
  

  

Design and Application of a Text Clustering Algorithm Based on Parallelized K-Means Clustering 
 

Hui Wang1,2, Chengdong Zhou1,2, Leixiao Li1,2* 

 
1 College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China 
2 Inner Mongolia Autonomous Region Engineering & Technology Research Center of Big Data Based Software Service, 

Hohhot 010080, China 

 

Corresponding Author Email: 20070000036@imut.edu.cn 

 

https://doi.org/10.18280/ria.330608 

  

ABSTRACT 

   

Received: 1 May 2019 

Accepted: 8 August 2019 

 The traditional text clustering algorithms face two common problems: the high dimensionality 

of computing vectors and poor calculation efficiency. To solve these problems, this paper 

explores deep into the K-means clustering (KMC), Hadoop and Spark big data technique, and 

then proposes a novel text clustering algorithm based on the KMC parallelized on big data 

platform. The propose algorithm is denoted as the SWCK-means. First, the Word2vec was 

adopted to calculate the weights of word vectors, and thus reduce the dimensionality of the 

massive text data. Next, the Canopy algorithm was introduced to cluster the weight data, and 

identify the initial cluster centers for the KMC. On this basis, the KMC was employed to cluster 

the preprocessed data. To improve the efficiency, a parallel design for the Canopy algorithm 

and the KMC was developed under the Spark architecture. The proposed algorithm was 

verified through experiments on a massive amount of online text data. The results show that 

our algorithm achieved more accurate classification effects than the traditional KMC, 

especially in handling a huge amount of data. 

 

Keywords: 

text clustering, Word2vec, K-means 

clustering (KMC), canopy algorithm 

 

 

 
1. INTRODUCTION 

 

In recent years, there is a rapid growth in online information, 

creating a massive amount of Internet text data. The text data 

is a type of unstructured data, featuring high dimensions, large 

data volume, and low value density. In the field of Chinese 

information processing, it is a research hotspot to process the 

massive amount of online text data effectively, and mine out 

the value of such data. How to classify large quantities of text 

is a key research direction in this field [1-3]. 

Currently, the clustering technique has been applied to 

several aspects of the mining of massive online text data, 

ranging from preprocessing, semantic analysis, file similarity 

analysis, corpus classification, and topic analysis [4-6]. During 

text clustering, the original texts are divided into several 

meaningful classes, such that the texts in the same class are 

more similar than those in different classes [6]. In this way, the 

text data can be effectively organized and managed. Through 

effective text clustering, the results of information retrieval 

tools are understood and utilized in a better way. 

The most popular clustering technique is the k-means 

clustering (KMC), which is based on partitioning [7]. During 

clustering, the KMC needs to identify the number of clusters, 

k, and randomly select k initial cluster centers. However, it is 

often difficult to predetermine the number of clusters or 

initialize the suitable cluster centers. As a result, the KMC is 

prone to the local optimum trap, which severely affects the 

clustering result. 

Many scholars have attempted to improve the random 

selection of the initial cluster centers of the KMC. For example, 

Yang et al. [8] introduced density and neighbors to the 

clustering process, and proposed the initial cluster center 

selection algorithm, which improves the clustering quality and 

stability of the KMC. Based on the latent Dirichlet allocation 

(LDA) topic analysis model, Zhang et al. [9] put forward an 

initial cluster center selection algorithm that is much more 

efficient than the KMC in operations. Considering the 

difficulty of k value predetermination in the KMC, 

Limwattanapibool and Arch-int [10] performed regional 

clustering selection through density-based spatial clustering 

with additive noise (DBSCAN), which automatically finds the 

suitable number of clusters and initial cluster centers for the 

KMC. Compared with the other improved algorithms, the 

DBSCAN enjoys high operation efficiency and good 

clustering effects. Wang et al. [11] developed an improved k 

value selection algorithm, in the light of exponential function, 

weight adjustment, bias term and the elbow method. 

Overall, the available clustering algorithms only apply to 

the processing of small-scale data, failing to adapt to the 

information explosion in the Internet era. The exponential 

growth in online data files, coupled with the drastic increase 

in the dimension of text feature space, has seriously 

suppressed the classification ability and extended the runtime 

of clustering algorithms, raising higher requirements on 

clustering techniques [12]. 

