESENTATION OF 

GEOGRAPHIC OBJECTS 
 

Every geographic object contains information in two 

dimensions: space and time. Similarly, each geographical 

phenomenon varies with time and space. To truly understand 

a geographical phenomenon, it is necessary to fully recognize 

the spatial and temporal information, and express the two 

types of information in a unified format. 
 

3.1 Time expression 
 

In geography, time is generally considered as a dimension 

of spatiotemporal data, and analogized as a straight line 

linking up the past, present and future. Time exists in three 

forms: discrete, dense and continuous.  

In discrete form, time is described as a sequence of discrete 

moments: 𝑇 = 〈𝑇1, 𝑇2, … , 𝑇𝑛〉, where 𝑇𝑖  is a moment. In dense 

form, a moment can be inserted between any two discrete 

moments. In continuous form, there exists a moment 𝑇3 

between any two moments 𝑇1  and 𝑇2  (𝑇1 < 𝑇2 ) that satisfy 

𝑇1 < 𝑇3 < 𝑇2. 

The different forms of time can be expressed by time 

elements, which are represented by time attributes. Based on 

time granularity, time elements can be attributed to three 

categories: time point, time period and time set (Figure 1). 
 

 
 

Figure 1. Classification of time elements 

The time point, corresponding to the discrete time, is 

defined as the unit of time obtained when the time is 

discretized to a certain granularity. The time period refers to 

an interval 〈𝑇𝑖 , 𝑇𝑗〉 between the start time and the end time. It 

is often adopted to describe the continuous changes of 

geographical phenomena. The time set is a union of multiple 

time periods: {〈𝑇𝑖1, 𝑇𝑗1〉, … , 〈𝑇𝑖𝑘 , 𝑇𝑗𝑘〉}. Once the time element 

is determined, the topological relationship can be defined 

between different time elements. 

 

3.2 Geographic object 

 

In the visual sense, geographic objects mean the entities, 

which are larger than a minimum size on the surface, that can 

be expressed on maps. Typical examples of geographic objects 

include cities, lakes and mountains. In other words, an object 

refers to a discrete geographic entity, which is unique in 

identity and geographically different from the surrounding 

objects. In object-based data representation, an object is 

considered as an independent aggregation of the relevant 

entity features and functions.  

The geographic features of an object be represented as a 

tuple (x, y, 𝑧1, 𝑧2, … , 𝑧𝑛) , where (x, y)  are coordinates, and 

𝑧1, 𝑧2, … , 𝑧𝑛 are attributes. Then, an geographic object can be 

expressed as (𝑜, 𝑎1, 𝑎2, … , 𝑎𝑛) , where 𝑜  is the object, and 

𝑎1, 𝑎2, … , 𝑎𝑛 are the attributes of the object. On this basis, the 

geographic object can be formally defined as: 

 

Geographic object(O)=Identity(I)+State(S)+Behavior(B) 

 

where, Identity (I) is a necessary component of geographic 

object (O) that differentiates it from the other objects in the 

same area; State (S) describes all the information and 

conditions of the geographic object at a specific time, 

including time attributes, spatial attributes and nonspatial 

attributes; Behavior (B) stands for the changes of the state 

attributes of the geographic object, such as the shape change. 

 

3.3 Simple object and composite object 

 

In the geographic world, many entities and phenomena can 

be expressed with three kinds of simple objects: point, line and 

area (Figure 2). Together, these three types of simple objects 

can abstract the same geospatial entity and phenomenon 

excellently. 

 

 
 

Figure 2. Simple geographic objects 

 

Composite objects can be broken down into multiple simple 

objects. Hence, a composite object can be defined as an object 

on a superior level to simple objects. All the simple objects 

belong to the superior composite object. 

