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The generation and evolution of turbulence are affected by the way vortex structures emerge 

and interact with each other. The quick identification of vortex in flow field will offer a simple 

and easy way to explore the mechanism of turbulent flow. This paper combines convolutional 

neural network (CNN) and dynamic mode decomposition (DMD) into a novel vortex structure 

identification method, based on the flow field images obtained by simulation of the flow 

around circular cylinder and experiments of synthetic jet actuators. DMD was adopted to 

modally decompose the instantaneous image sequence of the flow field over a period and the 

first primary mode was added to the limit loss function of CNN vortex identification. Then a 

novel CNN topology was designed and trained by flow field image sequence. The proposed 

neural network managed to recognize 96% of the vortex structures correctly in the flow field 

images of the flow around circular cylinder and the synthetic jet flow. The research results 

provide a new way to identify vortex structures.  
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1. INTRODUCTION

Vortex is a common form of fluid motion in the flow field. 

And turbulence contains multiple vortex structures of different 

scales and intensities. In fact, the generation and evolution of 

turbulence are directly affected by the way vortex structures 

emerge and interact with each other [1]. Therefore, the 

accurate identification of vortex structures in the flow field is 

of great significance for understanding the turbulent flow 

mechanism and controlling turbulent flow [2, 3]. Some 

common methods for vortex identification are the Q criterions, 

𝜆2 , 𝛥 , and 𝜆𝑐𝑖 , and all these criterions need to process the

velocity information of the flow field, and select the proper 

thresholds based on Cauchy-Stokes decomposition and the 

eigenvalues of velocity gradient tensor ∇V [4-8]. 

In engineering applications, the direct and convenient way 

to obtain the flow field information is capturing the images of 

the instantaneous flow field, including experimental 

measurements and numerical simulations. But high computing 

load and time cost will be incurred, if the flow field velocity is 

calculated based on the image information with positioning the 

vortex by physical equations. Directly processing the images 

of the instantaneous flow field and pinpoint the vortex 

structures in the images will simplify and speed up the vortex 

identification. 

The convolutional neural network (CNN) provides a new 

solution to vortex identification based on the flow field image. 

The CNN is the most widely used deep learning technique. It 

has been applied extensively in target recognition, image 

classification and object detection. With the aid of the CNN, it 

is possible to position the vortex structures while acquiring the 

flow field images at the same time. 

LeCun et al. [9] proposed the LeNet, the prototype of 

modern CNN, for 2D image recognition. As shown in Figure 

1, the LeNet consists of 2 convolutional layers, 2 pooling 

layers, and 1 fully-connected layer. The image features are 

extracted in convolutional and pooling layers; the data of the 

original image are mapped to the feature dimension, and then 

classified in the fully-connected layer; the feature dimension 

is mapped to the sample labels. The LeNet has been 

successfully applied to different image recognition tasks, and 

hailed as a universal image recognition neural network. 

Figure 1. Structure of the LeNet [9] 

Based on the LeNet, Krizhevsky et al. [10] put forward the 

AlexNet, which has 5 convolutional layers and 3 fully-

connected layers, more than those in the LeNet. The AlexNet 

adopts distributed computing to speed up network training and 

improve the efficiency of image recognition. It is the first 

neural network that made a breakthrough in the ImageNet 

Large Scale Visual Recognition Competition (ILSVRC). The 

VGG model, designed by Simonyan [11] of Oxford University, 

is deeper than the AlexNet, and enhances the performance of 

the CNN in image classification. Szegedy [12] from Google 

presented the InceptionNet, which integrates multiscale model 

structures by increasing the number of image feature 

extraction layers. Because it is easy to learn the residuals 

between input and output using the convolutional layer, He 

Kaiming et al. [13] developed the ResNet to curb the reduction 

of image classification accuracy caused by the growing 

network depth. 
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The common CNNs like the VGG and ResNet can identify 

the class of each image, but only in a rough manner. By 

contrast, the fully convolutional network (FCN) [14] can 

classify images at the pixel level. The FCN accepts input 

images of any size, and predicts each pixel in the images, 

without sacrificing their spatial information. The classification 

is performed pixel by pixel, solving the semantic segmentation 

problem. For example, the U-Net has a very high recognition 

rate on medical images. This horizontally crossed CNN can 

identify tumor features on medical computed tomography 

(CT) images [15, 16]. DeepLab [17], a deep CNN, is widely 

used in autonomous driving, thanks to its high recognition rate 

of pedestrians and vehicles in road images collected by 

onboard cameras. 

