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The objective of this study is to present artificial intelligence (Al) technique for detection and
localization of fault in induction machine fault, through a multi-winding model for the
simulation of four adjacent broken bars and three-phase model for the simulation of short-
circuit between turns. In this work, it was found that the application of artificial neural
networks (ANN) based on Root mean square values (RMS) plays a big role for fault detection
and localization. The simulation and obtained results indicate that ANN is able to detect the
faulty with high accuracy.

1. INTRODUCTION

With the advantages of induction machine especially in
durability and cost, it has recently become the most widely
used in the field of control systems with fault detection and
diagnosis. Studies in this area have evolved considerably in

order to avoid recurrent malfunctions that occur in the machine.

Thus, no control system is safe from failure. Therefore, it is
very important to pre-detect the various defects that may occur
in these systems through the use of traditional or modern
methods that allow us to monitor and control by taking
preventive action to detect these incidents sudden accidents on
the machine [1].

The diagnosis of stator turns short-circuit faults and broken
bars at rotor level during the operation of induction machine is
assignment difficult. Thus the major problem is connected
how to detect faults. Therefore, early detection of turns short-
circuits and broken bars during machine operation would
remove following harm to adjacent coils and the stator and
bearing at rotor [2, 3]. In this context, during the last two
decades, the fault diagnosis of in asynchronous machine has
turn on interest great from researchers. Main research has been
executed for the development of various techniques and
methods for fault detection and diagnosis. It has proposed an
algorithm for the online detection of rotor bar breakage in
induction motors based on the use of wavelet packet
decomposition and neural networks [4]. A new set of feature
coefficients is obtained by the WPD of the stator current,
during used to build a neural network for fault detection, so
thus accurately differentiates between healthy and faulty
conditions. The algorithm analyzes rotor bar faults by WPD of
the induction motor stator current. Whereas Seera et al., [5]
suggest the insert a novel approach to detect and classify
comprehensive fault conditions of induction motors using a
hybrid fuzzy min-max (FMM) neural network and
classification and regression tree (CART) is proposed based
on MCSA technique used for stator-current signal acquisition,
where by the motor current signature analysis method is
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applied to form a database comprising stator current signatures
under different motor conditions. Among the works for turns
in short-circuit for detection and locate faults is the work [6,
7] Bouzid et al., and Dash, et al., present the importance of
using a technique neural network (NN) by a feed forward
multilayer-perceptron trained by back propagation. While
Zidani et al. [8], which proposes the problem of detection and
diagnosis of induction motor faults introducing the fuzzy logic
strategy, based on the stator current Concordia patterns on and
a better understanding of heuristics underlying the motor faults
detection and diagnosis.

To solve these defects, this paper establishes a tow model
based on a multi-winding and three-phase, to simulate broken
bars and turns in short-circuit, with the aim faults diagnosis at
an early stage. The findings extraction gives light new to the
application of neural networks based on RMS to facilitate
detection and localization.

This paper is organized as follows: Section 1 introduces two
models multi-winding and three-phase, Section 2 describes the
way neural networks work by dependence on RMS values.
Finally, we present the obtained results and verification of
induction machine behavior using artificial neural networks
(ANN).

2. INDUCTION MACHINE FAULTY MODEL

To generate the healthy and faulty states, we use two models:
multi winding and three-phase of induction machine. As
described below.

2.1 Multi winding model

The equations of model fault of induction motor can be
written as [9, 10]:

(LIS = [V]- [RI[] ()
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With defect model of the rotor in order to simulate the defect
of rotor broken bars, a fault resistance Rrgr is given:

0o -« 0 0 0

0 0 0 0 O
[Rrr]l = [Re] + [0 0 Rpk —Ryk 0

0 0 _Rbk Rbk 0

0 0

0 0 0
where, the four terms of this matrix are [11, 12]:

R.qa = 2R, (1 — cos(a)) + 2% +
cos(a)) Yk Ryke(1 — cos (2k — 1)a)

ta-
(2)

