

An Energy and Deadline Aware Scheduling Using Greedy Algorithm for Cloud Computing

Pradeep Venuthurumilli1*, Sridhar Mandapati2

1 Department of CSE, Acharya Nagarujuna University, Guntur 522510, India
2 Department of CSE, RVR & JC Engineering College, Chowdavaram 522019, India

Corresponding Author Email: venuthurumillipradeep@stmarysgroup.com

https://doi.org/10.18280/isi.240604

ABSTRACT

Received: 20 August 2019

Accepted: 13 October 2019

 Cloud computing has been providing various services to different users by means of an aid of

large and scalable virtualized resources on the internet. Owing to all the recent and inventive

developments that are found in the field, there are several scheduling algorithms which were

developed in a cloud computing environment with the intention of decreasing the services

given in cloud computing. For a very enormous gauge, assorted and the multi-user atmosphere

in the cloud scheme where maximization of profit for that of the Cloud Service Provider (CSP)

has been the primary objective. For the purpose of this work, the inclusive optimization

problem in the operation of the cloud system by means of lowering the cost of procedure and

by maximizing the efficiency of energy. At the same time, it satisfies the deadlines that are

definite in Service Level Agreements (SLA) that has been addressed from a CSP perspective.

The work proposes a Greedy algorithm for the environment of the cloud and this is compared

to the scheduling of a First Come First Served (FCFS) and the Min-Min scheduling procedure.

This system exploits the tasks and their heterogeneity and also the resources using a scheduler

unit that schedules and allocates the tasks which are deadline-constrained which is delimited

to the nodes that are energy conscious. After this, the CSP capitalizes on the parallelisms of

data for every user workload and also effectively manages all collective user requests and also

apply the custom optimization that creates a cost of global energy and a cloud platform which

is dead-line aware. The results of the experiment prove that this proposed Greedy algorithm

which achieves a performance which is better (a guarantee ratio, utilization of resources and

energy saving) compared to the FCFS and the Min-Min scheduling algorithm.

Keywords:

cloud computing, scheduling, energy

efficiency, cloud service provider (CSP),

first come first served (FCFS)

scheduling, Min-Min scheduling and

greedy algorithm

1. INTRODUCTION

The cloud has been defined to be a kind of equivalent and a

scattered scheme that is an assortment of the intersected

virtualized workstations provisioned enthusiastically. The

computers have been offered to be a resource of a single

computer based on facility level promise which was

established or even signed amongst the facility supplier and

consumer. Cloud estimates the shared structure which can

attach some large system pools providing resources of

complexity and storage through the internet to users. There are

three characteristics the describe cloud computing: 1)

Unrestricted estimating possessions such as applications,

information stowage and computing power that are accessible

based on demand enabling a higher degree of extensibility and

agility to meet the needs of business 2) There are no

commitments that are long-term: the resources of computing

are available immediately and are used for as lengthy as

necessary and then are emeritus since they have been acquired

either on a point-on-point and a tiny- to-tiny manner 3) The

wage-as-we-go-cost erection: and this is owing to the fact that

there are not any long-term promises in which the resources of

cloud estimates and their costs are dependent on the usage [1].

Virtualization has a crucial role to play in the delivery of

resources to consumers in an efficient manner within the

environment of the cloud. It may be done in several ways such

as the virtualization of storage, memory or the server. For the

purpose of achieving this efficiently, the Virtual Machine (VM)

had been designed. The VM is a very logical instance of the

PC system that controls in a parallel way to this system. The

demand made by the user for accessing a physical source in

the cloud atmosphere was acknowledged by a VM and

allocated to the user on the base of a policy which is well-

suited or the constraints that have been specified. For this

purpose, there are VM schedulers being used and are

employed for dynamically conveying this VM to the users for

performing certain specific operations [2].

This denotes the utilization of resources that is improved

and the load balancing of systems that is managed. This is the

way that all slaves will equitably segment the capacity and the

amenities that are demanded by consumers. Every cloud

environment will then incorporate a VM policy to efficiently

use the resources. This VM scheduling is crucial to

maintaining its Quality of Service (QoS) and the SLA which

is specified by the provider of cloud service at the time a

customer prefers to take cloud services. The process of VM

scheduling in the cloud may be generalized into a total of three

stages which are: The discovery of resources and filtering –

where the broker in a data center finds out all resources that

are present within the complex structure and also accumulates

the related eminence data. The possessions selection – here the

target resource is chosen on the basis of assured constraints of

both process and facilities. This will be the significant phase.

The chore proposal – here the thread will be acquiesced to the

designated sources.

