
An Innovative Beam Hardening Correction Method for Computed Tomography Systems 

Guoyi Xiu1, Chunying Yuan1*, Xiaohua Chen1, Xuesong Li2 

1 School of Economics and Management, Harbin University of Science and Technology, Harbin 150000, China 
2 School of Economics and Management, Harbin Institute of Technology, Harbin 150000, China 

Corresponding Author Email: 17b910061@stu.hit.edu.cn 

https://doi.org/10.18280/ts.360606 ABSTRACT 

Received: 2 March 2019 

Accepted: 20 August 2019 

Currently, beam hardening is mostly corrected based on image or projection. However, the 

physical meanings of the correction process are not unclear. To solve the problem, this paper 

puts forward a hardening correction method with clear physical meanings for computed 

tomography (CT) beams. First, the CT image was divided into equivalent tissues of water and 

bone according to the CT value of each pixel. Next, each equivalent tissue was projected to 

obtain the total length of that type of tissue on each projection ray. According to the acquired 

equivalent tissue length, a polychromatic projection model was constructed based on trinomial 

fitting, and applied to approximate the actual projection data. The coefficients were solved by 

the least squares (LS) method, and used to solve the nonlinear terms, i.e. the incorrect terms. 

After that, the incorrect terms were removed from the original projection, producing the 

corrected projection. Finally, the artefact-free image was reconstructed based on the corrected 

projection. Through experiments on actual CT scan data, the proposed model was proved to 

effectively remove the hardening artefacts of X-rays, and improve the quantification accuracy 

of the CT images. Thus, the proposed trinomial fitting hardening correction method is an 

effective strategy with clear physical meanings. The research results have great application 

potential in clinical CT and other CT systems. 
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1. INTRODUCTION

The filtered back projection (FBP) [1, 2] method is 

commonly used in X-ray computed tomography (CT) systems 

to reconstruct the CT images. This method assumes that X-

rays are monochromatic, while X-rays emitted by most clinical 

and industrial CT systems are polychromatic. If CT images are 

directly reconstructed by the FBP based on the collected data, 

the reconstructed images will contain hardening artefacts, 

which disturb the diagnosis and quantitative analysis. 

In recent years, various artefact removal methods have 

emerged, which mainly falls into hardware correction and 

software correction. In hardware correction, a filter is placed 

between the ray source and the object to filter low-energy 

photons. The hardware correction is easy to implement, and 

able to remove the artefacts in a certain extent. However, the 

signal-to-noise ratio (SNR) decreases in the correction process, 

as the low-energy photons are continuously removed [3]. 

There are mainly four strategies of software correction, 

namely, dual energy correction, single energy correction, 

iterative correction, and polynomial fitting. In theory, the dual 

energy correction, proposed by Alvarez et al., is the most 

effective means to eliminate hardening artefacts [4, 5]. 

However, this strategy is not widely applied, because of its low 

efficiency and high radiation dose: the object needs to be 

scanned under two different energies, i.e. a patient must be 

scanned twice.   

The single energy correction is grounded on Nalcioglu’s 

hypothesis [6]. First, a reconstruction is performed to identify 

the material distribution on each projection line. Next, each 

projection is processed and used to reconstruct the corrected 

image. The Nalcioglu’s single energy correction only applies 

to the scanning area containing only two kinds of known 

materials. Later, Joseph and Ruth [7] improved Nalcioglu’s 

strategy to cover the scanning area containing three types of 

known materials. However, the correction method becomes 

very complex, with the growing types of materials. 

The iterative correction iteratively derives new values of 

variables from the old values. Van Gompel et al. [8] 

determined the attenuation coefficient of an interactive 

correction method by minimizing the cost function. Their 

approach is not highly applicable because the nonconvex cost 

function does not have a unique solution, and the solutions are 

too sensitive to the initial values. Zhao and Li [9] applies the 

iterative correction in hardening correction of multi-material 

objects, but failed to eliminate all artefacts. Overall, the 

application of iterative correction is severely bottlenecked by 

heavy computing load, slow reconstruction and poor 

parallelism. 

The polynomial fitting [10-12] is more popular than any 

other artefact correction strategy, because it is simple in 

principle and operation and its coefficients are easy to 

calculate. Through polynomial fitting, the measured 

polychromatic projection data are converted into 

monochromic projection data, and then the linear projection 

data are reconstructed to produce the corrected image. Taking 

the segmented images of different tissues as independent 

variables, Kyriakou et al. [12] set up polynomial equations, 

solved the coefficients that minimize the total variation, and 

thus corrected the images. This polynomial fitting method is 

very effective, but requires complex computation. Chen et al. 

