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In recent year, the tensor theory has been frequently incorporated to machine learning, because 

of the various advantages of tensor-based machine learning over vector-based machining 

learning: the ability to preserve the spatiotemporal information, allowing full utilization of the 

data, and the suitability for solving high-dimensional problems with a small sample size. 

Considering the suitability of tensor algorithm for classical high-dimensional, small-sample 

problems, this paper probes into the nonlinear classification problem with tensor 

representation, and designs a tensor-based nonlinear classification algorithm, namely, the 

kernel-based STM (KSTM). The maximum margin principle was adopted for the classification 

by the KSTM: the two types of samples are separated by the decision hyperplane as far as 

possible in the tensor space. Through numerical experiments, it is proved that the KSTM 

achieved better classification accuracy than the linear method, especially for the high-

dimensional problem with a small sample size. 
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1. INTRODUCTION

Machine learning is a research hotspot in recent years. Data 

representation is an important problem in machine learning. 

The data from different sources should be expressed in a form 

that facilitates the application of machine learning techniques. 

Traditionally, the data are inputted as vectors for machine 

learning. In real-world scenarios, however, it is more accurate 

to represent data in tensor form. As a result, the tensor 

representation of data has become a new research direction in 

the field of data mining and machine learning [1-5]. Recent 

years has seen a growing attention being paid to tensor 

representation and its application in fields like image 

classification, face recognition, scene classification and 

bioinformatics [6-15]. 

In 2006, Cai et al. [16] proposed the support tensor machine 

(STM), a novel machine learning method based on tensor data. 

Since then, great progress has been made in the theories and 

learning models that solve machine learning problems based 

on tensor data. Compared with vector-based machine learning, 

the tensor-based machine learning has two unique advantages: 

the ability to preserve the spatiotemporal information, 

allowing full utilization of the data, and the suitability for 

solving high-dimensional problems with a small sample size. 

Therefore, the tensor-based machining learning can be applied 

well in classical high-dimensional, small-sample problems 

like face recognition and image classification. 

Considering the nonlinearity of many real-world data, many 

scholars have adopted kernel methods for tensor 

representation. For example, Signoretto et al. [17] elaborated 

on a possible framework that extends the flexibility of tensor-

based models with kernel-based techniques, which provides a 

constructive definition of the infinite dimensional tensor 

feature space. He et al. [18] developed a brand-new design of 

structure-maintaining kernels for supervised tensor learning. If 

the order of tensors is specified, tensor representation can be 

achieved by some very simple and convenient kernel methods, 

namely, the matrix kernel function of second-order tensor [19-

22] and the K3rd kernel function for third-order tensor [23, 24].

This paper probes into the nonlinear classification problem

with tensor representation, and designs a tensor-based 

nonlinear classification algorithm, namely, the kernel-based 

STM (KSTM). Since images can naturally be represented by 

tensor data [25-28], the proposed KSTM was applied to solve 

image classification problems. Through numerical 

experiments, it is proved that the KSTM achieved better 

classification accuracy than the linear method, especially for 

the high-dimensional problem with a small sample size. 

2. SUPPORT TENSOR MACHINES

In 2006, Cai et al. [16] extended the support vector machine 

(SVM) to the tensor space model under the framework of 

supervised tensor learning (STL). In the tensor space, the 

linear discriminant function can be expressed as: 

𝑓(𝐗) = 𝐮𝑇𝐗𝐯 + 𝑏, 𝐮 ∈ 𝑅𝑛1 , 𝐯 ∈ 𝑅𝑛2  (1) 

The maximum margin principle is introduced to the 

classification process: the two types of samples are separated 

by the decision hyperplane as far as possible in the tensor 

space. Then, the corresponding optimization problem can be 

defined as: 

𝑚𝑖𝑛𝒖,𝒗,𝑏,𝜉
1

2
‖𝐮𝐯𝑇‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1

𝑠. 𝑡.  𝑦𝑖(𝐮
𝑇𝐗𝑖𝐯 + 𝑏) ≥ 1 − 𝜉𝑖      (2) 

𝜉𝑖 ≥ 0, 𝑖 = 1,… ,𝑚

By introducing positive Lagrangian multipliers 𝛼𝑖 , 𝛽𝑖 ≥ 0,

i=1,…,m, the Lagrangian function of optimization problem (2) 
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can be written as: 