There are three types of spatial relationships among 

geographic objects: topological relationship, metric 

relationship and directional relationship. Topological 
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relationship refers to the connections between geographic 

objects satisfying the principle of topological geometry, 

namely, the adjacency, inclusion and connectivity between 

geographic objects. The topological relationships among 

geographic objects are often very complex, because the objects 

are made up differently with points, lines and areas. The 

measurement relationship describes the link between 

geographic objects with the measured results in geo-space, 

including distance and area between the objects. The 

directional relationship showcases the orientation and 

sequence of geographic objects in the geo-space. 

 

3.4 Spatial information extraction from composite objects 

 

In the GIS, the objects are organized orderly as hierarchies. 

The complex objects belong to high hierarchies. The sequence 

between the objects can be expressed as: 

 

𝑢1 ≤ 𝑢2  𝑖𝑓𝑓∃𝑓: 𝑢2 = 𝑓{𝑢𝑖};  𝑢1 = 𝑓{𝑢𝑖} 

 

where, the hierarchy of 𝑢1 is lower than that of 𝑢2, and 𝑢2 can 

be derived from 𝑢𝑖 by function 𝑓. The orderly structure can be 

represented by a tree structure (Figure 3). 

 

 
 

Figure 3. The orderly hierarchical structure of objects 

 

In the above tree structure, the level of each node represents 

the hierarchy of the corresponding object. Obviously, the 

nodes with the same depth corresponds to the objects on the 

same hierarchy. The deeper the tree structure, the more the 

number of hierarchies (Figure 4). 

 

 
 

Figure 4. The structure of the hierarchies 

 

In terms of the abstraction mechanism, a hierarchy either 

performs association or aggregation. The association 

hierarchy can be expressed as: 

 

𝑢1 ≤ 𝑢2  𝑖𝑓𝑓∃𝑓𝑎𝑠𝑠: 𝑢2 = 𝑓𝑎𝑠𝑠{𝑢𝑖} 

 

where, the hierarchy of 𝑢1 is lower than that of 𝑢2, and 𝑢2 can 

be derived from 𝑢𝑖 by function 𝑓𝑎𝑠𝑠. 

The aggregation hierarchy, a.k.a. the nested hierarchy, is 

constructed by aggregating objects at the next hierarchy into 

high-level composite objects. The aggregation hierarchy can 

be expressed as: 

 

𝑢1 ≤ 𝑢2  𝑖𝑓𝑓∃𝑓𝑎𝑔𝑔: 𝑢2 = 𝑓𝑎𝑔𝑔{𝑢𝑖} 

 

where, the hierarchy of 𝑢1 is lower than that of 𝑢2, and 𝑢2 can 

be derived from 𝑢𝑖 by function 𝑓𝑎𝑔𝑔. 

 

 

4. AUTOMATIC CLASSIFICATION OF URBAN LAND 

USE 

 

4.1 Relational attribute neighborhood graph (RANG) 

 

Graph theory is the most popular method to describe the 

attributes of simple and composite objects, as well as the 

relationship between them [21]. In the analysis of remote 

sensing images, graph theory is often adopted to analyze the 

correlation and structure between image units. Figure 5 

expresses the spatial distribution of geographical  

In order to realize the description of attributes and 

relationships from simple objects to composite objects, the 

most used method is graph theory. In the field of remote 

sensing image analysis, graph theory is also used to analyze 

the relationship and structure between image units. Figure 5 

shows an example of graph theory expression of spatial 

distribution of geographic objects. 

 

 
 

Figure 5. Graph theory expression of spatial distribution of 

geographic objects 

 

In this paper, the relational attribute neighborhood graph 

(RANG) is proposed to represent the hierarchical structure of 

simple objects and composite objects. The RANG was defined 

as a seven tuple (𝑉, 𝐸, 𝑉𝑃, 𝐸𝑃, 𝑆, 𝐴, 𝑃), where 𝑉 is the set of 

simple objects, 𝐸  is the set of spatial relationships between 

simple objects, 𝑉𝑃 is the set of attributes of simple objects, 𝐸𝑃 

is the set of attributes related to 𝐸, 𝑆 is the set of labels of 

composite objects, 𝐴  is the set of attributes of composite 

objects, and 𝑃  is the probability that a composite object is 

assigned with a label in 𝑆, which meaures the accuracy of the 

label assignment. Below is a detailed introduction to each 

element in the tuple. 

