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 This paper attempts to replace the traditional manual slag offloading of magnesium smelting 

in Pidgeon process with robotic slag removal. Specifically, the high-temperature infrared dot 

matrix was used to measure the slag positions indirectly; the faster region-based convolutional 

neural network (Faster R-CNN) was trained with thermal image of the reduction jar as the 

dataset; the isothermal image of the reduction jar was plotted based on the slag centers, and 

adopted to detect the opening direction of the jar and the slag positions. The indirect 

measurement results show that the actual internal temperature of the jar can be detected 

accurately through repeated experiments, with an error of less than 10 °C. Finally, the proposed 

method was verified through a case study on 1,000 images. The results show that our model 

can correctly identify more than 90% of crude magnesium in the actual jar. 
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1. INTRODUCTION 

 

Magnesium is a lightweight green material widely used in 

automobile, electronic communication, medical service and 

aerospace. It can be synthesized with one or more 

metal/nonmetal into alloys of various special properties, 

breaking through the limitations of common metal materials in 

many fields. At present, 98% of magnesium in China is 

produced by the low-efficient, energy-intensive Pidgeon 

process. The traditional Pidgeon process has a long reduction 

cycle that requires many reduction jars, and causes serious 

pollution to the environment. These defects push up the 

production cost and hinder the development of magnesium 

industry in China. 

Figure 1 is a photo taken at a magnesium factory in Shenmu 

County, northwestern China’s Shaanxi Province. Traditionally, 

the magnesium is smelted in the Pidgeon process through 

following steps: blend the magnesium-containing calcined 

dolomite evenly with the reducing agent (ferrosilicon powder) 

and the mineralizer (fluorite powder) at a certain mix ratio; 

press the mixture into pellets; load a fixed amount of the 

pellets into the test tube in the reduction jar. The following 

takes place in an airtight regenerative reduction furnace, where 

the reduction jar is located (Figure 2). The equipment is water-

cooled, and then vacuumed. After that the reduction jar is 

heated with lump coal or gas. In this way, magnesium can be 

reduced from the calcined dolomite in the form of vapor, and 

released to the vacuum zone of the jar through the voids in the 

pellets. Then, the magnesium vapor will enter the crystallizer 

through a small hole in the heat shield. After water cooling, 

crude magnesium can be obtained as solid crystalline. 

To sum up, the magnesium-containing calcined dolomite 

gives off magnesium vapor under high temperature 

(1,150~1,250 °C) and vacuum (1.33~133 Pa), which later 

crystallizes and condenses to obtain crude magnesium. The 

reaction can be described as follows: 

 

2(MgO•CaO)+Si(Fe)=2Mg(g)+2CaO•SiO2+(Fe)                 (1) 

 

 

 
 

Figure 1. A magnesium factory in Shenmu County 

 

 
 

Figure 2. Structure of regenerative reduction furnace 
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As shown in Figure 2, the magnesium smelting produces a 

lot of slags. It is very laborious and time-consuming to offload 

the slags manually, not to mention the danger of working at 

such a high temperature in the furnace. To solve the problem, 

this paper attempts to introduce multi-legged robot to realize 

automatic slag offloading in magnesium smelting. 

 

 

2. LITERATURE REVIEW 

 

The slag offloading effect of the robot depends on the 

robot’s near-infrared vision [1-3], i.e. the ability to locate the 

high-temperature targets (slags). An important way to improve 

this ability is to couple infrared thermal imaging sensor with 

high-precision laser/ultrasonic depth sensor [4-6]. Below is a 

brief review of the relevant studies in China. 

Using a binocular infrared thermal imager, Chen et al. 

measured high-temperature targets in infrared binocular vision, 

developed a calibration method for infrared binocular 

positioning, and designed a special infrared calibration target 

[7]. This positioning method requires sensitive sensors, high 

cost and meticulous calibration. 

Liu et al. dynamically positioned targets with an infrared 

pyroelectric sensor in the following manner [8]: Considering 

its passive detection feature, the pyroelectric sensor was 

mounted on a rotating platform; when a target entered the 

blind zone, the hotspot signal received by the sensor produced 

a step change, signifying the presence of the target; then, a 

pyroelectric sensor network was built and the acquisition area 

was calibrated to locate the target. However, the experimental 

environment is too complex to build easily and the positioning 

is both inaccurate and time-consuming. 