[13] proposed the reverse reconstruction hardening correction

Traitement du Signal 
Vol. 36, No. 6, December, 2019, pp. 515-520 

Journal homepage: http://iieta.org/journals/ts 

515



 

method based on equivalent tissue classification. The 

hardening artefacts are corrected based on a ladder-like test 

database of equivalent tissues. The method works efficiently 

and easily on simple materials. However, the flexibility of this 

method decreases significantly, as the material gets 

increasingly complex. After all, a large ladder-like test 

database is required for materials with complex structure.  

Considering the simplicity of polynomial fitting, this paper 

constructs a projection correction model based on polynomial 

fitting, in which the equivalent tissue length is treated as the 

independent variable. Our model has a larger applicable range 

than Chen’s method, eliminating the need to construct a 

ladder-like test database. Compared with Kyriakou’s method, 

our approach has clear physical meanings, relatively few 

correction parameters, and easy-to-solve coefficients by the 

least squares (LS) method. 

 

 

2. MATERIALS AND METHOD 

 

This paper puts forward a trinomial fitting method to correct 

the hardening artefacts in CT images, with the equivalent 

tissue length as the independent variable. According to the 

physical laws of X-ray projection, the proposed method 

constructs the projection correction model and uses the model 

to correct CT images. Our method mainly consists of four 

steps: the acquisition of equivalent tissues, forward projection, 

setting up the projection correction model, as well as 

coefficient solving and image correction. The workflow of our 

method is detailed below: 

Firstly, each pixel on the original CT image was converted 

proportionally into the corresponding equivalent tissue by the 

proportional division function for CT images [13, 14]. Then, 

each equivalent tissue was projected to obtain the total length 

of that type of tissue on each projection ray. The total lengths 

were taken as independent variables, and the projection model 

was constructed by trinomial fitting. The model was used to 

approximate the actual projection, solve the coefficients and 

obtain the nonlinear terms (i.e. incorrect terms). Next, the 

incorrect terms are removed from the original projection, 

producing the corrected projection. Finally, the artefact-free 

image was reconstructed based on the corrected projection. 

The proposed trinomial fitting method is simpler and more 

effective than the polynomial fitting strategy developed by 

Shanghai Lianying Medical Technology Co., Ltd. [14]: Our 

method can eliminate the artefacts through one reconstruction, 

without needing to combining or separating two images, while 

the latter approach needs to remove the incorrect images from 

the original noisy image.  

 

 

 

2.1 Equivalent tissues 

 

On the CT image (Figure 2), each pixel can be segmented 

proportionally into three equivalent tissues, namely, the air, 

water and bone by the proportional division function (Figure 

1). The percentages of the three equivalent tissues add up to 1. 

In this way, the CT image can be completely divided into the 

three equivalent tissues. 

Let 𝑇1, 𝑇2, 𝑇3 and 𝑇4 be -1,000 Hounsfield units (HU), 0HU, 

100HU, and 1,300HU, respectively. Then, our proportional 

division function takes 𝑇1 as the upper limit for the air, 𝑇4 as 

the lower limit for the bone, and 𝑇2~𝑇3 as the interval for water. 

For example, a pixel with CT value smaller than 𝑇1 is 100% 

air, a pixel with CT value greater than 𝑇4 is 100% bone, a pixel 

with CT value between 𝑇2 and 𝑇3 is 100% water, and a pixel 

with CT value between 𝑇3  and 𝑇4 is a mixture of water and 

bone.  

Here, the pixels with CT values in [𝑇3, 𝑇4] are segmented 

nonlinearly to determine the percentages of water and bone. 

The nonlinear segmentation is adopted for the mixture of water 

and bone rather than linear segmentation, because the latter 

ignores the difference in X-ray attenuation in water and bone 

(the X-ray attenuates greater in bone than in water with the 

same thickness). Through nonlinear segmentation, the CT 

image can be divided into the equivalent tissues of water, bone 

and the air, respectively denoted as 𝑊𝑤, 𝑊𝑏 and 𝑊𝑎: 

 

𝑊𝑤 =

{
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where, Z is the CT value of a pixel. 