In order to realize the cloud computing potential, the Cloud

Ingénierie des Systèmes d’Information
Vol. 24, No. 6, December, 2019, pp. 583-590

Journal homepage: http://iieta.org/journals/isi

583

Service Providers (CSPs) need to make sure they can be

flexible in terms of their service supply for meeting the needs

of consumers. Until now, there has been a high performance

that is the main reason in the deployments of data centers. A

data center that is average tends to consume energy that can be

consumed 25,000 households. With the increase in the energy

costs and with the dwindling availability, there is not a need to

bring about a shift in the emphasis from the optimization of

resource management of data center to the energy

effectiveness of untainted performance by optimization along

with maintaining a service level performance that is high [3].

Task Scheduling is crucial area of exploration that is

intended at representing all appropriate professions or chores

by revenues of seeing cost restrictions, QoS, boundaries and

so on. Without making use of a scheduling solution that is

effective, the time taken for task accomplishment and increase

in workflow with cloud resources not being utilized fully,

brings down the scalability and availability of the cloud

systems. The cloud environment scheduling strategy is now a

critical issue which distresses the presentation and also has an

influence on the cloud users and their cost issue [4].

There are many challenges in scheduling that arise from

either a multitenant, elastic, pay-as-you-go and on-demand

resource models. On being compared to the other schemes like

grids, the cloud offers more control in terms of resources and

quantity. Such a flexibility along with resource abundance can

create a need for the strategy of resource provisioning working

with its scheduling algorithm. The heuristic which decides the

number and type of VMs to be used also has to be considered.

One more challenge that needs to be addressed by means of

scheduling algorithms was the pricing model that is utility-

based [5].

The schedulers will also have to identify a new trade-off

between the performance, the cost of avoidance of payment

and the non-functional needs along with the prices that are

potentially prohibitive.

Finally, all the algorithms will have to be aware of the cloud

platforms and their dynamic nature along with the

uncertainties involved in them owing to the variation of

performance that is observed in the resources like the VM

CPUs, the storage systems and the network links. Additionally,

the providers do not may any guarantee on the period occupied

for the provision or the de-provision VMs and these values

tend to be variable and also very unpredictable. The schedulers

will have to be aware of the variability and will have to recover

from any unexpected delay to achieve their objectives. There

are numerous different kinds of development procedures

which are: The First Come First Serve (FCFS) scheduling, the

Shortest Job First (SJF) scheduling, the Round Robin (RR)

scheduling, the Priority scheduling Min-Min scheduling and

the Max-Min development procedure [6].

These energy-conscious provisioning of resources and their

scheduling algorithms tend to help in bringing down the

demand for energy but at the same time need support from all

effective and underlying technology or the stage for seriatim

them proficiently. Cloud computing is the most recent buzz in

the industry and it has been observed as a very helpful platform

that achieves efficiency of energy. This type of virtualized

support is agile and useful in terms of service provisioning by

the data centers of the cloud which lower the demand for

energy. Consciousness of vitality that is protracted by means

of association and virtualization (the VM association; the slave

alliance and the task association) which was expedited by

means of virtualization can make Cloud estimating approach

that is desirable in realizing effectiveness of vitality. Even

though the consumers do not demand more VMs that are

comparable, or programmed their assignment, they incline to

gain controller of the enactment of their assignment by means

of deadline specification in their SLAs.

For the purpose of this work, a greed scheduling algorithm

is proposed where the scheduling is based on choosing the

locally optimum resource to the task the other advantages of

greedy scheduling are simple and ease of implementation. The

proposed algorithm is compared with the FCFS, and the Min-

Min scheduling algorithm. The rest of the investigation has

been organized thus. The Section 2 has discussed all related

work found in the literature. All the different methods used

have been discussed in Section 3. Section 4 has discussed the

experimental results and the conclusion has been made in

Section 5.

2. RELATED WORK

Marahatta et al. [7] had developed another dynamic and new

task assignment with a scheduling scheme which was called

the Energy-aware Fault-Tolerant Dynamic Scheduling scheme

(EFDTS), for co-ordinating and optimizing the utilization of

resources using a mechanism which was fault accepting. In the

obligation of a chore, there is a scheme of task classification

which has been developed for partitioning all the errands into

various courses and allocating them to the VMs that are utmost

appropriate based on courses for reducing mean response time

at the time of keeping consumption of energy in mind.

Repetition is employed for fault acceptance for minimalizing

the proportion of chore denunciation that is affected by the

disappointment of a mechanism and its interruption. There is

a mechanism of elastic resource provisioning that has been

intended in a situation of fault acceptance for improving the

exploitation of resources and the effectiveness of energy. Also,

there was a migration policy that has been developed which

simultaneously improves the utilization of resources along

with energy efficiency.