Parallel computing is an effective way to improve the 

efficiency in largescale computing. However, some of the 

many traditional methods of parallel computing can no longer 

satisfy the growing demand for large-scale data processing on 

the Internet. For example, the message passing interface (MPI) 

[13], which emerged at the end of the 20th century, and grid 

computing [14], which appeared at the beginning of the 21st 

century, both face problems like complex development and 

poor scalability. 

MapReduce [15] is one of the key technologies of parallel 

computing. The Hadoop provides a parallel computing 

Revue d'Intelligence Artificielle 
Vol. 33, No. 6, December, 2019, pp. 453-460 

 

Journal homepage: http://iieta.org/journals/ria 
 

453



 

interface with MapReduce as the core and a Hadoop 

distributed file system (HDFS), and can process up to millions 

of nodes and the data at the magnitude of ZB [16]. Zhang et al. 

[17] presented a Hadoop-based parallel KMC algorithm for 

text clustering, and used the algorithm to solve the scalability 

problem of the traditional clustering algorithm in processing 

largescale data. However, the MapReduce module, which 

executes parallel processing, consumes too many time in 

reading and writing online and disk input/output (I/O) rather 

than computing tasks. This drags down the efficiency of the 

Hadoop architecture [18]. 

In addition to the merits of traditional MapReduce, Spark 

also boasts the advantages of fast processing, complex queries, 

and seamless integration with Hadoop. The efficiency of Spark 

is far better than that of Hadoop [19]. The Spark-based KMC 

parallel algorithm for text clustering greatly outshines the 

Hadoop-based algorithm in acceleration ratio and scalability 

[12], and thus fulfills the demand of largescale text data 

mining. Nevertheless, the Spark architecture often falls into 

the local optimum trap, for the KMC algorithm in the 

architecture is not optimized. 

To improve the accuracy and efficiency of the KMC, this 

paper proposes a Spark-based Word2vec KMC algorithm 

(SWCK-means). Taking the HDFS of Hadoop as text storage 

system, the original data were preprocessed, and the feature 

word weights were calculated by Word2vec. Next, the text 

data were clustered by a hybrid algorithm based on the Canopy 

algorithm and the KMC. The cluster centers were identified by 

the CC, and taken as the initial cluster centers of the KMC. 

Finally, the proposed algorithm was verified through 

experiments on Precision, acceleration ratio and expansibility. 

 

2. ALGORITHM DESIGN 

 

2.1 Word2Vec algorithm 

 

Text, as a type of unstructured data, must be represented in 

a form that can be recognized and processed by a computer 

[12]. The Word2Vec [20] algorithm provides an excellent text 

representation method. This is an open source word 

embedding method developed by Google in 2013. By this 

algorithm, the numerical weight of a word in a file can be 

determined under a given corpus and represented as a word 

vector. The Word2vec model is trained by a series of typical 

words from various files. Each word is mapped into a fixed-

size vector. The dimension of the word vector generally falls 

between 50 and 200. The word vector can express the semantic 

information of the word to a certain extent. The probability 

that a word occurs can be calculated based on the C continuous 

words before or after that word. 
There are two Word2vec models, namely, the continuous 

bag-of-words (CBOW) and the skip-gram. The former 

predicts the word vector of the central word based on the word 

vector of each word in the context window, that is, computes 

the occurrence probability of a word based on the C 

continuous words before or after that word. The Skip-gram 

follows an opposite principle. First, the word in the context 

window is estimated based on the central word. Then, the 

occurrence probabilities of the words preceding and following 

that word are computed, and used to modify the word vector 

of the central word, making the semantic information of the 

file more accurate. Figure 1 illustrates the two Word2vec 

models. 

INPUT PROJECTION

OUTPUT

W(t-2)

W(t-1)

W(t+1)

W(t+2)

SUM

W(t)

INPUT

PROJECTION OUTPUT

SUM

W(t)

CBOW Skip-gram
 

 

Figure 1. Word2vec models 

 

By a vector space model, the Word2Vec algorithm 

expresses each file as weight vectors of feature words. 