 

 
 

Figure 1. The proportional division function for equivalent 

tissue 

 
 

Figure 2. (A) The original image f0, (B) the equivalent tissue of water 𝑊𝑤, (C) the equivalent tissue of bone 𝑊𝑏 

A B C 

516



2.2 Construction of the projection model 

 

If an object is radiated by a monochromatic ray source with 

the energy 𝐸0 , the monochromatic projection q will have a 

simple linear relationship with the thickness x penetrated by 

the X-ray [15]: 

 

q = ∫ μ(𝐸0, x)dx
D

0
                             (3) 

 

where, D is the total length of the penetration path of the X-

ray; μ(𝐸0, x) is the sectional distribution function of the linear 

attenuation coefficient of the object under 𝐸0. 

For low-energy rays, the attenuation is obvious in water and 

bone, but weak in the air. In fact, the attenuation of these rays 

in water and bone is the primary cause of hardening. Hence, 

this paper neglects the influence of the air on hardening, and 

only considers that from water and bone. Then, forward 

projection was preformed based on the three equivalent tissues 

to set up the projection model for image correction. The 

specific process is introduced below: 

Let 𝐿𝑤 and 𝐿𝑏 be the length of the forward projections of 

the equivalent tissues of water and bone, respectively. During 

the CT scan, each X-ray penetrates through water and bone, 

leaving a projection P on the detector. In ideal situation, the 

X-ray is polychromatic. Then, P must be linearly correlated 

with 𝐿𝑤  and 𝐿𝑏 . In real-world scenarios, the X-ray is 

polychromatic, and P is actually nonlinearly correlated with  

𝐿𝑤 and 𝐿𝑏. The nonlinear terms include the high-order term of 

bone, the high-order term of water, and their cross term. The 

high-order term of bone and that of water induce the hardening 

artefacts of bone and water, respectively.  

Theoretically, the polychromatic projection can be 

described as:  

 

P = c1Lw + c2Lb + c3Lb
2 + c4Lwb + c5Lw

2          (4) 

 

By formula (4), the Lb × Lb and Lw × Lb were calculated, 

and respectively denoted as Lb
2  and Lwb. 

In this paper, the test data are obtained from a CT scanner. 

The water hardening artefacts have been corrected [12, 16]. 

Therefore, only bone hardening artefacts need to be corrected. 

On this basis, the trinomial fitting model was proposed to fit 

the polychromatic projection: 

 

P = c1Lw + c2Lb + c3Lb
2                  (5) 

 

To verify the superiority of the proposed model, another 

polychromatic projection fitting model was designed for 

comparison:  

 

P = c1Lw + c2Lb + c3Lb
2 + c4Lwb           (6) 

 

Formula (6) is a quartic polynomial fitting model, including 

the cross term of water and bone Lwb. The trinomial fitting 

model and the quartic polynomial fitting model were both 

applied to hardening correction. 

 

2.3 Coefficient solving 

 

The original image 𝑓0 was subjected to Radon transform to 

obtain the projection data p0 . Then, the polychromatic 

projection P obtained by formula (5) was used to approximate 

the actual projection p. Due to the lack of raw data, the actual 

projection was replaced with the projection data p0 acquired 

by Radon transform. The replacement is reasonable because 

Radon transform is a parallel linear transform. 

Then, the unknown coefficients c1 , c2 and c3  can be 

determined by the LS method:  

 

E = min∬(P − p0)
2dxdy               (7) 

 

The coefficients can be derived by: 

 

∇cE = ∇c∬(P − p0)
2 dxdy = 0         (8) 

 

The values of c1, c2 and c3 can be determined by solving the 

linear equations. Then, the projection of the nonlinear error 

Perror can be obtained as 

 

Perror = c3Lb
2                                     (9) 

 

Next, the Perror was subtracted from the original projection 

p0, creating the corrected monochromatic projection Pfinal: 
 

Pfinal = p0 − Perror                          (10) 

 

Finally, the Pfinal was reconstructed to obtain the corrected 

CT image without hardening artefact ffinal. 
 

 

3. EXPERIMENTS 

 

The test objects were scanned by a cone-beam spiral CT 

scanner produced by Beijing Arrays Medical Imaging 

Corporation (AMIC), China, at the bulb voltage of 120kVp, 

the bulb current of 280mA, the medium thickness of 1.25mm, 

the source-detector distance of 988mm and the source-patient 

distance of 560mm. The convolution kernel was reconstructed 

before use.  