Rydq = —Nir(1 — cos(a)) Y Rpiesin (2k — Da)  (3)
Riqa = —N%(l — cos(a)) Yk Ryiesin (2k — 1)a)  (4)
And

R
Rrqq = 2Rp(1 — cos(a)) + Zﬁe

r

2
+ N_r (1 — cos(a)) Zk: Rpke(1 + cos(2k — 1) a)

2.2 Three-phase model

Another method for modeling of the induction machine is
presented. The defects of short-circuit between coils, taking
into account the changing parameters such as resistors and
inductors based on the classics assumptions. The machine can
be modeled by the following equations [13]:

V] = [RJ[15] + <[] ®)
[0] = [R,[1] + 5 [@] (6)
(@] = (Mgs] + (LD + MG IED ()
(] = ML) + (M) + LD (©)

The following matrices represent voltages, currents, and
fluxes at the stator:

428

Vsa Lo Dy,
[Vs] = Vs ;[ls] = |1Lsp ;[Cbs] = |Psp
Vsc Lse o

The matrices represent voltages, currents, and fluxes at the
rotor, the coefficients of short—circuit as following:
Short-circuit coefficient relative to the 1% stator phase:

Nccl

Ksa = Ns

Short-circuit coefficient relative to the 2" stator phase:

NCCZ
Ny

Ksb

Short-circuit coefficient relative to the 3" stator phase:

N cc3

Kse = N,

With Ncc: The number of turns in short-circuit.
The number of useful turns for the three stator phases, is
then given by:
Ny = Ng = Ngey = 1- Ksa)Ns = fsalNs
= Ns — Nz = (1 — Ko )Ns = f5Ns

Ksc)Ns = fcNg

N,
N3 = Ns _Ncc3 = (1

The matrixes [Rql, [Lsf], [Mssl, [Ms,], [M,s] depend of
three coefficient f;,, fsp, fsc are given by the following terms:

faa'lss O 0
[Lsf] = 0 fsastf 0 (9)
0 0  fid'Lss
fsaf fsafsc
fsa2 - TSb T,
fsaf fsef
[Mg] = M, _TSb fsb2 _TSb (10)
_ fsafsc _ fscfsb f 2
2 2 sc
(M, ] ,
l[ fsa cOS O fsa cos(@ +?n> fsacos 9—— ]l
2
= M|fsw cos(@—?n) fspcos 8 fsp cos 9+
2m 2
fsc cos (6 + ?) fsc cos (9 - ?) fsc cos @
With [Mg,] = [M]".
The matrix of stator resistances [R;] is given by:
fsa 0 O
[R]=Rs| 0 fo O (11)
0 0 fec

The set of rotor variables (flows and currents) can be
changed to new variables with the same pulsation as the stator
variables. Thus, all the parameters of the model will be
independent of the angular position "0" the transformation is



given by the following matrix [14]

[ cos(o +2 o+ 41 (o 2”)+11

| cos( ) cos( 3 ) > cos 3 2|

| 1 1 1]

cos(0 — —) + = cos(6 + E) cos(0 +—) + 5
0+ tn + i o4 L 0+

cos( 3 ) 2 cos( 3 ) > cos( )

It is easy to show that this matrix is orthogonal:

(1]~ = [T]" (12)
Considering the Eq. (7) using the matrices T as:
[&5] = [M][L] + [Mg,][1]
= [M][Ls] + M, J[T] T[] (13)
When Simplify the equation written:
[®] = [M,][L] + [MS][17] (14)
where,
[M;,] = [M3.][T]~" and [IF] = [T][[,]
With:
fsaM _fsa % _fsc %
M5]=|~fos foM —fis (15)
_fsc % _fsc % fscM

The global model of the induction machine in the presence
of stator failures.