Considering its rapid training and accuracy of semantic 

similarity, this paper chooses the skip-gram model of 

Word2vec to calculate the weights of word vectors, before 

clustering the text data. 

 

2.2 Canopy algorithm for center point selection  

 

Canopy [21] is a fast approximation clustering technique. 

The unique advantage of Canopy lies in the fast determination 

of clusters. Only one traversal is needed to identify the clusters. 

However, this advantage comes at the cost of the clustering 

accuracy [22].  

As shown in Figure 2 below, the Canopy algorithm mainly 

involves the following steps [23]: 

Step 1: Input the two distance thresholds (T1 and T2; T1 > 

T2) of the dataset D and Canopy. 

Step 2: Take any point from the dataset. If no Canopy exists, 

treat the point as a Canopy center, and remove it from the 

dataset. 

Step 3: Continue to take points from the dataset, calculate 

the distances from each point P to the center of each existing 

Canopy, and add P to the Canopy with a distance smaller than 

454



 

T1. If a point P is farther than T1 from any of the existing 

Canopy centers, take this point as a new Canopy center. 

Step 4: If the point is less than T2 to a Canopy center, add 

it to this Canopy and remove it from the dataset. The point is 

so close to the Canopy that it cannot be the center of any other 

Canopy. 

Step 5. Perform Steps 3 and 4 on the points of the dataset 

until all the points have been allocated to their corresponding 

Canopies. Then, terminate the algorithm to end the clustering. 

On the downside, the Canopy algorithm is a coarse 

clustering algorithm with a low accuracy. On the upside, the 

Canopy clustering is equivalent to preprocessing, which 

prevents the random selection of initial cluster centers in the 

KMC. Thus, the coupling between the Canopy algorithm and 

the KMC can effectively reduce the number of iterations and 

improve the clustering effect of the KMC. 

 

 
 

Figure 2. Workflow of Canopy algorithm  

 

2.3 The KMC 

 

The KMC [7] is the most widely used distance-based 

clustering algorithm. The core idea is to generate independent 

classes through iteration. In other words, all the objects should 

be classified into k different clusters, such that the texts in the 

same class are more similar than those in different classes.  

As shown in Figure 3 below, the KMC is implemented in 

the following steps: 

Step 1: Input the dataset D and the number of clusters k. 

Step 2: Select k random points from D to serve as initial 

cluster centers. 

Step 3: Calculate the distance from each remaining point to 

each cluster center, and allocate the point to the cluster with 

the shortest distance.  

Step 4: Calculate the mean value of all points in each cluster 

and take it as the new cluster center. 

Step 5: Repeat Steps 3 and 4 until the change of the cluster 

center is smaller than the preset threshold or the maximum 

number of iterations is reached. 

 

Randomly select k 

points to serve as the 

initial cluster centers

Dataset Z

Number of clusters k

Allocate the point to 

the nearest cluster

Calculate the mean value of 

all points in each cluster 

and take it as the new 

cluster center.

The termination 

condition is satisfied?

Y

N

Y

N

Start

End

The dataset to be 

classified is empty?

Calculate the distance from 

each remaining point to 

each cluster center

 
 

Figure 3. Workflow of the KMC 

 

2.4 The WCK-means text clustering algorithm 

 

The WCK-means text clustering algorithm consists of three 

parts: Word2vec algorithm, Canopy algorithm and the KMC.  

First, the text data were preprocessed, and the parallel 

Word2vec algorithm was implemented to express each file as 

the feature word weights by the vector space model. Then, the 

Canopy algorithm and the KMC were executed in parallel 

form to cluster the text data. The T1 and T2 values of the 

Canopy algorithm were set through cross-validation [22, 23]. 

The Canopy algorithm was called to pre-cluster the 

preprocessed text data, producing the initial cluster centers. 