Both water and polyvinyl chloride (PVC) were adopted for 

our experiments, because of the similarity in X-ray attenuation 

between water and soft tissues, and between PVC and human 

bones. Specifically, two cylindrical buckets were selected, 

respectively 20cm and 30cm in diameter. Two pure PVC rods 

(diameter: 30mm) were adopted (SIMONA, Germany).  

Before the experiments, the CT scanner has been fully 

calibrated, including air calibration and water pre-calibration. 

In the first experiment, the two PVC rods were placed 

symmetrically around the water-filled bucket (diameter: 

20cm), and the experimental model was scanned by the head 

scan protocol, aiming to simulate the hardening artefacts in 

human head. In the second experiment, the two PVC rods were 

placed symmetrically around the water-filled bucket (diameter: 

30cm), and the experimental model was scanned by the body 

scan protocol, aiming to simulate the hardening artefacts in 

human body. In the third experiment, the head of the subject 

(a patient) was scanned by the head scan protocol to obtain the 

clinical data. During the scan, the subject was asked to lie flat 

on the scanning table. 

 

 

4. RESULTS 

 

The experimental model and the patient were scanned by 

the cone-beam spiral CT scanner, and the obtained scan data 

were used to evaluate the effectiveness of our model. 
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Figure 3 presents the pre- and post-correction results of the 

first experiment. In the pre-correction image (Figure 3A), 

there was an obvious stripe artefact between the high 

attenuators (PVC rods). By contrast, the stripe artefact 

between the high attenuators basically disappeared in the 

image corrected by the trinomial fitting model (Figure 3B). 

This agrees with the result in Kyriakou’s research [12]. 

Obvious artefact reduction was observed in the image 

corrected by the quartic polynomial fitting model (Figure 3C). 

 

 
 

Figure 3. The pre- and post-correction results of the first experiment 

 

To quantify the accuracy of the two correction models, the 

first region of interest (ROI1) was identified in the pre- and 

post-correction images. The mean CT values in ROI1 in the 

original and corrected images were computed (Table 1). 

 

Table 1. Mean CT values in ROI1 before and after correction 

 
Image ROI Mean CT 

value 

Original image A ROI1 -22 

Image corrected by trinomial fitting B ROI1 -4 

Image corrected by quartic polynomial 

fitting C 

ROI1 -12 

 

As shown in Table 1, the mean CT value of ROI1 in the 

original image was -22HU, far from the interval for the normal 

CT values of water (0±4HU). This will cause errors to image 

analysis and disturb the diagnosis. Through trinomial fitting, 

the mean CT value of ROI1 increased from -22HU to -4HU; 

through quartic polynomial fitting, the mean CT value of ROI1 

increased from -22HU to -12HU. Both fitting models managed 

to improve the mean CT value. However, only trinomial fitting 

adjusted the mean CT value of ROI1 to the normal interval 

(0±4HU). This means the proposed trinomial fitting model can 

effectively correct the hardening artefacts, while the quartic 

polynomial fitting model fails to completely correct the 

artefacts. 

Figure 4 displays the pre- and post-correction results of the 

second experiment. In the pre-correction image (Figure 4A), 

there was an obvious stripe artefact between the high 

attenuators (PVC rods). However, the stripe artefact between 

the high attenuators was no longer observable in the image 

corrected by the trinomial fitting model (Figure 4B). This is 

consistent with the result in Kyriakou’s research [12]. 

Similarly, the artefact was also greatly reduced in the image 

corrected by the quartic polynomial fitting model (Figure 4C). 

 

 
 

Figure 4. The pre- and post-correction results of the second experiment 

 

To quantify the accuracy of the two correction models, the 

second region of interest (ROI2) was plotted in the pre- and 

post-correction images. The mean CT values in ROI2 in the 

original and corrected images were computed (Table 2). 