Flux equations:

aeo, o e, s, R, A
d;a =6 (fsalsa - %lsb - %lsc) - z- Drq
RB 3 RyB | V3
- (_ +— r) d)rb (_ +— r) d)rc (16)
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(S o) g =y — (24 —‘“r) e (17)
do, fsa . b .
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Stator current equations:

disa . B .
T Vsa + Karisa + Kaplsp + Kpsige +
V3 G V3 G
Kfsaf 32 (6o + G 0r = Dy — G wp — Dby ) (19)
dlsb
ar = Vsp + Kp1isq + Kpoigp + KB3lsc +

Kfiaf3f2 (~CE o, = Dt + 6y + S, — 93, )(20)
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diSC . . .
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The torque equation is given by:

Mr
C =P— > [(Isb(prc
(Isacpra

- ISC(pTa) +
(22)

Isc (prb) - (Isa (prc
Isb (Drb)]

In this case, the more frequent bar breaks at the rotor level,
we will present the rotor defects at the instant: t=1s break a bar,
t=2s break two bars, t=3s break three bars, and t=4s break four
bars, we apply a load of Cr=3.5Nm at t=0.5s, the value of the
resistance of the broken bar will be considered equal to eleven
(11) times, the value of the initial resistance. The currents of
the stator phases are always out of phase by 120< The
modulation of the envelope of the stator current after the
breaks of the bars is also noted, the increase of the amplitude
of proportional to the number of broken bars which appears in
the figures (1-2). With regard to the simulation of short-circuit
faults between coils in an induction machine, in a first case,
we presented the shapes of the stator currents in the case
operation and with short-circuit-type faults between 40 turns
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(25%), and the second case we apply short circuit faults
between 20 turns (12.5%). As shown in Figures (3-4 -5-6).
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Figure 4. Stator phase current (a,b,c) in case of short-circuit
faults between 40 turns (25%)
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3. APPLICATION OF NEURAL NETWORKS

To application of neural networks to solve the problem of
the diagnosis of failures of an electromechanical system, two
major steps must be applied [15]:

* The first consists of studying the problem to be solved to
validate its adaptability with a resolution by neural networks
and define the objectives to be achieved in order to be able to
control the quality of the chosen solution.

* The second is focused on the technique of neural network;
it includes the choice of the type of network and its
implementation (the type of learning and the number of hidden
layers) depending on the characteristics of the problem studied
and the objectives set.

The learning base of the ANN is put in the form of a file or
table (matrix). The latter is represented by classes of vectors,
where each class represents a type of operation, and each
vector is represented by the effective values. In this case, each
vector consists of 7 parameters (la, Ib, Ic, Va, Vb, Vc and w).
These represent the input layer of the ANN. In fact, to go to
the classification stage, for each we have parameters of 7 types
of operation including normal operation.

Very rich databases (normal and abnormal operations),
which have a lot of information about the defect. For this phase
the following tasks have been realized:

* The machine was simulated in normal operation (healthy
state);

* The machine has been simulated in abnormal mode (in the
presence of defects: one broken bar, two bars, three bars, and
four bars);

* The machine has been simulated in abnormal mode (in the
presence of defects: short-circuit between 40 and 20 turns).
The Table 1 shows the classification step that, we have got in
case of healthy and faulty state.

Table 1. Classification of the several faults

Fault Type Symbol Code

S1 S2 S3 S4

Healthy state HS 0 0 0 0

One broken bar BO 1 0 0 0

Two broken bars BT 0 1 0 0
Three Broken bars BTH 0 0 1 0

Four broken bars BF 0 0 0 1

Short circuit between 40 coils SCBT1 1 0 1 0
Short circuit between 20 coils SCBT2 1 1 0 0

For artificial neural networks (ANN) Block construction
using multilayer perceptrons have been shown to be effective
for form classification. The neural network we tested is
multilayer network that use the back propagation algorithm for
their learning. The purpose of this algorithm is to fit the
synaptic weights so as to minimize the average value of the
error on the set of drives. Therefore, the use of a layered neural
network is preferable to try to solve the problem. The networks
used are multi-layer networks, comprising an input layer that
corresponds to the retina, an output layer that corresponds to
the decision, and a number of so-called hidden layers. These
hidden layers constitute the variables of internal representation
of the problems. The network construction steps can be
divided as follows:

* Choice of the inputs of the network, we use the effective
values of the variables (lIsa, Isb, Isc, Va, Vb, Vc and W) to
determine the number of entries of the network (number of
neurons of the hidden layer), which indicate that the number
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of entries in this network is equal to 7 variables

* Choice of the outputs, i.e. determination of the number of
outputs and their nature, to facilitate the interpretation of the
results of the output of the network by the expert system, our
choice was oriented on the binary numbers (0,1) As the outputs
are binary and the actual inputs, the output function will be a
linear function and the activation function a sigmoid function.

* Determination of the number of hidden neurons and the
number of hidden layers: they will be determined by trial and
error from a learning algorithm. As illustrated in the following
Figure 7:

To Expert System
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Z [:) & e Fa \
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Figure 7. Detection and localization defects by neural
networks

4. CALCULATION OF ROOT MEAN SQUARE (RMS)

The effective value of a quantity is the square root of the
sum of the squares of the constant term and the effective values
of the various sinusoidal terms of the development in series:

1t
RMS = /;fo u(t)2dt

For a signal sampled by a sampling step Te. u(t)? will be
known only at the sampling instants: fotu(t)Zdt and can be

approximated by the area between u(t)? discretized and the
time axis.

For N samples: fotu(t)zdt = YNV 'u? x Teso: RMS =

1 N-1,,2
L ur XTe
\/NxTe i=0 ™

(23)

RMS =

The results for the different types of input signals are
detailed in the following graph, see Figure 8.

These graphs show the performance of the calculation
method of RMS for square signal and sine signal.

RMS Value RMS Value
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Sampled step Sampled step

Figure 8. Result of RMS calculation



5. NETWORK TEST

Neural network tests concern the verification of the
performance of a network and its learning capacity. Once the
network has been calculated, it is always necessary to carry
out tests to verify that our network reacts correctly, the
learning is a very important phase for the deployment of a
neural network during which the behavior of the network is
changed until the desired behavior is achieved In fact, these
examples belong to two databases, the first one being the
learning base and the second one being the test base of the
neuron network on the case that belonged to the learning base
of the neuron network the give better results and allows to
estimate the generalization capacity of the network by evaluate
types of functioning in case (healthy and defects) and the
identified exactly by the three networks, this can be explained
by the results obtained in the learning phase of the three
networks (whose mean squared error values are close to zero).
Regarding the test, the three networks on the examples are
presented in the tables below.

Table 2. Test three networks

Number of  Entry  Hidden  Exit S';"j:':e
neurons layer layer layer error
ANN 1 7 8 4 6.23xe-16
ANN 2 7 7 4 5.18xe-12
ANN 3 7 6 4 9.64xe-12

By learning the three networks using MTLAB software
where we obtain the smallest quadratic error. For the first
network we obtained the smallest error after 135 iterations,
and for the second network after 22 iterations, and for the third
network after 21 iterations According to the following Figure
9.
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Figure 9. Evaluation of the quadratic error as a function of
the number of learning iterations
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Note that the mean quadratic values of the networks studied
are very close to zero, which means that the three neuron
networks give better performance in the learning phase. At this
phase we applied the defects at the rotor level (adjacent bar
breakage) on ANN1 neuron networks and stator levels (short
circuit between 40 and 20 turns) on ANN2 and ANNS3 in
several times as illustrated in the following tables:

Table 3. Application of the different defects

Application time Fault type
Att=1s Broken one bar
Att=2s Broken two bar
ANNI Att=3s Broken three bar
Att=4s Broken four bar
ANN2 Att=1s Short circuit between 40 turns
ANN3 Att=1s Short circuit between 20 turns

The results of the outputs of the three neuron networks
(ANN1, ANN2, and ANNB3) are presented in the following
Figures (10-11).