Then, the clustered results were inputted into the KMC to 

prevent the random selection of the initial cluster centers, and 

thus improve the speed and effect of the KMC. The clustering 

process of the WCK-means can be explained as: 

Step1: Text representation. Based on the preprocessed 

unstructured text data, calculate the weight of each word by 

Word2vec algorithm, and represent each text by the vector 

space model. 

Step2: Center point selection by Canopy algorithm. Input 

the text dataset and the two distance thresholds T1 and T2 

(T1>T2). Randomly select a point from the dataset as the 

Canopy center, and remove the point from the dataset. 

Step 3: Continue to take points from the text dataset, 

calculate the Euclidean distances from each point P to the 

center of each existing Canopy by formula (1), and add P to 

the Canopy with a distance smaller than T1. If a point P is 

farther than T1 from any of the existing Canopy centers, take 

this point as a new Canopy center. 

 

455



 

( ) ( )
2

1

,
n

i i

i

d x y x y
=

= −                    (1) 

 

Step 4: If the point is less than T2 to a Canopy center, add 

it to this Canopy and remove it from the dataset. The point is 

so close to the Canopy that it cannot be the center of any other 

Canopy. 

Step 5: Perform Steps 3 and 4 on the points of the dataset 

until all the points have been allocated to their corresponding 

Canopies. Then, terminate the algorithm, remove the relatively 

small Canopies, and obtain the Canopy centers. 

Step 6: The KMC operation 

Calculate the distance from each remaining point to each 

cluster center, and allocate the point to the cluster with the 

shortest distance.  

Step 7: Recalculate the mean value of all points in each 

cluster and take it as the new cluster center. 

Step 8: Repeat Steps 6 and 8 until the change of the cluster 

center is smaller than the preset threshold or the maximum 

number of iterations is reached. The judgement criterion can 

be expressed as: 

( )
2

1

-  
k

i i

i

E x c
=

=                            (2) 

 

where, k is the number of clusters; x is the new center of a 

cluster; Ci is the original center of the cluster. 

 

2.5 Parallel design of the SWCK-means text clustering 

algorithm 

 

The parallelization of the SWCK-means algorithm is to 

parallelize the Canopy algorithm and the KMC. In the SWCK-

means algorithm, the Word2vec algorithm was selected from 

the Spark MLlib machine learning database, which is already 

parallelized. The parallelization of the Canopy algorithm and 

the KMC was carried out based on the Spark, following the 

serial logic. The Spark can automatically parallelize the two 

algorithms by the serial logic. The difference is that our 

algorithm adopts the resilient distributed dataset (RDD), 

which automatically realizes parallel data distribution.  

 

 

 
 

Figure 4. Parallelization design of the SWCK-means text clustering algorithm 

 

As shown in Figure 4 above, the Spark-based parallelization 

of the Canopy algorithm and the KMC is roughly divided into 

two parts: Canopy center selection and the final clustering of 

the KMC. The parallel design can be implemented in the 

following steps: 

Step 1: Read the text dataset from the HDFS and generate 

the initial RDD. 

Step 2: Preprocess the data, convert them into vectors, and 

save them in cache. 

Step 3: Train the Word2vec model in parallel, and express 

the text as vectors. 

Step 4: Execute the parallel Canopy algorithm, segment the 

RDD, and distribute the segments to each parallel node in the 

cluster. 

Step5: Perform a Map operation to calculate the distances 

between each text in each segment and the Canopy centers, 

and determine the local Canopy centers. 

Step 6: Perform the Reduce operation to merge the local 

Canopy centers into the global Canopy center. 

Step 7: Each node performs a Map operation according to 

the global Canopy center, divides the points in the dataset to 

different Canopies, and save the results into the cache. 

Step 8: Remove the relatively small Canopies, and add the 

remaining Canopy centers to the list of initial cluster centers 

of the KMC. 

Step 9: Each node perform a Map operation on the cached 

RDD and execute the local KMC. 

Step 10: The master control node performs a Reduce 

operation to merge the local clustering results generated by 

each node into a global clustering result, and updates the center 

of each class. 

Step 11: Judge if the termination condition is satisfied. If 

yes, output the result; Otherwise, execute Steps 9-10. 