As shown in Table 2, the mean CT value of ROI2 in the 

original image was -15HU, which severely deviates from the 

normal interval of CT values in water (0±4HU). Through 

trinomial fitting, the mean CT value of ROI2 increased from -

15HU to -2HU; through quartic polynomial fitting, the mean 

CT value of ROI2 increased from -15HU to -9HU. Thus, the 

mean CT value was increased by both models. The difference 

is that the mean CT value corrected by trinomial fitting 

returned to the normal interval (0±4HU), while that corrected 

by quartic polynomial fitting did not. Therefore, proposed 

trinomial fitting model is more effective than the other model 

in hardening correction. 
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Corrected 

 
B 
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C Corrected 
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Table 2. Mean CT values in ROI2 before and after correction 

 
Image ROI Mean CT value 

Original image A ROI2 -15 

Image corrected by trinomial 

fitting B 

ROI2 -2 

Image corrected by quartic 

polynomial fitting C 

ROI2 -9 

Figure 5 offers the pre- and post-correction results of the 

third experiment. In the pre-correction image (Figure 5A), an 

obvious stripe artefact lies between the high attenuators (PVC 

rods). In the images corrected by trinomial fitting model 

(Figure 5B) and quartic polynomial fitting model (Figure 5C), 

the stripe artefact between the high attenuators was removed. 

The result echoes that of Kyriakou’s research [12], and 

effectively proves the capacity of our model. 

 

 
 

Figure 5. The pre- and post-correction results of the third experiment 

 

In addition, the third region of interest (ROI3) was selected 

in the pre- and post-correction images. Table 3 records the 

changes in the mean CT value of ROI3 through the correction.  

 

Table 3. Mean CT values in ROI3 before and after correction 

 
Image ROI Mean CT 

value 

Original image A ROI3 20 

Image corrected by trinomial fitting B ROI3 37 

Image corrected by quartic polynomial 

fitting C 

ROI3 25 

 

As shown in Table 3, the mean CT value of ROI3 was 

increased from 20HU before correction to 37HU after 

trinomial fitting. The post-correction value is consistent with 

the CT value of the soft tissues in other brain regions 

(reference region) in Figure 5. The mean CT value of ROI3 

was elevated from 20HU to 25HU after quartic polynomial 

fitting. Despite the increase, the post-correct value was not on 

the same level with the CT value of soft tissues in the reference 

region. Therefore, the image corrected by the trinomial fitting 

model is more reliable and accurate than that corrected by the 

quartic polynomial fitting model, an evidence of the 

effectiveness of our trinomial fitting model in hardening 

correction.  

To sum up, both correction methods can remove the 

hardening artifacts. However, quantification analysis shows 

that the trinomial fitting model restored the true value of the 

data. From the perspective of precision medicine, the 

correction by this model improves the authenticity and 

reliability of the data. Hence, the proposed trinomial fitting 

model is an effective way to correct the projection data. 

 

 

5. DISCUSSION 

 

This paper proposes a reverse reconstruction beam 

hardening correction method, called trinomial fitting model, 

based on equivalent tissue length. The proposed method does 

not require information on spectrum and detector. The 

trinomial fitting model was proved effective in removing 

hardening artefacts through three experiments. The correction 

effect is comparable to that of empirical beam hardening 

correction (EBHC). 

Because only water and bone are considered, the equivalent 

tissues were identified by a simple nonlinear proportional 

division function, which takes account of the X-ray attenuation 

difference in water and bone. The division function can be 

replaced by other division approaches, such as the division 

method based on regional growth.  

The proposed trinomial fitting model for hardening 

correction uses the data, which had been subjected to water 

pre-calibration. In real-world scenarios, the clinical CT data 

are generally processed by water pre-calibration. Therefore, 

our model can be directly applied to correct the hardening 

artefacts in clinical data. 

 

 

6. CONCLUSIONS 

 

This paper suggests correcting beam hardenings based on 

equivalent tissues, and develops a trinomial fitting model and 

a quartic polynomial fitting model for projection correction. 

The two models were tested by the data of experimental model 

and clinical data. The test results show that the proposed 

trinomial fitting model for projection correction, which is 

based on equivalent tissue length, is an effective way to 

remove the hardening artefacts of X-rays, and a universally 

applicable approach for various test materials. The proposed 

model can be adopted for hardening correction of any 

polychromatic CT system, without requiring any prior 

knowledge of scanning.  

During image correction, the proposed trinomial fitting 

model has many advantages in calculation, namely, the limited 

number of parameters, and the simple, fast process. Moreover, 

our model corrects the artefacts through fitting based on 

equivalent tissue length, which is correct and clear in physical 
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3 

Corrected B 
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3 

Corrected C 

ROI

3 Referenc

e

519



 

meanings. There are various potential application fields of our 

model, such as the precise quantitative analysis of clinical CT, 

radiotherapy planning and interventional CT research. The 

research results lay a solid basis for subsequent machine 

learning based on artificial intelligence. 
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