Each simple object in 𝑉 has a unique identity, which can be 

directly used. The set 𝐸 can be expressed as: 

 

𝐸 = {𝑟1, 𝑟2, … , 𝑟𝑖} 

 

where, 𝑟𝑖 ∈ 𝐸 is a spatial relationship. The spatial relationship 

between two objects is equivalent to an edge between them: 

 

𝑟𝑖 = {{𝑣1, 𝑣2}, … {𝑣𝑖 , 𝑣𝑗}} 

 

where, 𝑣𝑖  and 𝑣𝑗  is a pair of objects with the spatial 

relationship of 𝑟𝑖. 

The set 𝑉𝑃  records the nonspatial features of each node, 

including both morphological features and semantic attributes. 

The morphological features cover plane attributes (e.g. area, 

perimeter, length and width), shape attributes (e.g. 

compactness, ellipticity, rectangularity, fractal dimension, and 

angle) and 3D surface and volume attributes (e.g. volume, 

height, and surface area). The semantic attributes stand for the 
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subject semantics between simple objects and the most 

representative semantic attributes of composite objects.  

In this paper, two centrality measures, degree centrality and 

betweenness centrality, are adopted to extract semantic 

attributes. The centrality measures describe the dominant 

simple object, i.e. the simple object with the greatest impact 

on the formation of the corresponding composite object. The 

degree centrality is defined as the number of nodes directly 

connected to the current node, that is, the node degree. The 

degree centrality of node 𝑣 can be defined as: 

 

𝐶𝐷(𝑣) = 𝑘(𝑣)  

 

where, 𝑘  is the node degree. The degree centrality of the 

network can be defined as: 

 

𝐶𝐷 =
∑ |𝐶𝐷(𝑣∗)−𝐶𝐷(𝑣𝑖)|𝑛

𝑖

(𝑛−1)(𝑛−2)
  

 

where, 𝑣∗ is the node with the highest centrality. 

The betweenness centrality, a.k.a. the intermediate 

centrality, a measure of centrality in a graph based on shortest 

paths. It mainly evaluates the impact of a simple object on the 

information flow of the entire composite network. The 

betweenness centrality of node 𝑣 can be defined as: 

 

𝐶𝐵(𝑣) = ∑ 𝐿𝑠𝑡(𝑣) 𝐿𝑠𝑡⁄𝑠≠𝑣≠𝑡∈𝑉   

 

where, 𝐿𝑠𝑡(𝑣) is the number of shortest paths between nodes 𝑠 

and 𝑡  through node 𝑣 ; 𝐿𝑠𝑡  is the number of shortest paths 

between nodes 𝑠 and 𝑡. 

Therefore, the 𝑉𝑃 can be expressed as: 

 

𝑉𝑃 = {𝑚1, 𝑚2, … , 𝑚𝑛 , 𝐿𝑠, 𝐶𝐷, 𝐶𝐵}  

 

where, 𝑚𝑖 is the i-th morphological feature; 𝐿𝑠 is the semantic 

information on the labels of nodes; 𝐶𝐷  and 𝐶𝐵  are degree 

centrality and betweenness centrality, respectively. 

The set 𝐸𝑃 records the spatial attributes of each edge, such 

as distance and spatial arrangement. The frequency of each 

spatial arrangement is also saved in the set to quantify the 

spatial relationship between simple objects. This attribute of 

spatial arrangement is also called adjacency-event 

measurement. Apart from measuring the spatial relationship 

between simple objects, 𝐸𝑃 can be coupled with 𝑉𝑃 to extract 

more measurement features.  