 

𝐿(𝐮, 𝐯, 𝑏, 𝜉, 𝛼, 𝛽) =
1

2
‖uv𝑇‖2 + 𝐶 ∑ 𝜉𝑖𝑖   

−∑ 𝛼𝑖𝑦𝑖(𝐮
𝑇𝐗𝑖𝐯 + 𝑏 − 1 + 𝜉𝑖)𝑖 − ∑ 𝛽𝑖𝜉𝑖𝑖           (3) 

 

Under the Karush–Kuhn–Tucker (KKT) conditions, the 

partial derivatives of L with respect to 𝐮,v,𝑏, 𝜉𝑖, are set to zero. 

Then, we have: 

 

𝐮 =
∑ 𝛼𝑖𝑦𝑖𝐗𝑖𝐯𝑖

𝐯𝑇𝐯
                                   (4) 

 

𝐯 =
∑ 𝛼𝑖𝑦𝑖𝐮

𝑇𝐗𝑖𝑖

𝐮𝑇𝐮
                                   (5) 

 
∑ 𝛼𝑖𝑦𝑖𝑖 = 0                                    (6) 

 

𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0, 𝑖 = 1, . . . , 𝑚                       (7) 

 

Formulas (4) and (5) show that u and v are dependent on 

each other, and cannot be solved independently. Therefore, 

Cai et al. [16] developed an alternative projection algorithm, 

providing a simple and effective method to solve this 

optimization problem. 

Let u be a constant, 𝜇1 = ‖𝐮‖2  and 𝐱𝑖 = 𝐗𝑖
𝑇𝐮 . Then, 

formulas (2) can be transformed into: 

 

𝑚𝑖𝑛𝒗,𝑏,𝜉
1

2
𝜇1‖𝐯‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1   

𝑠. 𝑡. 𝑦𝑖(𝐯
𝑇𝐱i + 𝑏) ≥ 1 − 𝜉𝑖                       (8) 

𝜉𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 

 

Formula (8) is obviously a standard SVM optimization 

problem. Thus, the SVM algorithm is introduced to solve the 

problem.  

Similarly, once v is calculated, it is assumed that 𝜇2 =
‖𝐯‖2 and �̃�𝑖 = 𝐗𝑖𝐯 . Then, u can be solved through the 

following optimization problem: 

 

𝑚𝑖𝑛𝐮,𝑏,𝜉
1

2
𝜇2‖𝐮‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1   

𝑠. 𝑡. 𝑦𝑖(𝐮
𝑇�̃�𝑖 + 𝑏) ≥ 1 − 𝜉𝑖                       (9) 

𝜉𝑖 ≥ 0, 𝑖 = 1, … ,𝑚 

 

In this way, both v and u can be obtained by iteratively 

solving the optimization problems (8) and (9). 
 

 

3. KERNEL-BASED SUPPORT TENSOR MACHINE 

 

Let {𝐗𝑖 , 𝑦𝑖}, i=1,…,m be a set of training samples, where 

𝐗𝑖 ∈ ℝn1 ⊗ ℝn2  is a sample (data point) in a 2nd order tensor 

space (ℝn1  and ℝn2  are two vector spaces), and 𝑦𝑖 ∈ {−1,1} 
is the label of 𝐗𝑖 . The KSTM mainly aims to find a decision 

hyperplane by mapping the tensor data into a high-

dimensional tensor feature space, such that the data points can 

be separated by the maximum margin from each class. Hence, 

the KSTM can be described as the following optimal quadratic 

programming problem:  

 

𝑚𝑖𝑛𝒖,𝒗,𝑏,𝜉
1

2
‖𝐮𝐯𝑇‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1   

𝑠. 𝑡. 𝑦𝑖(𝐮
𝑇𝛷(𝐗i)𝐯 + 𝑏) ≥ 1 − 𝜉𝑖                 (10) 

𝜉𝑖 ≥ 0, 𝑖 = 1, … ,𝑚 

 

Meanwhile, the decision function of a nonlinear classifier in 

the tensor space can be established as: 

 

𝑓(𝐗) = sgn ((𝐮𝐯𝑇 ∙ Φ(𝐗)) + 𝑏)    𝐮 ∈ ℝ𝑛1 , 𝐯 ∈ ℝ𝑛2   (11) 

 

where, Φ is the function that maps the data from the original 

tensor space to a tensor feature space. 