To identify vortex in the flow field, Brendan Colvert et al. 

[18] correctly classified the different fluid behaviors in the 

flow field by neural network, according to the physical 

equations of vortex calculation. Lguensat et al. [19] developed 

a deep neural network with EddyNet structure, and constructed 

a pixel-level classification system for ocean eddies. To 

improve the pixel-level recognition rate of flow field images, 

the key is to make full use of the effective information in the 

flow field and add it to the structure of the CNN. The dynamic 

mode decomposition (DMD) can perform modal 

decomposition of continuous images, treating them as input 

snapshots, and extract features from the flow field images 

obtained from experiments or calculations, providing suitable 

data sources for the CNN. Proposed by Schmid [20] in 2008, 

the DMD is suitable for numerical analysis of experimental 

data on flow field. By this method, the spatiotemporal coherent 

information of complex flow images can be decomposed into 

several main modalities, and effective information can be 

extracted from high-dimensional data, laying the basis for 

short-term prediction and control. 

In this paper, the CNN and the DMD are combined to 

identify and predict the vortex structures in the flow field 

images obtained through experiments and numerical 

simulations. Firstly, the DMD was adopted to modally 

decompose the instantaneous image sequence of the flow field 

over a period, revealing the first primary mode. The modes 

with amplitude greater than a fixed value were defined as the 

effective area of the vortex, and used as the limit loss function 

of vortex classification. Next, a novel topology like the U-Net 

was designed, in which each convolutional layer at the bottom 

is up-sampled to the corresponding pooling layer and added up 

layer by layer. The flow field image sequence was then 

imported for the identification of vortex structures. The 

proposed neural network was trained by hundreds of 

thousands of experimental data. The trained network correctly 

recognized 96% of the vortex in the flow field images. 

 

 

2. IMAGE ACQUISITION AND PROCESSING 

 

2.1 Acquisition of flow field images 

 

As shown in Figure 2, the flow field data were obtained by 

computing the flow around a circular cylinder in numerical 

simulation software. The velocity and vorticity of the flow 

field were computed based on the following parameters: 

incoming flow velocity, 1m/s; cylinder diameter, 10mm; 

actual grid size, 200mm×100mm; kinematic viscosity of gas, 

0.15. The grid density was increase in local areas. 

 

 
 

Figure 2. The calculation of the flow around a circular 

cylinder 

 

To acquire flow field images through experiments, a 

synthetic jet actuator with a slot-shaped outlet was designed, 

and used to obtain the images of the jet flow field. As shown 

in Figure 3, the actuator is composed of a loudspeaker, a cavity 

and an outlet cover. Once the excitation signal is imported, the 

loudspeaker cone moves up and down reciprocally, 

compressing and expanding the gas in the cavity. In this way, 

the gas is pushed out and pull in periodically via the outlet, 

forming a synthetic jet.  

In addition, a time-resolved particle image velocimetry 

(TR-PIV) system (Figure 4) was set up to illuminate the flow 

field near the outlet with a laser. The instantaneous flow field 

near the outlet was captured by a high-speed camera. 

 

 
 

Figure 3. The synthetic jet actuator 

 

 
 

Figure 4. The TR-PIV system 

 

To verify its effectiveness, our neural network model was 

applied to process the images of three different flow fields, 

namely, the flow field of the flow around a circular cylinder, 

the flow field of the synthetic jet flow excited by low voltage, 

and flow field of the synthetic jet flow excited by high voltage. 

 

2.2 The DMD 

 

The flow field information obtained by experiments and 

numerical simulations was inputted as image snapshots. The 

Koopman operator A was introduced to map each snapshot 

from 𝜐𝑖  to 𝜐(𝑖+1): 
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Then, 𝑉1
𝑁 can be constructed as a Krylov sequence:  

 

 
 

According to the assumption of linear mapping, Koopman 

operator A can reflect the dynamic features of how the 

snapshot evolves over time. Hence, the solution of matrix A is 

the key to the DMD. In general, the matrix is solved by 

dimensionality reduction. 