 

 

3. EXPERIMENTAL DESIGN AND RESULTS 

ANALYSIS 

 

3.1 Experimental design 

 

3.1.1 Experimental flow 

This paper explores text clustering through Hadoop-based 

parallel SWCK-means algorithm. First, the unstructured text 

data were preprocessed through word segmentation, stop 

words filtering, word frequency analysis, feature selection, 

and setting up a text representation model. The text data were 

456



 

quantified into a numerical form for clustering. Next, parallel 

clustering was performed on the preprocessed data. The text 

clustering was made more efficient through parallel computing, 

eliminating the time-consuming iterations of traditional text 

clustering process. Finally, the Precision of our algorithm, as 

well as the acceleration ratio and expansibility of parallel 

computing were verified through experiments. The 

experimental flow is illustrated in Figure 5 below. 
 

 
 

Figure 5. Experimental flow 

 

3.1.2 Data preprocessing 

The experiments were carried out on the THUCNews 

dataset on Sina text clustering corpus 

(http://thuctc.thunlp.org/). The dataset has been widely used in 

text classification experiments. The data contained in the 

THUCNews are filtered results of the historical data from the 

Sina News RSS subscription channel from 2005 to 2011. The 

dataset contains 740,000 files on 14 types of news: finance, 

lottery, real estate, stocks, home design, education, technology, 

society, fashion, current politics, sports, horoscope, and games. 

Before clustering analysis, the text data were preprocessed 

through integration, segmentation and stop words filtering. 
(1) Integration. The text data contain multiple small files, 

which occupy lots of memory in the HDFS. Hence, the 

multiple small files were combined into a large file, with each 

row containing the name and content of one small file. 

(2) Segmentation and stop words filtering. Before 

computing the word weights, the integrated data were 

segmented and removed of the stop words. The HanLP natural 

language processing package was employed to segment the 

words and remove meaningless data. The specific steps are 

introduced below: 

1) Removing numbers: Numbers are generally meaningless 

in text analysis, and were thus removed before further analysis. 

2) Removing URLs: The URLs were removed by regular 

expressions. 

3) Filtering stop words: Stop words are defined as the 

common words that are meaningless in text analysis. In 

Chinese, words like “is” and “but” fit this definition. The stop 

words in the preprocessed dataset were filtered out, according 

to the list of stop words in the news field provided in the 

HanLP. 

4) Removing special symbols: Special symbols like 

punctuation marks and blank characters are not helpful for text 

analysis, and were therefore removed. 

5) Checking the corpus: The processed corpus was checked 

again to remove the special URLs by regular expressions, 

which should have been removed but not removed in the 

previous steps. 

 

3.1.3 Experimental environment 

Before the experiments, the Spark architecture was 

deployed on Hadoop YARN, a specific component of the open 

source Hadoop platform for big data analytics. Five virtual 

machines (VMs) were established based on the VMware, and 

a Hadoop + Spark cluster platform was created. There are 5 

nodes with the same configuration, including a Master node 

and five Worker nodes (the Master node also serves as a 

Worker node). Each node has 2G memory and 20G hard disk. 

The development environment is VMware10.0.4, 

jdk1.8.0_131, Spark 2.1.1 and Hadoop 2.7.2, and the 

programming language is Scala 2.11.8. 

Three experiments were carried out on the Hadoop + Spark 

cluster platform, namely, a Precision experiment (Experiment 

1), an acceleration ratio experiment (Experiment 2), and an 

expansibility experiment (Experiment 3). As their names 

suggest, the three experiments aim to verify the accuracy of 

the proposed SWCK-means algorithm, as well as the 

acceleration ratio and expansibility of parallel computing. 

 

3.2 Results analysis 

 

3.2.1 Experimental 1 

To verify its effectiveness, the accuracy of the SWCK-

means algorithm was tested on four text datasets: Data (200), 

Data (500), Data (1000) and Data (2000). The four datasets 

respectively contain 200, 500, 2,000 and 2,000 files in three 

classes of the Sina text clustering corpus.  