Stavrinides and Karatza [8] had made a proposal of an

energy-aware heuristic that was used for the preparation of the

applications of real-time workflow in the environment of the

cloud. This approach makes use of the per-core Dynamic

Voltage and Frequency Scaling (DVFS) which is based on the

underlying multi-core processors that are heterogeneous to fill

all the schedule gaps. The aim was to provide energy

efficiency and timeliness by means of trading off the precision

of results and keeps the average result and the precision of the

jobs completed at a level which is acceptable. The scheduling

heuristic that is proposed has been compared to the other two

baseline policies. The experiments of simulation have shown

that the approach has outperformed all other policies that

provide some promising results.

Chen et al. [9] had developed another scheduling

architecture that is a novel transforming the problem of

dynamic development into many fixed programmes. The

authors then proposed another Energy-Efficient Reactive

Scheduling algorithm (ERECT), for scheduling all real period

errands with calculating possessions in the virtualized

exhausts. This procedure ERECT considers the variability of

all real period errands and their multitudes. Additionally,

while accumulating and then obliterating VMs, an optimum

operational frequency and vitality efficiency for the assorted

multitudes have been demoralized for achieving preservation

584

of energy. The results of the experiment proved that the

ERECT outperforms all the existing algorithms for

guaranteeing the deadlines of the tasks (up to about 14.06%)

and an energy saving (up to about 9.81%).

Zhang et al. [10] had projected another a new procedure of

heuristic task scheduling known as the Energy and Deadline

Aware with Non-Migration Scheduling (EDA-NMS)

exploiting the task deadlines and their looseness that postpone

the task execution with loose deadlines for avoiding the

waking up of the new Physical Machines (PMs). While

defining the instant types of the VM, the EDA-NMS chooses

all instant types which are sufficient for guaranteeing a task

deadline and for bringing down the cost of user payment. The

results of all these algorithms show that it achieved energy

efficiency without any introduction of a VM migration

overhead and any compromise on the guarantees of deadlines.

Garg and Goraya [11] had presented another model for task

deadline cognizant energy proficient development used in a

virtualized haze. The independent and the deadline conscious

errands have been programmed by revenues of virtualizing

physical multitudes found in an information center. The

programming model in its first illustration also realizes and

energy effectiveness by means of effecting an extreme

assignment originate in the operating stage for the multitude.

The second illustration is by means of vitality equivalent in its

idle stage of that of the multitude. There is the extreme vitality

that is protected by means of organizing a core-level

granularity for occurrence clambering and dynamic energy.

The results show that this model for scheduling outperforms

the currently existing model owing to the performance and

their parameters of its guarantee ratio, resource utilization,

consumption of energy for each task and total consumption of

energy.

Narwal and Dhingra [12] had proposed another algorithm

of multi-objective task scheduling considering various

attributes in the environment of the cloud. This algorithm has

three different parameters which are the total cost of

processing, the total time of processing and the average

waiting time. The primary objective of the work was to

enhance the performance and also evaluate the performance

with the FCFS, the Shortest Job First (SJF) and also the

previously implemented multi-objective algorithm of task

scheduling.

Rehman et al. [13] had proposed another effective

environment that was based on the fog and cloud helping in

the management of energy of resources. This switches the

information of the groups of structures and every cluster has

many different apartments. There are six fogs that have been

considered for this situation and each group will have one

vapour. The Micro Grids (MG) are made available close to the

constructions and are reachable by fog and there are manifold

procedures that are recycled for the purpose of consignment

harmonizing. The Min-Min algorithm has been proposed for

this scenario to manage these resources efficiently. During the

time of completion of the task, the time is initially considered

and the possessions are distributed to errands that have a

slightest interval for execution. The outcomes have been

compared to the Round Robin (RR) procedure that has been

recycled for the purpose of load balancing. The outcomes of

imitation prove that applying this algorithm helps in reducing

the cost as being compared to the RR.

Zhang et al. [14] had focused on energy saving for the VM

selections in the environment of cloud computing. The work

also examines the influences that effect drive with the VM

algorithms that were based on the Greedy algorithms and the

method of dynamic programming. The experiments are

conducted with the Cloud Sim and the results have proved that

this algorithm can bring down the consumption of vitality and

at the same time satisfy the constraints of the Service Level

Agreement (SLA).

Sarvabhatla et al. [15] had made a presentation of a model

used for scheduling tasks for the cloud data core and

formulates the scheduling of VM tasks to be a problem of

integer programming and an objective of bringing down the

consumption of energy. It further proves that usage of greedy

task schedulers confines the constraint of SLA and brings

down the active servers. It also conducts some extensive

experiments on the Cloud Sim tool having some typical

algorithms of task scheduling. The results of the experiment

proved that this scheme performed better compared to the

other algorithms.