To perform reduced order analysis of the snapshot sequence, 

the  𝑉1
𝑁 can be characterized by several DMD modes, which is 

far fewer than N-1. If D+1 DMD modes are selected, then the 

order reduction can be expressed as: 

 

( ) ( ) ( )

1
0 00

1
11 2 1 1

1 0 1

1

1

1
      

1

−

−

−

  
  
     = =      
  
     

D

D
D D

N

N
NN

T

N
T T T

V v v v

 

  
  

  
 

 

2.3 CNN structure 

 

In the conventional CNN, each convolutional layer is 

connected to several fully-connected layers. The feature map 

produced by the convolutional layer is mapped to a fixed-

length feature vector, which applies to image-level 

classification and recognition. The conventional topology is 

not suitable for vortex identification in flow field images, 

because this task requires the classification of each pixel. To 

solve the problem, this paper adopts the topology of the FCN 

(Figure 5). The FCN accepts input images of any size. The 

feature map of the last convolutional layer is up-sampled on a 

deconvolutional layer, and thus restored to the size of the input 

image. Then, the restored image was expanded into a column, 

making every pixel predictable. 

Of course, it is impossible to classify each pixel accurately 

by the up-sampling of the feature map of the last convolutional 

layer alone. This calls for integration based on skip layers. Due 

to the rapid structural changes in real flow field, there are 

various sizes of vortex structures in the flow field images. To 

fully utilize its parameters, the last convolutional layer, which 

involves numerous small-scale pixel features, was connected 

to the up-sampling layer.  

 

 
 

Figure 5. The structure of the FCN 

 

 

3. RESULTS AND ANALYSIS 

 

3.1 Extraction of image features 

 

The DMD was employed to extract the information of 

vortex features in flow field images. The simulated flow 

around a circular cylinder (Figure 6) was decomposed by the 

DMD, revealing the relationship between vorticity and the first 

primary mode. Two types of data were obtained through 

simulation: the data on velocity field, and the pixel data of the 

images. Both types of data can be converted into matrices. 

However, the two types of data cannot be unified into a matrix, 

because of their difference in scale and the stored physical 

information. The ultimate purpose of the DMD is to modally 

decompose the images of the flow field and input the results 

into the neural network as the feature information of the flow 

field. Therefore, it is necessary to verify the rationality of the 

DMD modal decomposition of the data from the images, with 

the DMD decomposition of velocity field data as the reference. 
 

 
(a) Velocity cloud map 

 
(b) Vorticity cloud map 

 

Figure 6. Simulated flow around a circular cylinder 
 

To perform DMD modal decomposition of the flow field, a 

continuous sequence of flow field should be provided with a 

fixed time interval. Here, the flow around a circular cylinder 

was sampled at every 500μs, and inputted as snapshots. The 

first primary modes of the velocity field and the image data are 

displayed in Figure 7 below. 
 

 
(a) The first primary mode of the velocity field data 

 
(b) The first primary mode of the image data 

 

Figure 7. Modes of the flow around a circular cylinder 

obtained by the DMD 
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As shown in Figure 7, the first primary mode of the image 

data was more dispersed and less concentrated than that of the 

velocity field data. The difference arises from the processing 

of each pixel in the image. The pixel-by-pixel processing is 

equivalent to mean filtering and translation of flow field 

velocity, which induces a certain error in principal component 

decomposition. However, the two subfigures of Figure 7 only 

have a slight difference in overall shape and relative position, 

indicating that the loss function thresholds of the CNN can be 

selected suitably. During the numerical simulation of the flow 

around a circular cylinder, the flow field velocity images 

decomposed by the DMD can be applied in the CNN 

calculation. 

The instantaneous velocity field, vorticity field, PIV and 

DMD primary mode of the synthetic jet flow field under 

high/low voltage excitation are displayed in Figures 8 and 9 

below. 

 

 
(a) Velocity cloud map 

     
       (b) Vorticity cloud map       (c) DMD primary mode 

 

Figure 8. Flow field of the synthetic jet flow excited by low 

voltage 

 

 
 

(a) Velocity cloud map 

     
(b) Vorticity cloud map       (c)DMD primary mode 

 

Figure 9. Flow field of the synthetic jet flow excited by high 

voltage 

 

3.2 Identification results of vortex structures 

 

As inputs to the neural network, the three different flow 

fields all have a certain periodicity, exhibiting obvious vortex 

structures. The information about vortex positions were 

extracted by the DMD from the flow field images. Through 

comparison, it is found that the first primary mode obtained by 

the DMD has a certain correlation with the vortex structures in 

the flow field: the relatively large points in the vorticity map 

all appeared near the dark areas, i.e. the maximum and 

minimum ranges of the amplitude of the primary mode. As a 

result, the vortex does not appear randomly the flow field. This 

is very effective information for pixel-level vortex 

identification. Taking this condition as a loss function of the 

CNN, the vortex structures in flow field images can be 

identified more accurately by the neural network. 