The definition of 𝐸𝑃  can be established based on the 

connectivity, an important index of graph structure in graph 

theory. The connectivity has a positive correlation with the 

stability of the graph structure. In general, the connectivity 

level equals the ratio between the number of edges (e) and the 

number of nodes (v) in the graph: 

 

𝛽 = 𝑒
𝑣⁄   

 

Therefore, the set 𝐸𝑃 can be expressed as: 

 

𝐸𝑃 = (

𝑝11 ⋯ 𝑝1𝑡

⋮ ⋱ ⋮
𝑝𝑡1 ⋯ 𝑝𝑡𝑡

)  

 

where, 𝑝𝑖𝑗 is the number of adjacent labels i and j of different 

objects; 𝑡 is total number of object labels. 

The set 𝑆 contains the semantic labels of composite objects. 

Each label records the semantic properties of the 

corresponding object. The label of a composite object can be 

completed through comprehensive analysis on the 

morphological attributes, spatial relations and semantics of the 

lower-level simple objects. The set  𝑆 can be expressed as: 

 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑣} 

 

where, 𝑠𝑖 ∈ 𝑆 is the i-th semantic label. 

The set 𝐴 stores the morphological attributes of composite 

objects. It can be expressed as: 

 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} 

 

where, 𝑎𝑖 ∈ 𝐴 is the i-th morphological attribute. 

The element 𝑃 represents the probability that a composite 

object is assigned with a label in 𝑆: 

 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑣} 

 

where, 𝑝𝑖 ∈ 𝑃 is the probability that the composite object is 

assigned with the i-th semantic label. To ensure the correctness 

of assignment, a composite object is generally given the 

semantic label with the maximum probability.  

As a conceptual expression, the RANG synthesizes the 

attribute relationships, spatial relationships, semantic 

relationships and structural relationships involved in the 

abstraction of composite objects from simple objects, 

organizes simple and composite objects in a logical geometry, 

and records the orderly hierarchical relationships between the 

two types of objects. The RANG provides a data model about 

the transition to advanced knowledge system and information 

mining. 

 

4.2 RANG-based classification of urban land use 

 

In this paper, the land cover elements are regarded as simple 

objects, while the land use units are considered as composite 

objects. The RANG was adopted to extract the information 

about land use. 

Firstly, the land cover data were classified into six classes: 

water, trees, grasses/shrubs, bare land, buildings and 

impermeable ground. The land use data were selected to verify 

the effectiveness of the RANG-based classification. The data 

cover six types of land use: residential area, commercial area, 

mixed development area, public institution area, park/forest 

and water area. Figure 6 shows the high-definition remote 

sensing images of the six types of land use. 

The RANG-based classification of urban land use was 

carried out in the following steps. Firstly, the land cover data 

were objectified, creating the land cover elements (simple 

objects). Next, the block boundaries were delineated, and the 

RANG of the relationship between the land cover elements 

was established for each block was established. From the 

RANG, the semantic features, spatial relationship features, 

connectivity features and morphological features were 

obtained for each block. Taking the blocks as the units of 

spatial analysis, the random forest algorithm was adopted to 

evaluate the importance of relevant features, identify the most 

important features and classify the land use units (composite 

objects). Finally, the classification results were compared with 

the actual data on land use. 
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Figure 6. The high-definition remote sensing images of the six types of land use 

 

Drawing on the relevant literature, 32 feature indices (Table 

1) were extracted from the sets VP and EP of the RANG, 

according to the prior knowledge of the study area.  

The four types of features in Table 1 were synthetized, 

producing a 1D vector containing the 32 feature indices for 

each block. This vector provides a panorama of the land cover 

elements in the corresponding block, and can be directly used 

to identify the type of land use. 

As mentioned before, the random forest algorithm, a 

combinatory algorithm with multiple decision tree-based 

classifiers, was adopted to classify the land use in the study 

area. To establish the random forest model, 1,922 blocks were 

randomly selected as training samples, and the remaining 

4,538 blocks were taken as test samples [22].  