3. METHODOLOGY

In the case of a cloud environment, the task scheduling will

be accomplished by a CSP. The primary objective of the CSP

was to choose and assent the desires of the workflow by means

of the admission control policy after which the right amount

of VMs are allocated for every workload request. Lastly, the

schedule of the accepted requests that meet the deadlines of

the SLA and the drop requests are made at the same time

bringing down the cost of global energy. For the purpose of

this section, there is the FCFS scheduling, the Greedy

algorithm and the Min-Min scheduling have been discussed.

3.1 Cloud environment

Testing a cloud environment has been described as below in

this work [16].

User Workload Requests: It makes use of the Directed

Acyclic Graphs (DAGs) for modelling the requests of user

workload. The whole workload has been represented to be a

collection of the N disjoints DAGS:

{𝐺1(𝑉1, 𝐸1), 𝐺2(𝑉2, 𝐸2), , 𝐺𝑁(𝑉𝑁 , 𝐸𝑁)} . Every DAG

𝐺𝑎(1 ≤ 𝑎 ≤ 𝑁) will epitomise the workload request and

every vertex 𝑇𝑖
𝑎(1 ≤ 𝑖 ≤ |𝑉𝑎|) in the 𝐺𝑎 will embody a task.

Without any loss of generality, it has been assumed that every

assignment request will be an application belonging to another

user. So, for this work, the application will be equivalent to the

workload request of the user.

The edge from 𝑇𝑖
𝑎 to 𝑇𝑗

𝑎 in the 𝐺𝑎 indicates the 𝑇𝑗
𝑎 is reliant

on that of the yield of 𝑇𝑖
𝑎. The actual load of a brink 𝑊𝑖,𝑗

𝑎 will

epitomize the actual quantity of information to be conceded

from the chore of the predecessor (𝑇𝑖
𝑎) to that of the task of the

successor (𝑇𝑗
𝑎). An example for the illustration of the N

application group is shown in Figure 1.

Task Model: for the purpose of this work, a set 𝑇 =
{𝑡1, 𝑡2, . . . } of the independent tasks arriving dynamically was

considered. The task ti which was submitted by the user was

modelled by the collection of some constraints 𝑡𝑖 =
{𝑎𝑖 , 𝑙𝑖 , 𝑑𝑖 , 𝑓𝑖}, wherein the 𝑎𝑖 , 𝑙𝑖 , 𝑑𝑖 and 𝑓𝑖 denote the time of

arrival, the task size or length, the target and the appearance

period of the job ti [17]. If rtjk indicates the organized period

of the VM vjk at the multitude hk and stijk indicates the actual

flinch period of the chore ti on the VM vjk. Owed to the

heterogeneity of the capabilities of the dispensation of the

585

CPU and the VMs, let etjk indicate the time taken for execution

of the task ti on the VM vjk as in (1).

()

i
ijk

jk

l
et

c v
=

 (1)

It has been expected that the ftijk indicates the actual texture

period of the task ti on the VM vjk, which is determined as per

(2):

ijk ijk ijkft sft et= +
 (2)

Additionally, the xijk has been employed for reflecting the

mapping of tasks to that of the VMs at various hosts within the

virtualized cloud in which xijk indicates “1” in case the task ti

has been assigned to the VM vjk at the multitude and then is

“0”, else.

Now the texture period will be recycled for determining if

the time restriction of the task may be guaranteed as in (3):

0, ,

1 0, ,

ijk i

ijk

ijk i

if ft d
x

or if ft d


= 

 (3)

The Cloud Platform Model: there are a set of M servers in

the cloud: {D1, D2... DM}, and this has been modelled as a

graph that is aimless with M vertices that represent a new

server. Every edge’s weight (Dx, Dy), Bx, y, will represent the

capacity of communication which is between that of Dx and

Dy.

There are many servers forming a slave grange having

native networks. The slave granges will be able to

communicate with one another by means of great speed

stations. The actual space among that of the slaves and the

bandwidths of the channels are reflected in Bx, y values. By

default, a Bx, y = ∞, which means, the tasks executing in one

server will not have any overheads in terms of communication.

Further, it assumes a path to exist between two of the servers

by means of a straight connection or multi stages. The path of

the multi-paths will get distracted as the concerning brink

having a Bx, y value that was low.