The four datasets were respectively clustered and analyzed 

by the proposed SWCK-means algorithm, the k-means text 

clustering algorithm based on term frequency-inverse 

document frequency (TF-IDF) (TK-means), and the means 

text clustering algorithm based on Word2vec (WK-means). 

The clustering effects of the three algorithms were 

evaluated by Precision and Recall. The Precision is defined as 

the fraction of relevant instances among the retrieved instances: 

 

  
TP

P
TP FP

=
+

                            (3) 

 

where, TP (True-positive) means two similar files are 

correctly categorized into the same cluster; FP (False-

positive) means two dissimilar files are incorrectly categorized 

into the same cluster. 

Recall is defined as the fraction of the total amount of 

relevant instances that were actually retrieved: 

 

  
TP

R
TP FN

=
+

                               (4) 

 

where, FN (False-negative) means two similar files are 

incorrectly categorized into difference clusters; TP+FN is the 

total number of this type of files. 

To fully display the performance of the KMC, it is necessary 

to set its parameters properly to avoid the local optimum trap. 

Hence, the feature extraction rate of the TF-IDF was set to 

0.025, the word vector dimension of the Word2vec was set to 

200, and the minimum number of words was set to 1. Through 

cross validation, the thresholds of our algorithm were set to 

T1=0.98 and T2=0.49. The Precision and Recall of each 

457



 

algorithm were determined by taking the average of 20 runs. 

 

Table 1. The precisions of the three algorithms 

 

Dataset 
TK-means 

/ % 

WK-means 

/ % 

SWCK-

means/ % 

Data 

(200) 
50.54 63.02 70.75 

Data 

(500) 
51.50 64.40 71.60 

Data 

(1,000) 
52.29 61.60 71. 20 

Data 

(2,000) 
53.50 62.48 69. 24 

 

Table 2. The Recalls of the three algorithms 

 

Dataset 
TK-means 

/ % 

WK-means 

/ % 

SWCK-

means/ % 

Data 

(200) 
55.13 66.26 71.50 

Data 

(500) 
53.35 69.39 74.49 

Data 

(1,000) 
54.48 66.95 74. 25 

Data 

(2,000) 
57.32 65.14 73. 78 

 

As shown in Table 1, the proposed SWCK-means algorithm 

is more accurate than the two text clustering algorithms based 

on traditional KMC. As shown in Table 2, in terms of Recall, 

our algorithm was 18.8% higher than TK-means and 7.8% 

higher than WK-means. The result reflects the effectiveness of 

the SWCK-means in text clustering, thanks to the optimization 

based on Canopy algorithm.  

 

3.2.2 Experiment 2 

The parallelization efficiency of the SWCK-means text 

clustering algorithm was measured by acceleration ratio and 

expansibility. Four text datasets were constructed for 

Experiments 2 and 3. As shown in Table 3, the four datasets 

respectively contain 2,000, 20,000, 100,000 and 500,000 files 

from the Sina text clustering corpus. 

 

Table 3. The four datasets 

 

Dataset File size 

Data 1 (2,000 files) 5.5M 

Data 2 (20,000 files) 53.1M 

Data 3 (100,000 files) 252M 

Data 4 (500,000 files) 1.15G 

 

In parallel computing, the acceleration can enhance the 

algorithm performance by reducing the runtime. The 

acceleration ratio is an important metric of parallel computing: 

 

rE s

r

T

T
=                                            (5) 

 

where, Ts is time of serial operation of the algorithm on a single 

node; Tr is the time of parallel operation of the algorithm on r 

nodes. The greater the acceleration ratio, the less the time 

required for the parallel execution of the algorithm, and the 

higher the efficiency of parallel execution. 

In Experiment 2, our algorithm was applied to cluster the 

four datasets. The acceleration ratio (Figure 6) of our 

algorithm was measured under each dataset at different 

number of computing nodes in the Hadoop + Spark cluster 

environment. As shown in Figure 6, despite the growing 

number of computing nodes, the acceleration ratio was always 

close to 1 under Data1, indicating that the acceleration ratio is 

unobvious for small dataset in cluster environment. By 

contrast, the acceleration ratio curves under large datasets, 

Data2, Data3 and Data4, rose significantly; under each of these 

three datasets, the acceleration ratio increased with the number 

of computing nodes. The results show that the SWCK-means 

text clustering algorithm has a good acceleration ratio under 

the Hadoop + Spark cluster environment. 