Pan et al. integrated the charge-coupled device (CCD) 

camera with infrared filter to create an infrared stereovision, 

put forward a discrete traversal visual target search algorithm, 

and actively traversed the search space for the visual targets 

through discrete control of the rotation and tilting of the two 

cameras [9]. There are two problems with their approach: only 

the position of the cameras is adjustable in the experimental 

platform, and the algorithm is very complex. 

 

 

3. METHODOLOGY 

 

3.1 Process improvement 

 

The magnesium smelting in Pidgeon process was improved 

in many aspects. The improved method is compared with the 

traditional approach in Figure 3. It can be seen that the steps 

from dolomite calcination to the crystallization of crude 

magnesium remain unchanged in the improved method. The 

main difference between the two methods lies in the step of 

slag offloading. In the traditional process, the slags left in the 

reduction zone at the end of the furnace are offloaded by 

workers with long rods This approach is purely empirical, and 

often unable to clean up all the slags. The residual slags will 

hinder the reaction in the next cycle. What is worse, the hot 

working environment may endanger the health of the workers.  

In the improved process, the slags are automatically 

removed by a robot, which indirectly measures the position of 

slags using a high-temperature infrared dot matrix [10, 11]. 

Specifically, the robot shots a thermal image of the reduction 

jar, taking it as the training dataset of the machine learning 

network, and draws an isothermal diagram for slag center 

recognition. On this basis, the faster region-based 

convolutional neural network (faster R-CNN) was adopted to 

detect the opening direction of the reduction jar, the position 

of crude magnesium, and monitor the temperature field. 

Through the arms, the robot can detect the depth of a desired 

target point, and determine whether the object at that point is 

crude magnesium or slag. 

 

 
 

Figure 3. Flow chart of traditional and improved magnesium smelting in Pidgeon process 
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3.2 Faster R-CNN construction 

 

As mentioned above, the faster R-CNN was selected to 

support the robotic slag offloading. The faster R-CNN adopted 

for our research uses the region proposal network (RPN) to 

acquire the candidate anchor boxes [12-16]. The layers of the 

faster R-CNN are detailed in Figure 4. 

(1) Fully-convolutional network (FCN) layer 

The FCN can handle input images of various sizes. This 

layer collects the deconvolution features of each input image, 

forming a feature map. In addition, the FCN ensures that the 

size of the output image is the same as that of the input image, 

such that the spatial information of the input image is 

preserved for accurate classification. The FCN provides a 

feature map for subsequent layers such as RPN. In other words, 

our fast R-CNN only needs to extract image features once, 

reducing the computation time of the system. 

(2) RPN layer 

The RPN is a simple FCN consists of a convolutional layer, 

an activation function and the classification & regression layer. 

Different from the selective search, the RPN generates k 

anchor boxes in each sliding window. The width-height ratio 

of the k anchor points is 1:1, 1:2 and 2:1. The features of these 

boxes are extracted from the FCN layer. To extract feature 

submaps (proposals), the Softmax function judges if the 

candidate box is in the foreground or the background, while 

the bounding box regressor adjusts the box position. The 

acquired features lay the basis for classification and bounding 

box regression. 

(3) Region-of-interest (ROI) pooling layer 

The ROI pooling normalizes proposals of different sizes 

into the same size, leading to faster training and testing and 

more accurate detection. This layer is necessary because the 

RPN generate proposals of varied sizes and shapes, while the 

traditional CNN only accepts fixed size inputs and fixed 

dimension/vector outputs. 

(4) Classification layer 

In this layer, the object classification, position adjustment 

and bounding box regression are carried out based on the 

feature map outputted by the ROI layer. 

 

 
 

Figure 4. Flow chart of the proposed recognition method 

 

 

4. EXPERIMENT 

 

4.1 Faster R-CNN structure 

 

The features were extracted from 51×39,512 channels of 

image data. In our experiment, nine candidate anchor boxes 

are selected, whose scales are {1282, 2562, 5122} respectively. 