The Virtual Machine Configurations: at the time of

operation every server Dx was associated with a new integer

array Qx of the K members: {𝑄1
𝑥 , 𝑄2

𝑥 , , 𝑄𝐾
𝑥}, wherein the 𝑄𝑔

𝑥

indicates that the 𝑄𝑔
𝑥 no of the category g VMs (VMg) have

been presented on the Dx. Qx that is active as it can alteration

over period owed to a VM slit depressed and reconfiguration

that is originated by a CSP. This denotes the fact that a Qx

configuration during t as Qx (t). Every slave Dx will have a

fixed set of resources which is the CPU and the memory. The

configuration of the VM for the Dx will abide by the total

resources and the ∀ t will have the ∑ 𝑄𝑔
𝑥(𝑡)𝐾

𝑔=1 𝑅𝐶𝑃𝑈
𝑔

≤ 𝐶𝐶𝑃𝑈
𝑥

and the ∑ 𝑄𝑔
𝑥(𝑡)𝐾

𝑔=1 𝑅𝑀𝐸𝑀
𝑔

≤ 𝐶𝑀𝐸𝑀
𝑥 .

Consumption of Energy: The actual influence depletion of

the Dx at a period t has a fixed influence depletion 𝑃𝑠𝑡𝑎𝑡𝑖𝑐
𝑥 (𝑡)

and an active influence depletion 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
𝑥 (𝑡) . These are

associated using a rate of utilization of the Dx at the time t:

Utilx (t). It further evaluates the Utilx (t) by means of taking

the requirements of the CPU of the VMs which are hosted

shown in Qx (t), and they show no difference between VMs

that run and are idle as the CPU activities in the background

will be required even in the indolent periods as in (4).

1
().

() 100%

K x g

g CPUg

x x

CPU

Q t R
Util t

R

=
= 


 (4)

𝑃𝑠𝑡𝑎𝑡𝑖𝑐
𝑥 (𝑡) denotes a constant when the Utilx (t) > 0, 0 else.

The actual association amongst the 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
𝑥 (𝑡) and the Utilx

(t) will be very complex.

Figure 1. Application model

3.2 First come first served (FCFS) scheduling

The FCFS development was for the purpose of parallel

processing and the targets will have to come link which is

designated for the work established. A Sim toolkit that spines

the FCFS proposal for scheduling for the errands of interior

development. The distribution of the app quantified VMs to

the Multitudes in a data interior based on the cloud which is

the work of the element based on the VM. The policy of

default had been adopted using a VM stipulated policy which

distributes the VM in the FCFS method [18].

If in case the FCFS has a required resource that is

586

unavailable, the system will wait for its availability and the

algorithm gives the resource in small parts of places the

request to wait in the queue to check if the subsequent request

may be serviced. This will follow another dynamic allocation

towards the constraint of deadlines or the constraints of the

cost that depend on it its current usage. This will further

proceed an allocation of data with requests that are based on

the classification where the request will fit in. In the case of

the deadline constraint, in case there is a request found below

its verge assessment, it will be overhauled directly and in case

it is above the value it will be taken to be an allocation based

on cost constraint. Considering the constraint allocation in the

subsequent requests, there is a request which provides the cost

efficiency that is initially allocated.

This FCFS is advantageous [19] owing to its simplicity and

its minimization of the average time it takes to execute the

process. It is probably one of the simplest algorithms as it has

to allocate a CPU to finalize the order of the process. It also

has to assume that the queue has to be managed as per the First

In First Out (FIFO) method that means the job that is the first

is processed first without one of the additional predilections.

3.3 Min-Min scheduling algorithm

The Min-Min procedure will prefer the assigning of reduced

errands to the faster resources for running in order to ensure

completion time is at its minimum. The Min-Min will

calculate the minimum time taken for completion for every

task that has been assigned to all related resources. This means

the Min-Min will choose the minimum value two times and its

description is as below [20]:

1) Calculation of the minimum completion time taken for

every task assigned to all related resources.

2) Choosing a minimum value identified from among the

minimum time of completion.

3) Completion of task scheduling and updating all the

related variables.

4) Repeating all the above steps until such time the tasks

have been assigned.

The Min-Min ensures the total time of completion of tasks

to be at its minimum. There is, conversely a shortage where

the Min-Min leads to resources that are fast which have a very

heavy load beside with some slow possessions that have a light

load. This means the Min-Min will result in a lower rate of

utilization compared to the whole system [21].

3.4 Proposed greedy algorithm

In the case of a greedy algorithm, the data items found in

sequence, where each takes the time and it’s deeded the "best"

based on convinced criterion without any regard for choices

made in upcoming. The greedy procedure will influence a

resolution by revenues of creation additional categorization of

selections and everyone will seem to be the finest at that

argument. The greedy algorithm will begin with an empty set

and will then add items to the same set in the categorization

until such time the set represents another solution to the

problem. The components in the per iteration are as below [22]:

• A process of selection which chooses the subsequent

item for being added to the set. This selection has

been performed in accordance with a greedy criterion

which can satisfy any local optimal consideration.