According to Gao’s kernel function for tensor 

representation [20], a nonlinear mapping function Φ(𝐗i) can 

be adopted to map 𝐗i into a high-dimensional tensor feature 

space:  

Φ(𝐗𝑖) =

[
 
 
 
𝜑(𝑧𝑖1)

𝜑(𝑧𝑖2)
⋮

𝜑(𝑧𝑖𝑛1
)]
 
 
 

                              (12) 

 

where, z𝑖𝑝 is the p-th row of 𝐗𝑖 . Thus, the new kernel function 

for tensors can be constructed as: 

 

𝐾(𝐗𝑖 , 𝐗𝑗) = Φ(𝐗𝑖)Φ(𝐗𝑗)
𝑇

=

[
 
 
 
𝜑(𝑧𝑖1)

𝜑(𝑧𝑖2)
⋮

𝜑(𝑧𝑖𝑛1
)]
 
 
 

[
 
 
 
 
𝜑(𝑧𝑗1)

𝜑(𝑧𝑗2)

⋮
𝜑(𝑧𝑗𝑛1

)]
 
 
 
 
𝑇

 

= (

𝜑(𝑧𝑖1)𝜑(𝑧𝑗1)
𝑇

⋯ 𝜑(𝑧𝑖1)𝜑(𝑧𝑗𝑛1
)
𝑇

⋮ ⋱ ⋮

𝜑(𝑧𝑖𝑛1
)𝜑(𝑧𝑗1)

𝑇
⋯ 𝜑(𝑧𝑖𝑛1

)𝜑(𝑧𝑗𝑛1
)
𝑇
)      (13) 

 

For example, if Gaussian kernel function is employed, the 

ij-th element of the kernel matrix can be expressed as:  

 

𝜑(𝑧𝑖𝑝1
)𝜑(𝑧𝑗𝑝1

)
𝑇

= 𝑒
−

‖𝑧𝑖𝑝1
−𝑧𝑖𝑝2

‖
2

2𝜎2                (14) 

 

Obviously, the kernel function for tensors differs from that 

for vectors. The result of kernel function is a scalar in the 

vector space and a kernel matrix in the tensor space. 

 

3.1 Optimal projection based on the KSTM 

 

Tao et al. [1] provided a simple yet effective computing 

method to solve the optimization problem (10). First, it is 

assumed that u is a constant, 𝜇1 = ‖𝐮‖2 and 𝐱𝑖 = Φ(𝐗𝑖)
T𝐮. 

Then, the optimization problem (10) is identical to the 

standard SVM optimization problem with variable v: 

 

𝑚𝑖𝑛𝒗,𝑏,𝜉
1

2
𝜇1‖𝐯‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1   

𝑠. 𝑡. 𝑦𝑖(𝐯
𝑇𝐱i + 𝑏) ≥ 1 − 𝜉𝑖                     (15) 

𝜉𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 

 

Thus, the following dual problem can be obtained: 

 

𝑚𝑖𝑛𝛼
1

2𝜇1
∑ 𝛼𝑖

𝑚
𝑖,𝑗=1 𝛼𝑗𝐮

𝑇𝐾(𝐗𝑖 ⋅ 𝐗𝑗)𝐮  

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶                             (16) 

∑ 𝛼𝑖
𝑚
𝑖=1 = 1, 𝑖 = 1,… ,𝑚  

 

Solving formula (16), it is possible to obtain the Lagrangian 

multiplier 𝛼𝑖
∗. Then, v and ‖𝐯‖2 can be respectively derived 

from:  

 

𝐯 =
1

𝜇1
∑ 𝛼𝑖

∗𝛷(𝐗𝑖)
𝑇𝐮𝑚

𝑖=1                         (17) 
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‖𝐯‖2 = 𝐯𝑇𝐯 =
1

𝜇1
2
∑ 𝛼𝑖

∗𝛼𝑗
∗𝐮𝑇𝐾(𝐗𝑖 , 𝐗𝑗)

𝑚
𝑖,𝑗=1 𝐮         (18) 

 

Let 𝜇2 = ‖𝐯‖2  and �̃�𝑖 = 𝛷(𝐗𝑖)𝐯 =
1

𝜇1
∑ 𝛼𝑖

∗𝐾(𝐗𝑖 , 𝐗𝑗)
𝑚
𝑖=1 𝐮 . 