The anchor boxes were selected in the RPN layer. The 

parameters of this layer are listed in Table 1. In the 

classification layer, each output position (cls_score) refers to 

the probability for the nine anchor boxes to fall in the 

foreground or background when they are outputted through the 

256 channels. In the regression layer, each output position 

(bbox_pred) describes the scales of the nine boxes with 4 

translation scaling parameters. 

 

Table 1. Parameters of the RPN layer 

 
Layer Bottom Top Kernel size Pad Stride Number Channel 

rpn_conv/3*3 conv5 rpn/output 3 1 1 1 256 

rpn_relu/3*3 rpn rpn/output    1 256 

rpn_cls_score rpn/output rpn/output 1 0 1 1 3 

rpn_bbox_pred rpn/output rpn_bbox_pred 1 0 1 1 12 

cls_score_reshape rpn_cls_score rpn_cls_score_reshape    1 2 

 

The network parameter ω was initialized based on the 

choice of the sharing feature. Both the RPN and fast R-CNN 

require an original feature extraction network [17]. Hence, the 

ImageNet Classification Library was used to train the initial 

parameter. Then, the network was fine-tuned by the specified 

dataset. For anchor box i, the parameters of the prediction box 

can be expressed as [18]: 

 

tx=(x-xa)/wa, ty=(y-ya)/ha                                                       (2) 

 

tw=log(w/wa), th=log(h/ha)                                                    (3) 

 

tx
*=(x*-xa)/wa, ty

*=(y*-ya)/ha                                                  (4) 

 

tw
*=log(w*-wa)/wa, th

*=log(h*-ha)/ha                                     (5) 

 

where x, y, w and h are the center coordinates predicted by the 

RPN. For each anchor box, the center coordinates xa, ya, wa 

and ha depend on the size and ratio of the box. Meanwhile, the 

loss function of the real target box can be defined as: 

 

L({pi},{ti})=1/Ncls∑Lcls(pi,pi
*)+1/Nreg∑pi

*Lreg(ti,ti
*)              (6) 

 

where x*,y*, w* and h* are the center coordinates of the real 

target box; pi is the probability of recognizing an object at 

anchor point i; p*i is the probabilities of the anchor box after 

traversing the entire image; ti and t*i are the positions of the 

prediction box and the anchor box, respectively; Lreg is the 

Softmax loss of two classes. If the label assigned by the anchor 

box is true, then p*i =1. The points corresponding to pi and p*i 

are the four vertices of the candidate anchor box, whose 

coordinates are ti (tx, ty, tw, th) and t*i (t*x, t*y, t*w, t*h). 
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4.2 Dataset preparation 

 

A total of 100 8×8 infrared array sensors were selected, 

forming an 80×80 temperature data acquisition array. In each 

second, the array captured 6,400 pieces of temperature data. 

The data were processed to generate pseudo-color temperature 

distribution maps. Then, the temperature data matrix was 

plotted as a 2D pixel map, where the coordinates are expressed 

as (ui, vi). The temperature detected at each point is denoted as 

ti. 

Following the above procedure, 6,000 sets of temperature 

data were collected by the 80×80 array in the said magnesium 

factory, from the same shooting angle of Figure 1. In this way, 

6,000 pseudo-color temperature distribution maps were 

obtained from array data. Then, the high and sub-high 

temperature ranges of each map were marked by the ROI 

framed standard (Figure 5). 

The registration results of 5,000 field images and 5,000 

pseudo-color distribution maps were selected as the training 

set of our model, the remaining 1000 sets of temperature data 

were used as the testing set, and the remaining 1,000 field 

images were taken as the verification set. 

 

     

     
 

Figure 5. Thermal images after isotherm labeling 

 

4.3 ROI marking 

 

The ROI of each image was marked as per the requirement 

of the faster R-CNN. The coordinates of each ROI (excluding 

the slag position) were determined by software on the 

registration dataset and saved as an XML file. 

 

4.4 Experimental environment 

 

The Caffe deep learning framework was selected for our 

research. The platform was equipped with NVIDIA 

GTX1050Ti graphics card and Ubuntu 16.04. Under the 

machine learning framework of TensorFlow, our model was 

trained by two Visual Geometry Group (VGG) models 

(VVG16 and VGG24). 