 

 
 

Figure 6. The acceleration ratio of the SWCK-means 

algorithm 

 

3.2.3 Experiment 3 

In parallel computing, the acceleration ratio cannot increase 

infinitely. When there are many computing nodes in the cluster 

environment, the utilization efficiency of the computing power 

in the environment cannot be well demonstrated by 

acceleration ratio. In this case, the expansibility can be 

introduced to measure the parallel performance: 

 

r
E

J = 
r

                                    (6) 

 

where, Er is the acceleration ratio of the algorithm; r is the 

number of computing nodes. The expansibility is positively 

correlated with the overall utilization efficiency of the 

computing power, and the parallel performance of the 

algorithm.  

 
 

Figure 7. The expansibility of the SWCK-means algorithm 

458



 

In Experiment 3, our algorithm was applied to cluster the 

four datasets with different number of computing nodes. The 

results in Figure 7 show that, with the growth in data volume 

and the number of computing nodes, the expansibility of our 

algorithm gradually decreased and slowed stabilized. 

Comparatively, the expansibility curve of our algorithm 

declined at the fastest speed under Data1, and at a slightly 

slower speed under Data2. The curves under Data3 and Data4 

decreased very slowly. Hence, the SWCK-means text 

clustering algorithm boasts excellent expansibility facing large 

datasets, and slightly poorer expansibility facing small 

datasets. 

 

 

4. CONCLUSIONS 

 

This paper probes deep into various techniques for text 

clustering, including the KMC, Hadoop and Spark big data 

technique, and proposes the parallel SWCK-means algorithm 

for text clustering based on the big data platform. 

Experimental results prove that our algorithm outperforms the 

traditional KMC in the accuracy and precision text clustering, 

especially in dealing with massive data. The research results 

provide a valuable guide for text data mining in real-world 

scenarios. 
 

 

ACKNOWLEDGEMENT 
 

This work is supported by the School Fund of Inner 

Mongolia University of Technology (Grant No.: X201332) for 

“Parallelization of Clustering Algorithms Based on Hadoop 

Platform”, and the Key Technology Breakthrough Plan of 

Inner Mongolia Autonomous Region, 2019 for “Design and 

Application of Big Data Storage and Analysis Mining 

Platform for Smart Transportation”. 

 

 

REFERENCES  

 

[1] Zhao, T., Liu, B., Li, T. (2017). Research on parallel text 

classification system based on non-balanced LSH. 

Microelectronics & Computer, 34(12): 73-79. 

[2] Liu, Y., Xu, L., Li, M. (2017). The parallelization of back 

propagation neural network in MapReduce and spark. 

International Journal of Parallel Programming, 45(4): 1-

20. https://doi.org/10.1007/s10766-016-0401-1 

[3] Phu, V.N., Chau, V.T.N., Tran, V.T.N. (2017). SVM for 

English semantic classification in parallel environment. 

International Journal of Speech Technology, 20(3): 487-

508. https://doi.org/10.1007/s10772-017-9421-5 

[4] Štajner, T., Mladenić, D. (2019). Cross-lingual document 

similarity estimation and dictionary generation with 

comparable corpora. Knowledge & Information Systems, 

58: 729-743. https://doi.org/10.1007/s10115-018-1179-9 

[5] Karisani, P., Rahgozar, M., Oroumchian, F. (2016). A 

query term re-weighting approach using document 

similarity. Information Processing & Management, 52(3): 

478-489. https://doi.org/10.1016/j.ipm.2015.09.002 

[6] Mu, Y.K., Feng, S.W., Zhang, J. (2019). Image retrieval 

based on text and semantic relevance analysis. Computer 

Engineering and Applications, 55(1): 202-208. 

https://doi.org/10.3778/j.issn.1002-8331.1709-0209 

[7] Macqueen, J. (1965). Some methods for classification 

and analysis of multi variate observations. Proc of 

Berkeley Symposium on Mathematical Statistics & 

Probability, pp. 281-297. 