Then, optimal quadratic programming problem can be 

constructed to solve u and ‖𝐮‖2: 

 

𝑚𝑖𝑛𝒖,𝑏,𝜉
1

2
𝜇2‖𝐮‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1   

𝑠. 𝑡. 𝑦𝑖(𝐮
𝑇�̃�𝑖 + 𝑏) ≥ 1 − 𝜉𝑖                    (19) 

𝜉𝑖 ≥ 0, 𝑖 = 1, … ,𝑚 

 

Solving formula (19), the quadratic program can be solved 

as a dual problem: 

 

𝑚𝑖𝑛𝛼
1

2𝜇2
∑ 𝛼𝑖

𝑚
𝑖,𝑗=1 𝛼𝑗(�̃�𝑖 ⋅ �̃�𝑗)  

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶                              (20) 

∑ 𝛼𝑖
𝑚
𝑖=1 = 1, 𝑖 = 1,… ,𝑚  

 

Thus, u and v can be obtained by iteratively solving 

formulas (16) and (20). The value of u can be empirically set 

to the vector of all ones. 

The optimal normal vector from optimization problem (19) 

can be expressed as 𝐮 =
1

𝜇2
∑ �̃�𝑖

∗�̃�𝑖
𝑚
𝑖=1 , where �̃�𝑖

∗ is the result 

of dual problem (20). Then, the optimal boundary can be 

determined through support vector expansion: 

 

𝑓(𝐗) = 𝑠𝑔𝑛( 𝐮𝑇𝛷(𝐗)𝐯 + 𝑏) 

= 𝑠𝑔𝑛(
1

𝜇1
∑ 𝛼𝑖

∗𝐮𝑇𝐾(𝐗, 𝐗𝑖)
𝑚
𝑖=1 𝐮 + 𝑏)         (21) 

 

The parameter b can be calculated by: 

 

𝑏 =
1

𝜇1
∑ 𝛼𝑖

∗𝐮𝑇𝐾(𝐗𝑖 , 𝐗𝑗)
𝑚
𝑖=1 𝐮               (22) 

 

3.2 The KSTM algorithm 

 

Input: The training sample 𝐗𝑖 ∈ 𝑅𝑛1 ⊗ 𝑅𝑛2(𝑖 = 1, . . . , 𝑚), 

parameter u, and testing samples Xt𝑗 ∈ 𝑅𝑛1 ⊗ 𝑅𝑛2(j=1,...,t). 

Output: The optimal parameter variables in the decision 

function (𝐮 ∈ 𝑅𝑛1 and 𝐯 ∈ 𝑅𝑛2) and b, the class label of the 

testing sample. 

Step 1. Initialization: Let 𝐮 = (1, . . . ,1)𝑇; 

Step 2. Calculation of 𝐯: Let 𝜇1 = ‖𝐮‖2, obtain the optimal 

solution 𝛼∗  by solving optimization problem (16), and then 

calculate: 

 

‖𝐯‖2 = 𝐯𝑇𝐯 =
1

𝜇1
2

∑ 𝛼𝑖
∗𝛼𝑗

∗𝐮𝑇𝐾(𝐗𝑖 , 𝐗𝑗)

𝑚

𝑖,𝑗=1

𝐮 

 

�̃�𝑖 = 𝛷(𝐗𝑖)𝐯 =
1

𝜇1

∑𝛼𝑖
∗𝐾(𝐗𝑖 , 𝐗𝑗)

𝑚

𝑖=1

𝐮 

 

Step 3. Calculation of u: Let 𝜇2 = ‖𝐯‖2, obtain the optimal 

solution 𝛼∗  by solving optimization problem (20), and then 

calculate: 

 

𝐮 =
1

𝜇2

∑ �̃�𝑖
∗�̃�𝑖

𝑚

𝑖=1

 

Step 4. Repeat Steps 2~3 until the termination condition 

(the maximum number of iterations or the convergence 

condition) is met: 

 
‖𝐮𝑖 − 𝐮𝑖−1‖ ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒                   (23) 

 

Step 5. Get the discriminant function and calculate the class 

label of the test sample: 

 

𝑓(Xt𝑗) = 𝑠𝑔𝑛(𝐮𝑇𝛷(Xt𝒋)𝐯 + 𝑏)                (24) 

 

Step 6. End. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify its effectiveness, the proposed KSTM algorithm 

was compared with the kernel-based support vector machine 

(KSVM) through experiments on the classification of face 

images, a type of real-world tensor data.  