• A new feasibility check is made to determine whether

this new set is feasible and to check it this can be

completed in a way in which a solution to this

instance can be reached.

• There is also a solution check to determine whether

this new set contains a solution to this instance.

For the purpose of a new set of trades or the VMs, the

Greedy-based procedure will be dependent on the scheme

which is locally optimal in allocating resources. This is the

actual reason as to why this is known as the Greedy procedure.

Another general procedure for the Greedy-Based one may be

outlined as below [23].

1) The consumers will acquiesce their trades in the pre-

processing unit to that of the original trade and will from

two diverse trades that are made by the classifiers.

2) Based on the job type, there are two lists created: one was

for the time type job (the time type list) and one for the

bwtype jobs (the bwtype List).

3) Enter another set of the VMs called thef vmList.

4) On the basis of the number of CPUs and the expectation

time of the various time type jobs, it has ascended the

VMs and then these time type jobs will be ascended.

5) Based on the real bandwidth of that of the VMs,

expectation of the bwjobs, is inclined by the VMs and the

bwtype jobs.

6) By using a local optimal algorithm, these are bundled in

two tables to its local optimal VM.

7) Lastly, this is calculated with the Justice Evaluation

Function (JEF) from that of the expected and the actual

values, for judging the user fairness.

The JEF will be (5):

(/)JEF AR JR=  (5)

where, it denotes a constant (0 < 𝛩 ≤ 1). The AR indicates

the definite recompense that is attained by the trade and the JR

indicates its expectation recompense at the period the trade is

predictable. At the time the JEF is zero, the objectivity is

achieved. The others are not fair and the role played by this

purpose was to evaluator the actual consequence of the

provision of possessions to see if it was fair. Even before the

function is evaluated, it has to normalize jobs and the virtual

machines. As soon as this job scheduling is completed, the

subsequent step was to standardize tasks and the resources in

accordance with the different QoS time or bandwidth.

4. RESULTS AND DISCUSSION

In this section, the FCFS, Min-Min scheduling and Greedy

methods are used Experiments are carried out using varying

number of tasks (5000 to 20000). The guarantee ratio, energy

savings compared to FCFS and resource utilization as shown

in Tables 1 to 3 and Figures 2 to 4.

Table 1. Guarantee ratio % for greedy

Number of Tasks FCFS Min-Min Scheduling Greedy

5000 78 79 80

7500 81 82 84

10000 80 81 82

12500 76 77 78

15000 78 79 80

17500 80 81 82

20000 82 83 85

587

Figure 2. Guarantee ratio % for greedy

From the Figure 2, it can be observed that the Greedy has

higher guarantee ratio by 2.53% than FCFS & 1.25% than

min-min scheduling for 5000 number of tasks. The Greedy has

higher guarantee ratio by 3.63% than FCFS & 2.4% than min-

min scheduling for 7500 number of tasks. The Greedy has

higher guarantee ratio by 2.46% than FCFS & 1.22% than

min-min scheduling for 12500 numbers of tasks. The Greedy

has higher guarantee ratio by 3.59% than FCFS & 2.38 than

min-min scheduling for 20000 numbers of tasks. As the

proposed greedy algorithm aims to choose locally optimal

pairing of task and resource, the guarantee ratio increases.

Table 2. Energy savings % compared to FCFS

Number of Tasks Min-Min Scheduling Greedy

5000 2.6 2.7

7500 3.2 3.3

10000 2.9 3

12500 2.8 2.9

15000 3.2 3.3

17500 2.7 2.8

20000 2.4 2.5

Figure 3. Energy savings % compared to FCFS

From the Figure 3, it can be observed that the Greedy has

higher energy savings compared to FCFS by 3.77% than min-

min scheduling for 5000 number of tasks. The greedy has

higher energy savings compared to FCFS by 3.07% than min-

min scheduling for 7500 number of tasks. The Greedy has

higher energy savings compared to FCFS by 3.38% than min-

min scheduling for 12500 numbers of tasks. The Greedy has

higher energy savings compared to FCFS by 3.07% than min-

min scheduling for 15000 numbers if tasks. The Greedy has

higher energy savings compared to FCFS by 3.63% than min-

min scheduling for 17500 numbers of tasks. The Greedy has

higher energy savings compared to FCFS by 4.08% than min-

min scheduling for 20000 number of tasks.