[8] Yang, J., Ma, Y., Zhang, X., Li, S., Zhang, Y. (2017). An 

initialization method based on hybrid distance for K-

Means algorithm. Neural Computation, 29(22): 3094-

3117. https://doi.org/10.1162/neco_a_01014 

[9] Zhang, J.R., Chai, Y.M., Zan, H.Y., Gao, M.L. (2017). 

Weakly supervised text classification method based on 

LDA. Computer Engineering and Design, 38(1):86-91. 

https://doi.org/10.16208/j.issn1000-7024.2017.01.017 

[10] Limwattanapibool, O., Arch‐int, S. (2017). 

Determination of the appropriate parameters for K-

means clustering using selection of region clusters based 

on density DBSCAN (SRCD‐DBSCAN). Expert 

Systems, 34(3): e12204. 

https://doi.org/10.1111/exsy.12204 

[11] Wang, J.R., Ma, X., Duan, G.L. (2019). Improved K-

means clustering k-value selection algorithm. Computer 

Engineering and Applications, 55(8): 33-39. 

https://doi.org/10.3778/j.issn.1002-8331.1810-0075 

[12] Liu, P., Teng, J.Y., Ding, E.J., Meng, L. (2017). Parallel 

K-means algorithm for massive texts on spark. Journal of 

Chinese Information Processing, 31(4): 145-153. 

https://doi.org/10.3969/j.issn.1003-0077.2017.04.021 

[13] Al-Refaie, A.F., Yurchenko, S.N., Tennyson, J. (2017). 

GPU Accelerated in tensities MPI (GAIN-MPI): A new 

method of computing Einstein-A coefficients. Computer 

Physics Communications, 214: 216-224. 

https://doi.org/10.1016/j.cpc.2017.01.013 

[14] Xu, Z.W., Feng, B.M., Li, W. (2004). Grid Computing 

Technology. Beijing: Electronic Industry Press 

[15] Dean, J., Ghemawat, S. (2008). MapReduce: Simplified 

data processing on large clusters. Communications of the 

ACM, 51(1): 107-113. 

https://xs.scihub.ltd/https://doi.org/10.1145/1327452.13

27492 

[16] White, T. (2012). Hadoop: The Definitive Guide. 

O'Reilly Media, Inc. 

[17] Zhang, S.F., Dong, Y.Y., Chen, X.B. (2018). HKM 

clustering algorithm design and research based on 

Hadoop platform. Journal of Applied Sciences, 36(3): 

524-534. https://doi.org/10.3969/j.issn.0255-

8297.2018.02.012 

[18] Liao, B., Zhang, T., Yu, J., Guo, B.L., Liu, Y. (2017). 

Efficiency optimization method for MapReduce 

similarity computing based on spark. Computer Science, 

44(8): 46-53. https://doi.org/10.11896/j.issn.1002-

137X.2017.08.009 

[19] Wang, C.X., Lv, F., Cui, H.M., Cao, T., Zigman, J., 

Zhuang, L.J., Feng, X.B. (2018). Heterogeneous memory 

programming framework based on spark for big data 

processing. Journal of Computer Research and 

Development, 55(2): 246-264. 

https://doi.org/10.7544/issn1000-1239.2018.20170687 

[20] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, 

J. (2013). Distributed representations of words and 

phrases and their compositionality. In Advances in neural 

information processing systems, 26: 3111-3119. 

[21] McCallum, A., Nigam, K., Ungar, L.H. (2000, August). 

Efficient clustering of high-dimensional data sets with 

application to reference matching. In Proceedings of the 

Sixth ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, pp. 169-178. 

459



[22] Zhang, L., Mou, X.W. (2018). Chinese text clustering

algorithm based on Canopy+K-means. Library Tribune,

38(6): 113-119.

[23] Tong, J.F. (2017). User clustering based on Canopy+K-

means algorithm in cloud computing. Journal of 

Interdisciplinary Mathematics, 20(6-7): 1489-1492. 

https://doi.org/10.1080/09720502.2017.1386476 

 

460