 

4.1 Experimental setting 

 

The YALE public image dataset was presented as a matrix 

and used to evaluate the KSTM performance through 

experiments. The dataset contains 165 100100 face images 

of 15 people, 11 per person. Several typical images of YALE 

dataset are provided in Figure 1. It can be seen that the face 

images are grayscale images with 256 grayscale levels per 

pixel, all of which are directly stored as 2nd order tensors. 

The images were not cropped or resized to avoid reducing 

the number of features in the original data, and all the features 

in the YALE dataset were scaled to the interval [0, 1], for the 

experiments aim to test the effectiveness of the KSTM in 

classifying the data expressed as 2nd order tensor for high-

dimensional problems with a small sample size.  

To evaluate the performance of tensor-based classifiers, two 

kinds of kernels were selected, namely the Gaussian-based 

kernel matrix and the polynomial-based kernel matrix. Taking 

the ij-th element for example, the Gaussian-based kernel 

matrix and the polynomial-based kernel matrix can be 

respectively defined as: 

 

𝜑(𝑧𝑖𝑝1
)𝜑(𝑧𝑗𝑝1

)
𝑇

= 𝑒−‖𝑧𝑖𝑝1−𝑧𝑖𝑝2‖
2
/2𝜎2

              (25) 

 

𝜑(𝑧𝑖𝑝1
)𝜑(𝑧𝑗𝑝1

)
𝑇

= (𝑧𝑖𝑝1
𝑇𝑧𝑖𝑝2

+ 1)
𝑑

              (26) 

 

For clarity, the KSTMs with Gaussian-based and 

polynomial-based kernel matrices are denoted as gKSTM and 

pKSTM, respectively. 

In addition, the two KSTMs were compared to the standard 

SVMs with Gaussian kernel function 𝑘(𝑥, 𝑦) = 𝑒−‖𝑥−𝑦‖2/2𝜎2
 

and polynomial kernel function 𝑘(𝑥, 𝑦) = (𝑥𝑇𝑦 + 1)𝑑 . The 

two types of KVSMs are denoted as gKSVM and pKSVM, 

respectively.  

There are three tuning parameters:  ,  and d. The possible 

choices for these parameters are v ={2-2, 2-1, 20, 21, 22, 23, 24, 

25, 26, 27, 28, 29, 210},  ={20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 210} 

and d  ={1, 2, 3, 4, 5, 6, 7, 8}. 

All the four algorithms were implemented in MATLAB 7.0 

on Windows 8.1 running on a personal computer (Intel Core 

i3 2.4 GHz; 8GB RAM). 
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Figure 1. Typical images of YALE dataset 

 

4.2 Classification performance 

 

The gKSTM, gKSVM, pKSTM and pKSVM were 

evaluated on YALE dataset. Since both the STM and the SVM 

are binary classification machine learning models, two types 

of training samples, positive and negative, were selected 

randomly for each experiment.  

Ten random training samples are listed in Table 1. For 

example, (7, 13) means the 7th and 13th face images are used 

for the current set of experiments, in which the former is a 

positive sample and the latter, a negative sample.  

In addition, the number of samples in the training set was 

strictly controlled to provide a small sample size. Here, the 4th, 

6th, 8th, 10th and 12th face images are taken as training images. 

For the lack of space, only the classification results with 4 

training samples are given in Table 1. The classification 

performance with training sets in other sizes will be discussed 

at the end of this section. In order to ensure the reliability of 

the results, the training set was divided randomly 10 times, and 

the final results are the average of 10 experiments for 

statistical significance. 

Table 1 shows the mean classification accuracy of the STM 

and SVM algorithms on different training sets containing 4 

samples, and the highest value is marked in bold. Obviously, 

the STM achieved better classification accuracy than the SVM 

in eight out of the ten groups of experiments, and realized 

poorer accuracy than the latter in the remaining two groups of 

experiments. Overall, the STM outperforms the SVM in the 

classification of a small number of sample images. In addition, 

the gSTM boasted the highest classification accuracy in six out 

of the eight groups of data, on which the STM outperformed 

the SVM. 