RMS Values
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6 broken broken ... broken B
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S2
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0
1
S3
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0
1
S4
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Figure 10. Evolution of the stator current and test of ANN1
in the case of four adjacent broken bars

For identify defects in a system, the diagnosis made by
neural networks must have a sufficient number of examples
during operation in a healthy case and defects to be able to
learn, through the learning function, the examples are
presented to the input network with the diagnostics
corresponding to the output. After learning, the network not
only recognizes the examples learned but also models
resembling them, which corresponds to a certain robustness
compared to signal deformations by the defect. When



detecting a defect, the neural network ANN 1, present a
change in Figure 10 at the moment of the application of the
defect, for example, in time t=1s introduces first fault the
outputs: S1, S2, S3, S4, respectively indicate the values: (1, 0,
0, 0) so the broken bar fault corresponding for other cases the
outputs S1, S2, S3, S4 corresponding

* Att=2 s represents (0, 1, 0, 0) break two bars;

« At t=3 s represents (0, 0, 1, 0) three bar break;

* Att=4 s represents (0, 0, 0, 1) four bar break.

For the neuron network ANN 2and ANN 3 apply the fault
at time t=1 s, we see that the graphs change in Figure 11 in the
case of short circuit 40 and 20 turns, so this case the outputs:
S1, S2, S3, S4, corresponding:

* Att=1 s represents (1, 0, 1, 0) short circuit 40 turns;

* Att=1 srepresents (1, 1, 0, 0) short circuit 20turns.

RMS Valucs

Isa(4)

t(s)

Figure 11. Evolution of the stator current and test of the
outputs of the second RNA2 and third RNA3 in the case of
short-circuit 40 and 20 turns
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6. CONCLUSIONS

The detection and early diagnosis allow reducing damage
and maintaining other components of induction machine,
through the study of defects influence and the behavior of the
machine in case of operation fault. In this paper we presented
the induction machine fault by using multi-winding model for
simulation of broken bars and three-phase model for
simulation of short- circuit between 20-40 turns. The new
features are presented by multi layers neural network trained
by retro-propagation algorithm. The RMS values of measured
machine parameters are extracted by processing and
monitoring of machine behavior in the presence of faults in
order to obtain the indicators values

The proposed diagnosis method could be applied by
artificial intelligence represented neural networks (ANN) on
induction machine during several parametric studies (selection
of the type of network, choice of inputs, and choice of
outputs ...). With the data acquisition operation, this aims to
establish the network learning base. To be reliable indicators
for detection and location of fault broken bars and inter-turns
short-circuit fault. These results clearly indicate that the
proposed neural networks have a great importance for fault
identification and capable to reduce the failure severity.
Furthermore, it has been manifest that this approach is
accurate and simple in the process implement diagnosis.
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APPENDIX

Table 4. Appendix for simulation broken bar
Symbol Definition Value

Pn output power 11 kW
Vs stator voltage per phase 220 \Y/
Fs stator frequency 50 Hz
p poles pair number 1

Rs stator resistance 7.58 Q
Rr rotor resistance 6.3 Q
Rb rotor bar resistance 0.15 mQ
Re resistance of end ring segment 0.15 mQ
Lb rotor bar inductance 0.1 uH
Le inductance of end ring 0.1 uH
Lsf leakage inductance of stator 0.0265 H
Nr number of rotor bars 16

Ns number of turns per stator phase 160

J moment of inertia 0.0054 kg m?
e Air-gap mean diameter 2 mm

Table 5. Appendix for simulation short-circuit between coils

Symbol Definition Value
Rs stator resistance 1.633 Q
Rr rotor resistance 0.93 Q
Lr inductance of rotor 0.076 H
Ls inductance of stator 0.142 H
J moment of inertia 0.0111 kg m?
Ms mutual inductance stator nets  0.099 H