Table 3. Resource utilization % for greedy

Number of Tasks FCFS Min-Min Scheduling Greedy

5000 55 56 57

7500 61 62 63

10000 70 71 72

12500 69 70 71

15000 71 72 73

17500 72 73 74

20000 70 71 72

Figure 4. Resource utilization % for greedy

From the Figure 4, it can be observed that the Greedy has

higher resource utilization by 3.57% than FCFS & 1.76% than

min-min scheduling for 5000 number of tasks. The Greedy has

higher resource utilization by 3.22% than FCFS & 1.6% than

min-min scheduling for 7500 number of tasks. The Greedy has

higher resource utilization by 2.81% than FCFS & 1.39% than

min-min scheduling for 10000 number of tasks. The Greedy

has higher resource utilization by 2.85% than FCFS & 1.41%

than min-min scheduling for 12500 number of tasks. The

Greedy has higher resource utilization by 2.77% than FCFS &

1.37% than min-min scheduling for 17500 number of tasks.

The Greedy has higher resource utilization by 2.81% than

FCFS & 1.39% than min-min scheduling for 20000 number of

tasks.

5. CONCLUSION

The Virtual Machine (VM) will be its basic deployment and

the management unit found in cloud computing. The users rent

the VMs from CSPs for constructing their own applications

and services. For the purpose of this work, the issue of global

operation and its optimization in cloud computing from a CSP

perspective is considered. The main goal was to provide the

CSP a versatile scheduling with an optimization framework

aiming to maximize the efficiency of energy in meeting user

deadlines. For the purpose of this work, the FCFS scheduling

and its jobs have been queued in the order of arrival and have

been assigned to resources as soon as they are available. The

Min-Min scheduling algorithm was the execution of the

smallest of jobs that is made and the larger job has to wait. The

Greedy algorithm is well suited for the heterogeneous

environments of cloud resources that have a dynamic

588

behaviour and has been connected to the process scheduler by

means of a simple and heterogeneous environment in cloud

communication. The Greedy approach for the optimized profit

is an ideal approach used for determining job scheduling

problems. The results prove that a Greedy has a higher ratio of

guarantee by about 2.53% and 1.25% for the 5000 number of

tasks, by about 3.63% and 2.4% for the 7500 number of tasks,

by about 2.46% and 1.22% for the 10000 number of tasks, by

about 2.59% and 1.29% for the 12500 number of tasks, by

about 2.53% and 1.25% for the 15000 number of tasks, by

about 2.46% and 1.22% for the 17500 number of tasks and by

about 3.59% and 2.38% for the 20000 number of tasks on

being compared to the FCFS and the min-min scheduling. In

future the more work can be done in improving the framework

so as to gain maximum profit in terms of consumption. In

addition, improvement of the proposed algorithm with respect

to computational complexity needs to be explored.

REFERENCES

[1] Alkhashai, H.M., Omara, F.A. (2016). An enhanced task

scheduling algorithm on cloud computing environment.

International Journal of Grid and Distributed Computing,

9(7): 91-100.

http://dx.doi.org/10.14257/ijgdc.2016.9.7.10

[2] Himthani, P., Saxena, A., Manoria, M. (2015).

Comparative analysis of VM scheduling algorithms in

cloud environment. International Journal of Computer

Applications, 120(6): 1-6. http://doi.org/10.5120/21228-

3964

[3] Beloglazov, A., Abawajy, J., Buyya, R. (2012). Energy-

aware resource allocation heuristics for efficient

management of data centers for cloud computing. Future

Generation Computer Systems, 28(5): 755-768.

http://doi.org/10.1016/j.future.2011.04.017

[4] Masdari, M., Salehi, F., Jalali, M., Bidaki, M. (2017). A

survey of PSO-based scheduling algorithms in cloud

computing. Journal of Network and Systems

Management, 25(1): 122-158.

[5] Rodriguez, M.A., Buyya, R. (2017). A taxonomy and

survey on scheduling algorithms for scientific workflows

in IaaS cloud computing environments. Concurrency and

Computation: Practice and Experience, 29(8): e4041.

http://doi.org/10.1002/cpe.4041

[6] Kaur, T., Chana, I. (2016). Energy aware scheduling of

deadline-constrained tasks in cloud computing. Cluster

Computing, 19(2): 679-698.

http://doi.org/10.1007/s10586-016-0566-9

[7] Marahatta, A., Wang, Y., Zhang, F., Sangaiah, A.K.,

Tyagi, S.K.S., Liu, Z. (2018). Energy-aware fault-

tolerant dynamic task scheduling scheme for virtualized

cloud data centers. Mobile Networks and Applications,

24(3): 1063-1077. http://doi.org/10.1007/s11036-018-

1062-7

[8] Stavrinides, G.L., Karatza, H.D. (2018). Energy-aware

scheduling of real-time workflow applications in clouds

utilizing DVFS and approximate computations. In 2018

IEEE 6th International Conference on Future Internet of

Things and Cloud (FiCloud), Barcelona, Spain, pp. 33-

40. http://doi.org/10.1109/FiCloud.2018.00013

[9] Chen, H., Liu, G., Yin, S., Liu, X., Qiu, D. (2018). Erect:

energy-efficient reactive scheduling for real-time tasks in

heterogeneous virtualized clouds. Journal of

Computational Science, 28: 416-425.

http://doi.org/10.1016/j.jocs.2017.03.017

[10] Zhang, Y., Cheng, X., Chen, L., Shen, H. (2018).