 

Table 1. Mean accuracy on 10 random target classes in YALE dataset 

 
Training Set Algorithm Accuracy Algorithm Accuracy Training Set Algorithm Accuracy Algorithm Accuracy 

(7,13) 

gSTM 0.9778 gSVM 0.6833 

(6,7) 

gSTM 0.9556 gSVM 0.7778 

pSTM 0.9167 pSVM 0.9167 pSTM 0.9667 pSVM 0.8722 

lSTM 0.9167 lSVM 0.9611 lSTM 0.9778 lSVM 0.9167 

(1,12) 

gSTM 0.9389 gSVM 0.7111 

(1,4) 

gSTM 0.9444 gSVM 0.7167 

pSTM 0.8667 pSVM 0.8944 pSTM 0.9000 pSVM 0.9056 

lSTM 0.8778 lSVM 0.8944 lSTM 0.9000 lSVM 0.9056 

(4,11) 

gSTM 1.0000 gSVM 0.7833 

(5,6) 

gSTM 0.8889 gSVM 0.7444 

pSTM 0.9944 pSVM 0.9944 pSTM 0.9056 pSVM 0.8722 

lSTM 0.9944 lSVM 0.9944 lSTM 0.8944 lSVM 0.8722 

(2,6) 

gSTM 0.9000 gSVM 0.7111 

(3,15) 

gSTM 0.8500 gSVM 0.6722 

pSTM 0.8833 pSVM 0.7944 pSTM 0.8944 pSVM 0.9056 

lSTM 0.8833 lSVM 0.9000 lSTM 0.8944 lSVM 0.9056 

(1,14) 

gSTM 0.9333 gSVM 0.7389 

(6,12) 

gSTM 0.7778 gSVM 0.6778 

pSTM 0.8889 pSVM 0.9056 pSTM 0.8389 pSVM 0.8833 

lSTM 0.8833 lSVM 0.9056 lSTM 0.8611 lSVM 0.9167 

 

 
 

Figure 2. Target class (7,13), Teat accuracy 

 
 

Figure 3. Target class (1,12), Teat accuracy 
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Figure 4. Target class (4,11), Teat accuracy 

 

 
 

Figure 5. Target class (2,6), Teat accuracy 

 

 
 

Figure 6. Target class (1,14), Teat accuracy 

 

 
 

Figure 7. Target class (6,7), Teat accuracy 

 
 

Figure 8. Target class (1,4), Teat accuracy 

 

 
 

Figure 9. Target class (5,6), Teat accuracy 

 

 
 

Figure 10. Target class (3,15), Teat accuracy 

 

 
 

Figure 11. Target class (6,12), Teat accuracy 

 

479



Figures 2-11 are the line charts of the relationship between 

the classification accuracy of the STM and SVM and the 

number of training samples obtained in the ten groups of 

experiments. It can be seen that, when the size of training 

samples was small, the STM had a much higher classification 

accuracy than the SVM; with the growing number of samples, 

the SVM exhibited roughly the same classification accuracy 

as the STM. Hence, the KSTM algorithm, which is based on 

tensor representation, is particularly suitable for solving high-

dimensional problems with a small sample size. 

 

 

5. CONCLUSIONS 

 
This paper proposes a kernel-based support tensor machine 

(KSTM) based on tensor representation, and applies it to 

classify real-world images. To verify its performance, the 

KSTM was tested through classification experiments on the 

YALE face image datasets. The greatest advantage of our 

algorithm is the ability to maintain the integrity of tensor data, 

especially for high-dimensional problems with a small sample 

size. The KSTM also has better classification accuracy than 

linear algorithms.  

Of course, there are some limitations with our algorithm. 

Despite having fewer decision variables than the vector 

classifier, the tensor classifier adopts the alternating projection 

algorithm in its STL framework, i.e. its training time depends 

on the iteration times of the alternating projection algorithm, 

which is often much higher than the vector model. Hence, the 

future research will try to optimize the KSTM algorithm and 

improve its training efficiency. Furthermore, further research 

will be carried out on the high-order KSTM. 
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