 

4.5 Parameter setting 

 

The solver parameters of the network were set as follows: 

Stage1_fast_rcnn_train.pt: base_lr (fast): 0.001, lr_policy 

(fast): "step", stepsize (fast): 30000, display (fast): 20, 

average_loss (fast): 100, momentum (fast): 0.9, weight_decay 

(fast): 0.0005.  

Stage1_rpn_train.pt: base_lr (fast): 0.001, lr_policy (fast): 

"step", stepsize (fast): 60000, display (fast): 20, average_loss 

(fast): 100, momentum (fast): 0.9, weight_decay (fast): 

0.0005.  

Stage2_faster_rcnn_train.pt: base_lr (faster): 0.001, 

lr_policy (faster): "step", stepsize (faster):30000, display 

(faster): 20, average_loss (faster): 100, momentum (faster): 

0.9, weight_decay (faster): 0.0005. 

Stage2_rpn_train.pt: base_lr (faster): 0.001, lr_policy 

(faster): "step", stepsize (faster): 60000, display (faster): 20, 

average_loss (faster): 100, momentum (faster): 0.9, 

weight_decay (faster): 0.0005.  

The partial parameters of the network were set as follows: 

data_param_str_num_classes: 4, cls_score_num_output: 4, 

bbox_pred_num_output: 16. 

 

4.6 Results analysis 

 

The training results of VGG16 and VGG24 are listed in 

Table 2 below. 

 

Table 2. The training results of the VGG16 and VGG24 

 

Pascal_voc. 

Model 

High-

Temperature 

Slags 

Low-

Temperature 

Slags 

Background 

VGG16 0.9739 0.8806 0.3604 

VGG24 0.9782 0.8812 0.3646 

 

As shown in Table 2, the background value of the training 

detection improved with the increase of the network depth. 

The recognition rate of high-temperature slags, which have a 

few training data, was relatively high. 

Next, the proposed method was applied to locate high-

temperature slags. The results were subjected to grayscale 

processing and binarization, yielding the feature point 

coordinates of high-temperature targets on the pixel plane.  

 

Table 3. Feature point coordinates of high-temperature 

targets on the pixel plane 

 
Target 1 2 3 4 5 6 

U-axis Coordinates 807 390 1159 822 306 1268 

V-axis Coordinates 387 385 382 329 295 294 

 

As shown in Table 3, six groups of data were obtained from 

the positioning experiment on high-temperature slags on the 
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pixel plane. Then, the global coordinates of the slags were 

computed [19, 20], and compared with the measured 

coordinates in actual operation (Table 4).  

The comparison between the global coordinates and 

measured coordinates shows that our method can control the 

error at about 10mm. 

 

Table 4. Comparison between the global coordinates and measured coordinates 

 
Group Global Coordinate (mm) Measured Coordinates (mm) Error (mm) 

1 (-4.8, 667.4, 95.0) (-10.0, 675.0, 95.0) 9.2 

2 (165.6, 674.8, 95.0) (155.0, 675.0, 95.0) 10.6 

3 (-146.3, 682.6, 95.0) (-145.0, 675.0, 95.0) 7.7 

4 (-11.1, 902.2, 95.0) (-10.0, 900.0, 95.0) 2.5 

5 (314.6, 1126.2, 95.0) (310.0, 1125.0, 95.0) 4.8 

6 (-292.6, 1135.5, 95.0) (-290.0, 1125.0, 95.0) 10.8 

 

 

5. CONCLUSIONS 

 

This paper introduces faster R-CNN to identify the slags in 

the reduction jar of magnesium melting process. The RPN was 

adopted to generate an efficient and accurate region proposal. 

In each image, the proposed method locates the difference and 

range between slag center and slag temperature. The 

isothermal image of the reduction jar was plotted based on the 

slag centers, and adopted to detect the opening direction of the 

jar and the slag positions. The indirect measurement results 

show that the actual internal temperature of the jar can be 

detected accurately through repeated experiments, with an 

error of less than 10°C. Finally, the proposed method was 

verified through a case study on 1,000 images. The results 

show that our model can correctly identify more than 90% of 

crude magnesium in the actual jar. 
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