First, all 32 feature indices were inputted into the random 

forest training. The error curve of the model was observed 

through trial and error. The results show that the model has the 

minimum error with eight split nodes and 500 decision trees. 

The trained model was adopted to classify the 4,538 blocks in 

the test set. The overall classification accuracy was 89.11%. 

To verify the robustness of our method, different training 

samples were used to carry out 30 repeated experiments. The 

producer precision (PA) and user precision (UA) of each type 

of land use type are shown in Table 2. 

 

Table 1. Feature indices for random forest algorithm 

 
Type of features Feature indices 

Semantic features 

Type of land cover with the highest centrality (𝐿1) 

Type of land cover with the highest betweenness centrality (𝐿2) 

Type of land cover with the second highest centrality (𝐿3) 

Type of land cover with the second highest betweenness centrality (𝐿4) 

Mean centrality of buildings (𝐿5) 

Spatial features 

Proportion of edges adjacent to water area (𝐿6) 

Proportion of edges adjacent to trees (𝐿7) 

Proportion of edges adjacent to grasses/shrubs (𝐿8) 

Proportion of edges connected by buildings and trees (𝐿9) 

Proportion of edges connected by buildings and grasses/shrubs (𝐿10) 

Proportion of buildings adjacent to trees (𝐿11) 

Proportion of buildings adjacent to grasses/shrubs (𝐿12) 

Proportion of buildings surrounded by trees (𝐿13) 

Proportion of buildings surrounded by grasses/shrubs (𝐿14) 

Adjacent diversity of buildings (𝐿15) 

Connectivity features Beta index (𝐿16) 

Morphological 

features 

Water coverage ratio (𝐿17) 

Trees coverage ratio (𝐿18) 

Grasses /shrubs coverage ratio (𝐿19) 

Bare land coverage ratio (𝐿20) 

Building coverage ratio (𝐿21) 

Mean compactness of buildings (𝐿22) 

Mean rectangularity of buildings (𝐿23) 

Maximum building area (𝐿24) 

Building average area (𝐿25) 

Number of buildings (𝐿26) 

Building density (𝐿27) 

Block area (𝐿28) 

Block circumference (𝐿30) 

Block compactness (𝐿31) 

Block rectangularity (𝐿32) 
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Table 2. Statistical results of 30 repeated experiments 

 

Precision Measurement 
Commercial 

area 

Mixed 

development area 

Park/

forest 

Public 

institution area 

Residential 

area 

Water 

area 

PA 
Mean 0.781 0.703 0.858 0.585 0.964 0.872 

Standard deviation 0.037 0.046 0.027 0.061 0.013 0.012 

UA 
Mean 0.847 0.836 0.691 0.672 0.939 0.911 

Standard deviation 0.028 0.041 0.019 0.045 0.011 0.012 

 

As shown in Table 2, mean accuracy of 30 repeated 

experiments was 86.2%, with a standard deviation of 2.8%. 

Among the six types of land use, residential area and water 

area were recognized and classified at the highest accuracy and 

stability, while the public institution area saw great 

fluctuations in the accuracy of recognition and classification. 

 

 

5. CONCLUSIONS 

 

This paper proposes a novel way to classify urban land use 

based on graph theory and the GIS. Firstly, the abstraction of 

composite objects from simple objects, and the hierarchical 

structure between the objects, were discussed in details. On 

this basis, each land use unit (composite object) was 

considered the combination of multiple land cover elements 

(simple objects). This is in line with our perception of land use 

in urban areas. Next, a RANG was plotted between land cover 

elements and four kinds of attributes of these units: semantic 

features, spatial features, connectivity features and 

morphological features. In this way, the hierarchical structure 

of land cover elements and land use units were established. 

Drawing on the object-based method, the random forest 

algorithm was introduced to classify the land use in an urban 

area, and achieved the mean classification accuracy of 86.2%. 

The research results provide a desirable tool for land use 

classification, which is of great applicability in the context of 

rapid urbanization. 
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