During the training of the neural network, the size of each 

input image is 224×224×3, and the smallest convolutional 

layer is of the size 7×7×512. The convolutional layers are 

denoted as 𝐹𝑖 , with 𝐹6  being the smallest one. The 

deconvolutional layers (up-sampling layers) are denoted as 𝑈𝑖 
from the left to right. The up-sampling is like the 

magnification of pixels. Because U1 was sampled from F6, the 

size of U2 can be expressed as U2=(F4/2+U1)×2+F6×4. U3 was 

formed in the same way as U2. The final layer was added with 

F1. In this way, the network structure covers the information 

of all scales, and the network acquires the ability of global 

perception. 

To reduce errors and enhance the accuracy of image 

recognition, the first primary mode obtained by the DMD was 

linked with the vortex structure of the flow field, which further 

improves the loss function in the network. Specifically, any 

mode that deviates from the extreme value by less than 0.2 is 

denoted as M, the nonzero value of the vortex as W, and the 

M nearest to W as NearM. Let Px, Py be the pixel with the 

coordinates of x, y. Then, the effective distance of the vortex 

can be defined as: 

 

d = min⁡(|𝑊𝑃𝑥 −𝑁𝑒𝑎𝑟𝑀𝑝𝑥|, |𝑊𝑃𝑦 − 𝑁𝑒𝑎𝑟𝑀𝑝𝑦|) 

 

The image recognition error increases with the distance 

from the predicted vortex pixel to the NearM. The 

classification of vortex pixels is a binary classification 

problem. Here, the distance loss is combined with binary 

classification to suppress the false positive rate. The loss 

function can be defined as: 
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Loss = −∑[𝑡𝑖 log(𝑦𝑖) + (1 − 𝑡𝑖) log(1 − 𝑦𝑖)]

𝑖

+ 𝛼(𝑒𝑑

− 1) 
 

 
(a) Vorticity map of the flow around a circular cylinder 

 
(b) Vortex structures of the flow around a circular cylinder 

identified by the neural network 

  
(c) Vorticity map of the 

synth etic jet flow excited 

by low voltage 

(d) Vortex structures of the 

synthetic jet flow excited 

by low voltage identified 

by the neural network 

  
(e) Vorticity map of the 

synthetic jet flow excited 

by high voltage 

(f)Vortex structures of the 

synthetic jet flow excited 

by high voltage identified 

by the neural network 

 

Figure 10. Vorticity images and vortex identification results 

 

The neural network was trained with the data of flow field 

images. Then, the images that have not been used as training 

samples were inputted to the network for vortex identification. 

The recognition results are shown in Figure 10. Compared 

with the vortex positions obtained by mathematical formulas, 

the vortex identified by the neural network in flow field 

images are accurate. The CNN did not suffer from over fitting, 

and recognized 96% of vortex positions correctly. 

 

 
(a) Concerning the flow around a circular cylinder 

 
(b) Concerning the synthetic jet flow excited by low voltage 

 

Figure 11. Vortex identification errors and loss function 

values before and after the DMD 

 

Before and after the DMD, the training and verification 

losses of the neural network concerning the flow around a 

circular cylinder and the synthetic jet flow excited by low 

voltage are compared in Figure 11. It can be seen that the CNN 

had a small error in training set, which is slightly greater than 

that in verification set. The errors in training and verification 

sets both decreased after the DMD was performed on the flow 

field image, and the DMD primary mode was introduced as 

part of the loss function. This means the DMD can clearly 

suppress errors. 

 

 

4. CONCLUSIONS 

 

Based on the CNN and DMD method, this paper proposes a 

novel neural network to identify the vortex structures in the 

flow field images around a circular cylinder and near the 

synthetic jet actuator. DMD was adopted to modally 

decompose the instantaneous image sequence of the flow field 

over a period. The first primary mode obtained was added to 

the limit loss function of the CNN network. Then the CNN 

topology was designed and trained by flow field image 

sequence. The proposed neural network managed to recognize 

96% of the vortex structures in the flow field images. 
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