Energy-efficient tasks scheduling heuristics with multi-

constraints in virtualized clouds. Journal of Grid

Computing, 16(3): 459-475.

http://doi.org/10.1007/s10723-018-9426-6

[11] Garg, N., Goraya, M.S. (2018). Task deadline-aware

energy-efficient scheduling model for a virtualized cloud.

Arabian Journal for Science and Engineering, 43(2): 829-

841. http://doi.org/10.1007/s13369-017-2779-5

[12] Narwal, A., Dhingra, S. (2017, October). Enhanced task

scheduling algorithm using multi-objective function for

cloud computing framework. In International Conference

on Next Generation Computing Technologies, Springer,

Singapore, pp. 110-121. https://doi.org/10.1007/978-

981-10-8657-1_9

[13] Rehman, S., Javaid, N., Rasheed, S., Hassan, K., Zafar,

F., Naeem, M. (2018). Min-Min scheduling algorithm for

efficient resource distribution using cloud and fog in

smart buildings. In International Conference on

Broadband and Wireless Computing, Communication

and Applications, Springer, Cham, pp. 15-27.

https://doi.org/10.1007/978-3-030-02613-4_2

[14] Zhang, K., Wu, T., Chen, S., Cai, L., Peng, C. (2017). A

new energy efficient VM scheduling algorithm for cloud

computing based on dynamic programming. In Cyber

Security and Cloud Computing (CSCloud), 2017 IEEE

4th International Conference on, New York, NY, USA,

pp. 249-254. https://doi.org/10.1109/CSCloud.2017.46

[15] Sarvabhatla, M., Konda, S., Vorugunti, C.S., Babu, M.N.

(2017). A dynamic and energy efficient greedy

scheduling algorithm for cloud data centers. In 2017

IEEE International Conference on Cloud Computing in

Emerging Markets (CCEM), Bangalore, India, pp. 47-52.

https://doi.org/10.1109/CCEM.2017.9

[16] Gao, Y., Wang, Y., Gupta, S.K., Pedram, M. (2013). An

energy and deadline aware resource provisioning,

scheduling and optimization framework for cloud

systems. In Proceedings of the Ninth IEEE/ACM/IFIP

International Conference on Hardware/Software

Codesign and System Synthesis, Montreal, QC, Canada,

p. 31. https://doi.org/10.1109/CODES-

ISSS.2013.6659018

[17] Zhu, X., Yang, L.T., Chen, H., Wang, J., Yin, S., Liu, X.

(2014). Real-time tasks oriented energy-aware

scheduling in virtualized clouds. IEEE Transactions on

Cloud Computing, 2(2): 168-180.

https://doi.org/10.1109/TCC.2014.2310452

[18] Agarwal, D., Jain, S. (2014). Efficient optimal algorithm

of task scheduling in cloud computing environment.

arXiv preprint. International Journal of Computer Trends

and Technology (IJCTT), 9(7): 344-349.

https://doi.org/10.14445/22312803/IJCTT-V9P163

[19] Kaur, R., Kinger, S. (2014). Analysis of job scheduling

algorithms in cloud computing. International Journal of

Computer Trends and Technology (IJCTT), 9(7): 379-

386. https://doi.org/10.14445/22312803/IJCTT-

V29P113

[20] Zhou, Z., Zhigang, H. (2014). Task scheduling algorithm

based on greedy strategy in cloud computing. The Open

Cybernetics & Systemics Journal, 8(1): 111-114.

https://doi.org/10.2174/1874110X01408010111

[21] Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z. (2012).

589

Online optimization for scheduling preemptable tasks on

IaaS cloud systems. Journal of Parallel and Distributed

Computing, 72(5): 666-677.

https://doi.org/10.1016/j.jpdc.2012.02.002

[22] Baghshahi, S.S., Jabbehdari, S., Adabi, S. (2014). Virtual

machines migration based on greedy algorithm in cloud

computing. International Journal of Computer

Applications, 96(12): 32-35.

https://doi.org/10.5120/16849-6709

[23] Li, J., Feng, L., Fang, S. (2014). A greedy-based job

scheduling algorithm in cloud computing. JSW, 9(4):

921-925.

590

